УДК 621.7

Титов В. А. Рехта А. С. Гараненко Т. Р.

НЕКОТОРЫЕ ЗАКОНОМЕРНОСТИ ИЗОТЕРМИЧЕСКОГО ВЯЗКОПЛАСТИЧЕСКОГО ФОРМООБРАЗОВАНИЯ МЕМБРАНЫ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ

Известно достаточно много исследований, которые описывают формообразование тонкостенных элементов авиационной и космической техники которые сложно получить обычными методами обработки металлов давлением. С этой точки зрения актуальным есть использование реологических характеристик материалов, которые позволяют получать значительные степени деформации при реализации режимов сверхпластичности или кратковременной ползучести [1–6].

Целью работы является определение закономерностей изотермического формообразования мембраны из алюминиевых сплавов в условиях вязкопластического деформирования.

Выполнено численное моделирование процесса формообразования мембран в вязкопластическом состоянии в зависимости от скорости деформирования и модели материала.

Оценка напряженно-деформированного состояния материала заготовки и энергосиловых параметров процесса осуществлялась с помощью лицензированной программы CAD / CAE DEFORM-3D.

Для численного моделирования выбран аналог алюминиевого сплава B95 – 7075, химический состав которого указан в табл. 1. Размеры заготовки D = 2B = 128 мм (рис. 1), толщина t = 1 мм. Диаметр матрицы d = 90 мм, радиус кромки матрицы R = 2,5 мм (рис. 2–3). Процесс изотермический и осуществляется при температуре T = 510 °C. Моделирование было проведено для двух заготовок при давлении 0,5 МПа и 0,3 МПа (табл. 2).

Таблица 1

Химический состав материала В95 (7075) [7]					1		
Элемент	Al	Zn	Mg	Mn	Si	Cu	Fe
Массовая часть, %	основа	5-7	1,8–2,8	0,2-0,6	0,5	1,4-2	0,5

Рис. 1. Заготовка

Рис. 2. Матрица

Рис. 3. Общий вид модели

Таблица 2

Па	раметр	зы п	оцесса	для	численного	модели	рования в	DEF	ORN	M-3	D
											_

Материац	Давление,	Температура,	Время	Максимальная	
Marephan	МПа	°C	процесса, с	глубина вытяжки, <i>h</i>	
B95 (7075)	0,5	510	11	48,3	
	0,3	510	297	50,2	

В расчетах использована модель вязкопластического материала в виде:

(

$$\sigma_i = f(e_i, \varepsilon_i, T). \tag{1}$$

201<u>7. № 2 (45)</u>

Даная зависимость в расчете задана в виде:

$$\sigma_i = C e_i^n \varepsilon_i^m , \qquad (2)$$

где σ_i – интенсивность напряжений (эффективные напряжения);

е, – интенсивность деформаций;

є – интенсивность скоростей деформаций;

n – коэффициент деформирующего упрочнения;

m – коэффициент скоростного упрочнения;

С-линейный коэффициент упрочнения.

Величина коэффициентов *С*, *m*, *n* зависит от вида материала, химического состава, размера зерна и температуры процесса деформации. В расчете использована следующая модель материала: алюминиевый сплав B95 (7075) при температуре 510 °C (табл. 3).

Таблица 3

Зависимость напряжения течения материала от деформации и скорости деформации [7]

		Скорость деформации, с ⁻¹		
		0,4	311	
Деформация	0,002	63,50071	115,1424	
	0,115	63,50071	115,8319	
	2,66	60,19123	129,6214	
	2,9145	60,19123	129,6214	

Анализ расчетных результатов показывает, что при увеличении давления деформирующей среды (газа) значительно уменьшается время деформирования заготовки мембраны. На рис. 4 приведена зависимость относительной глубины купола мембраны в зависимости от величины давления и времени деформирования для сплава B95 (7075).

Рис. 4. Зависимость относительной глубины купола мембраны от величины давления и времени деформирования:

1 – 0,5 МПа; 2 – 0,3 МПа

При этом с увеличением давления несколько уменьшается величина деформации утонения в центре купола мембраны при постоянной величине его относительной глубины (рис. 5). Этот факт подтверждается при анализе распределения деформаций утонения стенки по образующей купола мембраны глубиной f = 45 мм, что объясняется влиянием скоростного фактора на процесс формирования.

Рис. 5. Распределение деформаций утонения стенки по образующей мембраны для давления газа:

а – P = 0,5 МПа; б – P = 0,3 МПа

Рис. 6. Распределение эффективных напряжений образующей купола мембраны для алюминиевого сплава 7075 в зависимости от давления P и коэффициента скоростного упрочнения m при относительной глубине f/B = 1,0

Поэтому в дальнейшем рассмотрено влияние коэффициента скоростного упрочнения на особенности процесса деформирования мембраны. Для этого в рассмотренной модели материала (2), значение степенного коэффициента скоростного упрочнения *m* устанавливали равным: m = 0.3; m = 0.5; m = 0.9.

На рис. 6 представлено распределение эффективных напряжений по образующей мембраны из алюминиевого сплава, который имеет разные модели материала.

Анализ полученных результатов показывает:

• с увеличением коэффициента скоростного упрочнения *m* уменьшается величина эффективных напряжений в центре мембраны. Так с увеличением величины коэффициента *m* от 0,3 к 0,5 величина эффективных напряжений уменьшается на 10 %, а от 0,3 к 0,9 уменьшается на 25,5 %;

• та же тенденция уменьшения эффективных напряжений наблюдается для формирования мембран при разных давлениях газа, что показано на рис. 7.

2017. № 2 (45)

Рис. 7. Зависимость эффективных коэффициента напряжений от скоростного упрочнения *т* для:

а – 0,3 МПа; б – 0,4 МПа; в – 0,5МПа

На рис. 8 приведено распределение деформаций утонения по образующей купола мембраны для алюминиевого сплава.

Рис. 8. Зависимость деформации утонения по образующей мембраны в зависимости от давления газа Р и коэффициента скоростного упрочнения т

Установлено, что:

• величина деформаций утонения в центре давления мембраны уменьшается с увеличением коэффициента скоростного упрочнения;

• с увеличением давления деформирующей среды степень деформации незначительно (на 3–5 %) уменьшается;

• с увеличением коэффициента скоростного упрочнения увеличивается равномерность распределения деформаций в сечении мембраны. Это позволяет увеличить степень деформации металла.

На рис. 9 показаны распределения интенсивности скорости деформации по образующей мембраны в зависимости от давления газа *P* и коэффициента скоростного упрочнения *m*. Установлено, что при увеличении коэффициента скоростного упрочнения увеличивается однородность распределения интенсивности скорости деформации по образующей мембраны.

Рис. 9. Зависимость распределения интенсивности скорости деформации по образующей мембраны в зависимости от давления газа *P* и коэффициента скоростного упрочнения *m*

На рис. 10 показана зависимость деформации утонения в центре купола мембраны в зависимости от коэффициента скоростного упрочнения.

Рис. 10. Зависимость максимальной величины деформации утонения в зависимости от коэффициента скоростного упрочнения для разных величин давления:

1 - P = 0,3 MIIa; 2 - P = 0,4 MIIa; 3 - P = 0,5 MIIa

2017. № 2 (45)

Характер кривых свидетельствует об уменьшении максимальной величины деформации утонения в центре мембраны при увеличении коэффициента скоростного упрочнения.

выводы

Выполнено моделирование процесса изотермического вязкопластического формообразования мембраны с помощью метода конечных элементов в среде DEFORM-3D. В расчете учитывались геометрические параметры, а также механические свойства материала.

В процессе анализа напряжений и деформаций было выяснено, что с увеличением давления несколько снижается величина деформации утонения в центре давления мембраны при постоянной величине относительной высоты мембраны.

Анализ результатов показывает, что с увеличением коэффициента скоростного упрочнения *m* уменьшается величина эффективных напряжений в центре мембраны. Такая же тенденция уменьшения эффективных напряжений наблюдается для формообразования мембран при различных давлениях газа.

Установлено, что величина деформаций утонения в центре давления мембраны уменьшается при увеличении коэффициента скоростного упрочнения; при увеличении величины давления деформирующей среды величина деформаций несколько (на 3–5 %) уменьшается; при увеличении величины коэффициента скоростного упрочнения растет равномерность распределения деформаций в сечении мембраны.

Анализ расчетов показывает, что с увеличением коэффициента скоростного упрочнения растет равномерность распределения интенсивности скоростей деформаций в поперечном сечении мембраны. Это приводит к более равномерному распределению деформаций в сечении мембраны при высоких значениях коэффициента скоростного упрочнения.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Fundamental characterisation of hemisphere free bulging using superplastic 8090 Al–Li sheets / T.-R. Cheng, J. C. Huang, Y. M. Hwang // Material Science and Technology. – 1996. – Vol. 12 – P. 495–504.

2. Superplastic Forming of a Three-Stage Hemispherical 5083 Aluminium Profile / M. Balasubramanian, P. Ganesh, K. Ramanathan, V. Santhanam, S. Kumar // Journal of Mechanical Engineering. – 2015. – Vol. 61. – P. 365–373.

3. Superplastic hemispherical Bulge Forming of a Ti–Al–Mn Alloy / B. Yogesha, S. S. Bhattacharya // International Journal of Scientific & Engineering Research. – 2011. – Vol. 2 - P. 1–4.

4. Ramesh Babu S. Determination of Material Parameters during Superplastic Forming of AA 5086 Alloy / S. Ramesh Babu, S. Deivanayagam, M. Aravind // Procedia Engineering. – 2014. – Vol. 97. – P. 1379–1386.

5. Evaluation of Pneumatic Bulge Test Experiments and Corresponding Numerical Forming Simulations / J. Kappes, M. Liewald // Journal of Materials Science and Engineering. – 2011. – Vol. 1. – P. 472–478.

6. Sorgente D. Pressure Profile Designing in Superplastic Forming Based on the Strain Rate and on Postforming Properties / D. Sorgente, L. Tricarico // Journal of Materials Engineering and Performance. – 2014. – Vol. 23. – P. 2025–2033.

7. Elastic & thermal data from DEFORM material library.

Титов В. А. – д-р техн. наук, проф. НТУУ «КПИ им. И. Сикорского»;

Рехта А. С. – аспирант НТУУ «КПИ им. И. Сикорского»;

Гараненко Т. Р. – ассистент НТУУ «КПИ им. И. Сикорского».

НТУУ «КПИ им. И. Сикорского» – Национальный технический университет Украины «Киевский политехнический институт имени Игоря Сикорского», г. Киев.

E-mail: vat.kpi@gmail.com; oleksandr.rekhta@gmail.net; tetiana.garanenko@gmail.com

Статья поступила в редакцию 11.12.2017 г.

2017. № 2 (45)