Министерство образования и науки Украины Донбасская государственная машиностроительная академия

М. А. Турчанин

ТЕОРИЯ И ТЕХНОЛОГИЯ МЕТАЛЛУРГИЧЕСКОГО ПРОИЗВОДСТВА

Ч.1. ТЕОРИЯ МЕТАЛЛУРГИЧЕСКИХ ПРОЦЕССОВ

Учебное пособие к практическим занятиям и изучению дисциплины

(для студентов специальности 7.090403)

Рекомендовано Министерством образования и науки Украины УДК 34.3

ББК 669.02(07)

T89

Рецензенты:

Смирнов А. Н., профессор, зав. кафедрой Металлургии стали Донецкого национального технического университета;

Огурцов А. П., профессор, зав. кафедрой Металлургии стали и литейного производства Днепродзержинского государственного технического университета;

Чигарев В. В., профессор, зав. кафедрой металлургии и технологии сварочного производства Приазовского государственного технического университета.

Рекомендовано

Министерством образования и науки Украины (письмо № 1.4/18-Г-1810 от 15.07.08)

Містить стислі теоретичні відомості щодо основних розділів курсу, які необхідні для розв'язання задач, приклади розв'язання задач, задачі для самостійного розв'язання, питання для самоперевірки і необхідну для проведення розрахунків інформацію про термодинамічні параметри реакцій і фізико-хімічні властивості речовин.

Турчанин М. А.

Т89 Теория и технология металлургического производства. Ч.1. Теория металлургических процессов : учеб. пособ. к практическим занятиям и изучению дисциплины. – Краматорск : ДГМА, 2008. – 80 с.

ISBN 978-966-379-287-3

Содержит краткие теоретические сведения по основным разделам курса, необходимые для решения задач, примеры решения задач, задачи для самостоятельного решения, вопросы для самопроверки и необходимую для проведения расчетов информацию о термодинамических параметрах реакций и физико-химических свойствах веществ.

УДК 34.3 ББК 669.02(07)

ISBN 978-966-379-287-3	© Турчанин М.А., 2008.
	© ДГМА, 2008.

СОДЕРЖАНИЕ

Введение
1 Практическое занятие 1. Процессы горения газов и окислительно-восстановительные свойства высокотемпературной газовой фазы
2 Практическое занятие 2. Окислительно-восстановительные свойства сложных газовых смесей. Реакция водяного газа
3 Практическое занятие 3. Взаимодействие углерода с кислородосодержащей газовой фазой.
4 Практическое занятие 4. Процессы диссоциации и образования карбонатов и оксидов.
5 Практическое занятие 5. Восстановление оксидов металлов газообразными восстановителями и в присутствии твердого углерода.
6 Практическое занятие 6. Свойства сложных металлических сплавов и оксидных расплавов.
Список рекомендованной литературы
Приложение А. Изменение энергии Гиббса для реакций, протекающих в стандартных состояниях
Приложение Б. Температурная зависимость параметров взаимодействия первого $e_{\rm i}^{\rm j}$ и второго $r_{\rm i}^{\rm j}$ порядков для растворов в жидком железе.
Приложение В. Коэффициенты a_L и a_S , характеризующие снижение температур ликвидуса и солидуса стали при введении 1% компонента

ВВЕДЕНИЕ

Настоящее учебное пособие составлено для студентов дневной и заочной форм обучения по направлению подготовки 0904 «Металлургия» специальности 7.090403 «Литейное производство черных и цветных металлов». Для студентов этой специальности курс «Теория и технология металлургического производства» является специальной дисциплиной. Данное пособие предназначено для изучения первой части курса – «Теория металлургических процессов».

Цель изучения курса — уяснить физико-химический характер превращений, протекающих в металлургических системах и процессах.

Преподавание дисциплины базируется на знаниях, полученных в процессе усвоения курсов «Физика», «Химия», «Физическая химия» и др.

Задачи изучения курса состоят не только углублении теоретической подготовки будущего специалиста по металлургии, но и в получении практических навыков, которые впоследствии использованы при изучении второй части дисциплины «Теория и технология металлургического производства» «Технология металлургического производства».

В настоящем пособии изучаемый материал разбит на ряд практических занятий, каждое из которых соответствует разделам курса. Решение предложенных задач позволит дать количественное описание и углубить понимание физико-химических закономерностей протекания как отдельных звеньев процессов, имеющих место в металлургических системах и агрегатах, так и сложных процессов в целом.

Настоящее издание содержит краткие теоретические сведения по изучаемой дисциплине, необходимые для решения задач, примеры решения задач, задачи для самостоятельного решения, вопросы для самопроверки, список рекомендуемой литературы и собранную в приложениях информацию о термодинамических параметрах реакций и физико-химических свойствах веществ, необходимую для проведения расчетов.

1 Практическое занятие 1 ПРОЦЕССЫ ГОРЕНИЯ ГАЗОВ И ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ СВОЙСТВА ВЫСОКОТЕМПЕРАТУРНОЙ ГАЗОВОЙ ФАЗЫ

1.1 Общие сведения

Термодинамические характеристики реакций включают значения тепловых эффектов и величины стандартного изменения свободной энергии. Зависимость ΔG° для различных реакций от температуры выражается формулой

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ} \,, \tag{1.1}$$

где ΔH° — среднее значение теплового эффекта в заданном температурном интервале;

 $\Delta S^{\rm o}$ — среднее значение стандартного изменения энтропии в ходе реакции.

Значения ΔG° используют для расчета значений констант равновесия соответствующих реакций:

$$\Delta G^{o} = -RT ln K_{P}, \tag{1.2}$$

где $R = 8,314 \, \text{Дж/(моль·К)}$ – универсальная газовая постоянная.

Для проведения расчетов используют уравнения зависимости $\Delta G^{\rm o}$, приведенные в приложении A.

Для реакции, протекающей в газовой фазе,

$$aA + bB = cC + dD$$
,

константа равновесия может быть выражена как

$$K_P = \frac{P_C^c \ P_D^d}{P_A^a \ P_B^b},$$
 (1.3)

где $P_{\rm i}$ – равновесные парциальные давления компонентов.

Оценить возможность протекания процесса можно при помощи уравнения изотермы реакции:

$$\Delta G = RT ln \frac{P_{\rm C}^{\rm 'c} P_{\rm D}^{\rm 'd}}{P_{\rm A}^{\rm 'a} P_{\rm B}^{\rm 'b}} - RT ln K_P, \qquad (1.4)$$

где $P_{\rm i}^{'}$ — фактические парциальные давления компонентов. Если $\Delta G < 0$ — протекание реакции возможно; $\Delta G > 0$ — невозможно; $\Delta G = 0$ — система находится в состоянии равновесия.

Окислительные свойства газовой атмосферы определяются парциальным давлением кислорода P_{O_2} . Поэтому необходимо производить расчет равновесия реакций, в ходе которых связывается кислород:

$$2 H_2 + O_2 = 2 H_2O,$$
 (1.5)

$$2 \text{ CO} + \text{O}_2 = 2 \text{ CO}_2,$$
 (1.6)

$$C + O_2 = CO_2$$
. (1.7)

При высоких температурах в газовой фазе развиваются процессы термической диссоциации сложных молекул на более простые, диссоциация при сложных молекул оценивается ЭТОМ диссоциации α, которая равна отношению числа распавшихся молекул к исходному числу молекул:

$$\alpha = \frac{n_{\text{pacn}}}{n_{\text{MCX}}}.$$
 (1.8)

Окислительные свойства углекислого газа и паров воды при высоких температурах определяются степенью диссоциации молекул CO_2 и H_2O . В случае малых значений степеней диссоциации (характерных для температур протекания большинства металлургических реакций) значение находят из выражения

$$\alpha = \sqrt[3]{\frac{2}{K_p P_{\text{общ}}}},$$
(1.9)

где $P_{\text{общ}}$ – общее давление в системе;

 K_P — константа равновесия реакции образования сложной молекулы. Парциальное давление кислорода может быть найдено из выражения

$$P_{\mathcal{O}_2} = \frac{\alpha}{2+\alpha} P_{\text{общ}}. \tag{1.10}$$

Окислительные свойства CO_2 при высоких температурах определяются развитием реакции диссоциации с образованием CO и углерода. Соотношение CO и CO_2 для этого случая будет определяться равновесием реакции газификации углерода:

$$C + CO_2 = 2 CO.$$
 (1.11)

Зная соотношение между парциальными давлениями CO и CO₂ для этой реакции, можно определить равновесное давление кислорода в соответствии с реакцией горения:

$$2 O + O_2 = 2 O_2;$$

$$P_{\rm O_2} = \frac{P_{\rm CO}^2}{P_{\rm CO_2}^2 \, {\rm K}_p},\tag{1.12}$$

где K_P – константа равновесия реакции (1.6).

Для оценки окислительных свойств газовой фазы используется величина ее кислородного потенциала, значение которого определяется парциальным давлением кислорода и температурой. $\Pi_{\rm O}$ равен химическому потенциалу молекулярного кислорода в данной фазе при стандартном состоянии с давлением кислорода $P_{\rm O_2}=10^5~\Pi a=1~{\rm atm.}$:

$$\Pi_{\rm O} = \mu_{\rm O_2} - \mu_{\rm O_2}^{\circ} = RT ln P_{\rm O_2},$$
 (1.13)

где μ_{O_2} – химический потенциал кислорода в газовой фазе;

 $\mu_{\mathrm{O}_2}^{\circ}$ – химический потенциал кислорода в стандартном состоянии;

 $\Pi_{\rm O}$ – кислородный потенциал газовой фазы.

При постоянной температуре значение кислородного потенциала газовой фазы тем выше, чем выше парциальное давление кислорода в ней, что позволяет использовать его в качестве меры окислительной способности газовой фазы. Чем выше значение кислородного потенциала, тем выше окислительная способность газовой смеси.

Для газовой смеси $CO-CO_2$ кислородный потенциал связан с температурой и составом зависимостью вида

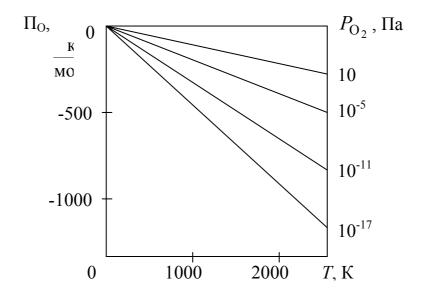
$$\Pi_{O(CO/CO_2)} = \Delta G_{1.6}^{\circ} + 2RT ln \left(\frac{P_{CO_2}}{P_{CO}}\right),$$
(1.14)

где $\Delta G_{1.6}^{\circ}$ — стандартное изменение свободной энергии для реакции (1.6):

$$2 \text{ CO} + \text{O}_2 = 2 \text{ CO}_2$$
.

Аналогичный вид имеет выражение для кислородного потенциала смеси H_2 – H_2 O:

$$\Pi_{O(H_2/H_2O)} = \Delta G_{1.5}^{\circ} + 2RT ln \left(\frac{P_{H_2O}}{P_{H_2}}\right),$$
(1.15)


где $\Delta G_{1.5}^{\circ}$ — стандартное изменение свободной энергии для реакции (1.5).

Парциальные давления компонентов газовой смеси могут быть рассчитаны из общего давления смеси и состава смеси по уравнению, отражающему суть закона Дальтона,

$$P_{\rm i} = \frac{P_{\rm obm}(C_{\rm i})}{100},\tag{1.16}$$

где $C_{\rm i}$ – объемная процентная концентрация компонента в газовой смеси.

Из выражений (1.14) и (1.15) следует, что кислородный потенциал газовой фазы зависит от температуры линейно. Для различных давлений кислорода в газовой фазе получается семейство прямых, берущих начало в точке, соответствующей значениям $\Pi_{\rm O} = 0$ Дж/моль и T = 0 К. Для давлений кислорода в газовой фазе, меньших, чем 10^5 Па, кислородные потенциалы располагаются в области отрицательных значений (рис. 1.1).

Pисунок 1.1 – Kислородный потенциал газовой фазы из чистого кислорода в зависимости от T и P_{O_2}

1.2 Примеры решения задач

Задача 1.2.1. Определить направление реакции взаимодействия СО с O_2 при 2000°С, если известен исходный состав газовой смеси: 70% CO_2 , 20% CO и 10% O_2 и общее давление $P_{\text{общ}} = 10^5$ Па. Найти константу равновесия реакции.

$$T = 2273 \ \mathrm{K}$$
 (CO₂) = 70% Запишем уравнение протекающей в системе реакции (1.6): $2 \ \mathrm{CO} + \mathrm{O}_2 = 2 \ \mathrm{CO}_2$.

Уравнение изотермы (1.4) для данной реакции запишется в виде

$$\Delta G = \mathbf{R} \cdot T \cdot \ln \frac{P_{\text{CO2}}^{'2}}{P_{\text{CO}}^{'2} \cdot P_{\text{O2}}^{'}} - \mathbf{R} \cdot T \cdot \ln \mathbf{K}_{P_{(1.6)}}.$$

Парциальные давления компонентов газовой смеси могут быть рассчитаны из общего давления смеси и состава смеси по уравнению (1.16). Для компонентов смеси данной задачи: $P_{\rm CO_2} = 0.7$ атм., $P_{\rm CO} = 0.2$ атм., $P_{\rm CO_2} = 0.1$ атм.

Изменение свободной энергии Гиббса в ходе реакции (1.6)

$$\Delta G_{1.6}^{\circ} = -RT \cdot ln K_{P_{1.6}}$$

может быть оценено, согласно (1.1), по значению теплового эффекта и значению стандартного изменения энтропии в ходе реакции. Для этого воспользуемся приложением A, откуда следует, что

$$\Delta H_{1.6}^{\circ} = -566307$$
 Дж/моль и $\Delta S_{1.6}^{\circ} = -175,47$ Дж/(моль·К).

Здесь и в дальнейшем при подобных расчетах термодинамические параметры реакций приведены в пересчете на один моль кислорода.

Согласно выражению (1.1)

$$\Delta G_{1.6}^{\circ} = \Delta H_{1.6}^{\circ} - T\Delta S_{1.6}^{\circ} = -566307 - 2273 \cdot (-175,47) = -167464$$
 Дж/моль.

Подставляем полученное значение в уравнение (1.4):

$$\Delta G_{1.6}^{\circ} = 8,31\cdot2273\cdot ln \frac{0,7^2}{0,2^2\cdot0.1} - 167464 = -76645$$
 Дж/моль.

Полученное значение $\Delta G < 0$, следовательно, реакция протекает в направлении образования CO_2 и горения CO. Рассчитаем константу равновесия реакции (1.6) при заданных условиях. Из уравнения (1.2) следует, что

$$K_{P_{16}} = e^{-\frac{\Delta G_{(1.6)}^{\circ}}{RT}} = e^{-\frac{-167464}{8,31\cdot2273}} = 7086.$$

Как видно из ответа, константа равновесия много больше единицы, следовательно, можно считать, что при условиях задачи реакция (1.6) протекает в направлении горения СО практически необратимо.

Задача 1.2.2. Рассчитать равновесный состав газовой фазы, образующейся в результате диссоциации CO_2 при температуре 2000°C и общем давлении 1 атм. Определить кислородный потенциал газовой фазы.

$$T = 2273 \ \mathrm{K}$$
 $P_{\mathrm{o}\mathrm{o}\mathrm{I}\mathrm{I}\mathrm{I}} = 1 \ \mathrm{a}\mathrm{T}\mathrm{M}$
Атмосфера из CO_2

Равновесный состав – ?
 $\Pi_{\mathrm{O}} - ?$

Решение

Равновесный состав системы определяется равновесием реакции (1.6):

 $2 \ \mathrm{CO} + \mathrm{O}_2 = 2 \ \mathrm{CO}_2$.

В предыдущем примере для условий задачи получено значение константы равновесия $K_{P(1.6)} = 7086$. Используя это значение и выражение (1.9), рассчитаем степень диссоциации CO_2 :

$$\alpha = \sqrt[3]{\frac{2}{K_{P(1.6)} \cdot P_{\text{общ}}}} = \sqrt[3]{\frac{2}{7086 \cdot 1}} = 0,066.$$

Используя уравнение реакции (1.6), получим выражение для парциальных давлений компонентов образующейся в результате диссоциации газовой смеси:

$$P_{\text{CO}_2} = \frac{(1-\alpha) \cdot P_{\text{общ}}}{1+0.5 \cdot \alpha} = \frac{(1-0.066) \cdot 1}{1+0.5 \cdot 0.066} = 0.904 \text{ atm.},$$

$$P_{\text{CO}} = \frac{\alpha \cdot P_{\text{общ}}}{1 + 0.5 \cdot \alpha} = \frac{0.066 \cdot 1}{1 + 0.5 \cdot 0.066} = 0.064 \text{ atm.},$$

$$P_{\rm O_2} = \frac{0.5 \cdot \alpha \cdot P_{\rm o 6 III}}{1 + 0.5 \cdot \alpha} = \frac{0.5 \cdot 0.066 \cdot 1}{1 + 0.5 \cdot 0.066} = 0.032$$
 atm.

Проводим проверку:

$$P_{\text{общ}} = P_{\text{CO}_2} + P_{\text{CO}} + P_{\text{O}_2} = 1 \text{ атм.},$$

$$P_{\text{общ}} = 0.904 + 0.064 + 0.032 = 1 \text{ atm.}$$

Кислородный потенциал может быть рассчитан по уравнению (1.13):

$$\Pi_{\rm O} = {
m R} \cdot T \cdot \ln P_{{
m O}_2} = 8.31 \cdot 2273 \cdot \ln 0.032 = -65015$$
 Дж/моль ${
m O}_2$.

Задача 1.2.3. Определить равновесное давление кислорода в газовой

смеси
$${\rm H_2O-H_2}$$
 при температуре 1600°C и отношении $\left(\frac{P_{\rm H_2O}}{P_{\rm H_2}}\right)$ = 0,25.

$$T = 1873 \text{ K}$$

$$\left(\frac{P_{\text{H}_2\text{O}}}{P_{\text{H}_2}}\right) = 0.25$$

$$P_{\text{O}_2} - ?$$

Решение

$$2H_2 + O_2 = 2H_2O$$
.

Константа равновесия реакции запишется

$$K_P = \frac{P_{H_2O}^2}{P_{H_2}^2 \cdot P_{O_2}}.$$

Откуда следует, что

$$P_{\rm O_2} = \frac{P_{\rm H_2O}^2}{P_{\rm H_2}^2 \cdot K_{P_{(1.5)}}}.$$
 (1.17)

Т.к. отношение $P_{\rm H_2O}$ и $P_{\rm H_2}$ нам известно из условия, решение задачи сводится к вычислению константы равновесия реакции при интересующих нас условиях. Для этого воспользуемся уравнениями (1.1), (1.2) и приложением A, откуда находим:

$$\Delta H_{(1.5)}^{\circ}$$
 = –493038 Дж/моль и $\Delta S_{1.5}^{\circ}$ = –108,40 Дж/(моль·К).

Тогда для температурной зависимости энергии Гиббса реакции (1.5) получим

$$\Delta G_{1.5}^{\circ} = \Delta H_{1.5}^{\circ} - T \Delta S_{1.5}^{\circ} = -493038 - 1873 \cdot (-108,40)$$
 Дж/моль. (1.18)

Согласно выражению (1.2)

$$\Delta G_{1.5}^{\circ} = -RT \cdot ln K_{P_{1.5}}$$

откуда следует, что

$$K_{P_{1.5}} = e^{-\frac{\Delta G_{1.5}^{\circ}}{RT}}.$$
 (1.19)

Для условий задачи

$$K_{P_{1.5}} = e^{-\frac{-493038+108,40\cdot1873}{8,31\cdot1873}} = 1,24\cdot10^8$$
.

Подставляем полученное выражение в (1.17):

$$P_{\text{O}_2} = \frac{0.25^2}{1.24 \cdot 10^8} = 5.04 \cdot 10^{-10} \text{ arm.} = 5.04 \cdot 10^{-5} \text{ \Pia.}$$

Задача 1.2.4. Определить значение кислородных потенциалов газовой смеси из СО и CO_2 , содержащей 10% СО и 90% CO_2 для температур 800 и 1800 К.

$$(CO) = 10\%$$

 $(CO_2) = 90\%$
 $T_1 = 800 \text{ K}$
 $T_{II} = 1800 \text{ K}$
 Π_{O_I} , $\Pi_{O_{II}} - ?$

Решение

 $({
m CO_2}) = 90\%$ $T_{
m I} = 800~{
m K}$ Определяющим окислительно-восстановитель- $T_{
m II} = 1800~{
m K}$ ные свойства данной системы является протекание реакции (1.6):

$$2 \text{ CO} + \text{O}_2 = 2 \text{ CO}_2$$
.

Для данной газовой смеси кислородный потенциал связан с температурой и составом уравнением (1.14):

$$\Pi_{O(CO/CO_2)} = \Delta G_{(1.6)}^{\circ} + 2 \cdot R \cdot T \cdot ln \left(\frac{P_{CO_2}}{P_{CO}} \right),$$
 (1.20)

Для нахождения $\Delta G_{1.6}^{\circ}$ воспользуемся приложением A:

$$\Delta G_{1.6}^{\circ} = \Delta H_{1.6}^{\circ} - \mathrm{T} \Delta S_{1.6}^{\circ} = -566307 - T \cdot (-175,47)$$
 Дж/моль.

Значение соотношений $\left(\frac{P_{\text{CO}_2}}{P_{\text{CO}}}\right)$ соответствует отношению объемных

процентов соответствующих компонентов газовой фазы. Поэтому в выражение (1.20) вместо парциальных давлений подставляем содержание соответствующих газов в объемных процентах:

$$\Pi_{\mathrm{O_{I}}} = -566307 + 175,47\cdot800 + 2\cdot8,31\cdot800\cdot\ln\frac{90}{10} = -396682$$
 Дж/моль $\mathrm{O_{2}},$

$$\Pi_{\text{O}_{\text{II}}} = -566307 + 175,47 \cdot 1800 + 2 \cdot 8,31 \cdot 1800 \cdot \ln \frac{90}{10} = -316193$$
 Дж/моль O_2 .

Из ответа следует, что с ростом температуры окислительная способность среды из СО-СО2 растет.

1.3 Задачи для самостоятельного решения

Задача 1.3.1. Каким должно быть отношение H_2O/H_2 (или $CO_2/CO)$ в газовой смеси, чтобы при температуре T равновесное давление кислорода в ней составляло P_{O_2} ? Определить Π_O смеси (таблица 1.1).

Таблица 1.1

Ном. задачи	Компоненты газовой смеси	T, °C	P_{O_2} , Па
1.3.1.1	H_2O, H_2	1600	6.10-5
1.3.1.2	H ₂ O, H ₂	1800	5·10 ⁻⁵
1.3.1.3	H ₂ O, H ₂	1500	10 ⁻⁴
1.3.1.4	CO ₂ , CO	1700	3.10-5
1.3.1.5	CO ₂ , CO	1500	3.10-5
1.3.1.6	CO ₂ , CO	1400	10 ⁻⁴

Задача 1.3.2. Определить равновесное давление кислорода и кислородный потенциал газовой смеси X% газа A и Y% газа B при температуре T (таблица 1.2).

Таблица 1.2

Ном. задачи	A	В	X, %	У, %	T, °C
1.3.2.1	CO_2	CO	80	20	2000
1.3.2.2	CO_2	CO	70	30	2500
1.3.2.3	CO_2	CO	95	50	1300
1.3.2.4	H_2O	H_2	90	10	2400
1.3.2.5	H ₂ O	H_2	80	20	2200
1.3.2.6	H ₂ O	H_2	70	30	2000

Задача 1.3.3. Определить степень диссоциации газа (CO_2 или H_2O) при температуре T. Рассчитать равновесное парциальное давление компонентов образующейся газовой смеси при давлении 1 атм. и определить ее кислородный потенциал (таблица 1.3)

Таблица 1.3

Ном. задачи	Диссоциирующий газ	T, °C
1.3.3.1	CO_2	2000
1.3.3.2	CO_2	2200
1.3.3.3	CO_2	2400
1.3.3.4	H ₂ O	2000
1.3.3.5	H ₂ O	2200
1.3.3.6	H ₂ O	2400

Задача 1.3.4. Определить направление реакции между кислородом и газом B, если известен исходный состав газовой фазы: X % газа A, Y % газа B, Z % O_2 и общее давление P=1 атм., а температура T. Найти константу равновесия протекающей реакции (таблица 1.4)

Таблица 1.4

Ном. задачи	A	В	X, %	У, %	Z, %	T, °C
1.3.4.I	CO_2	CO	70	20	10	2200
1.3.4.2	CO_2	CO	60	20	20	2100
1.3.4.3	CO_2	CO	70	20	10	2400
1.3.4.4	H ₂ O	H ₂	70	20	10	2000
1.3.4.5	H ₂ O	H_2	70	20	10	2200
1.3.4.6	H ₂ O	H ₂	70	20	10	2400

1.4 Вопросы для самостоятельного контроля знаний

- 1 Константа равновесия и ее температурная зависимость.
- 2 Связь между константой равновесия реакции и величиной стандартного изменения свободной энергии.
 - 3 Уравнение изотермы реакции.
 - 4 Степень диссоциации и ее связь с константой равновесия.
 - 5 Уравнение кислородного потенциала газовой фазы.

- 6 Выражение для кислородного потенциала систем ${\rm CO_2-CO}$ и ${\rm H_2O-H_2}$.
- 7 Как рассчитать равновесное давление кислорода в газовых смесях CO–CO₂ и H₂–H₂O при высоких температурах?
- 8 Как изменится равновесное давление кислорода в газовой смеси CO₂–CO при повышении температуры и увеличении содержания CO₂ в составе смеси?
- 9 Как влияет температура на кислородный потенциал газовой смеси H_2O-H_2 с постоянным отношением H_2O/H_2 ?

2 Практическое занятие 2 ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ СВОЙСТВА СЛОЖНЫХ ГАЗОВЫХ СМЕСЕЙ. РЕАКЦИЯ ВОДЯНОГО ГАЗА

2.1 Общие сведения

В атмосферах металлургических агрегатов обычно присутствуют несколько газообразных веществ, способных реагировать с кислородом с образованием при этом нескольких продуктов. Такое сложное равновесие достигается лишь при одновременном достижении всех возможных в системе частных равновесий.

Для сложных газовых фаз в состоянии равновесия характерно условие общности равновесного парциального давления молекулярного кислорода и кислородного потенциала для частных равновесий, в которых участвует кислород. Следовательно, такая атмосфера будет иметь определенный кислородный потенциал, обусловленный любым из частных равновесий, включающих газообразный молекулярный кислород:

$$\Pi_{O(H_2 - O_2 - H_2 O)} = \Pi_{O(CO - O_2 - CO_2)} =
= \Pi_{O(SO_2 - O_2 - SO_3)} = \Pi_{O(сложная атмосфера)}.$$
(2.1)

Кислородный потенциал данной реакции может быть вычислен по данным любого из этих равновесий, например, по уравнениям (1.14) и (1.15).

Одной из реакций такого типа, часто встречающейся в металлургических системах, является реакция водяного газа:

$$H_2O + CO = H_2 + CO_2.$$
 (2.2)

Равновесие, описываемое уравнением (2.2), является регулирующим в газовых атмосферах при использовании природного газа или увлажненного дутья в доменной печи и других металлургических системах.

Реакция водяного газа может быть представлена как сумма последовательно протекающих превращений — диссоциации CO_2 и окисления H_2 :

$$2CO_{2} = 2CO + O_{2}$$
+
$$\frac{2H_{2} + O_{2} = 2H_{2}O}{2(CO_{2} + H_{2} = CO + H_{2}O)}.$$
(2.3)

Приведенная последовательность реакций не означает, что процесс действительно протекает по такому пути, а является удобной иллюстрацией тесной взаимосвязи двух частных равновесий в данной газовой фазе.

Константа равновесия реакции определяется выражением

$$K_P = \frac{P_{H_2} P_{CO_2}}{P_{H_2O} P_{CO}}$$
 (2.4)

В широком интервале температур константа равновесия не сильно отличается от единицы, и реакция протекает практически обратимо. При высоких температурах равновесие реакции существенно смещается в сторону исходных продуктов.

Часто при проведении практических расчетов удобно пользоваться объемными процентными концентрациями компонентов в газовой смеси. В этом случае уравнение (2.4) для константы равновесия примет вид

$$K_P = \frac{(\%H_2) \cdot (\%CO_2)}{(\%H_2O) \cdot (\%CO)}.$$
 (2.5)

Для расчета значений константы равновесия реакции (2.2) можно воспользоваться уравнением (1.2). Выражение $\Delta G_{(2.2)}^{\circ}$ может быть получено с использованием приложения A, Дж/моль:

$$\Delta G_{(2.2)}^{\circ} = -33600 + 33,5T. \tag{2.6}$$

Для константы равновесия получим:

$$\ln K_{P(2.2)} = \frac{4041}{T} - 4{,}03. \tag{2.7}$$

Равновесный состав газовой смеси для реакции водяного газа, если известен исходный состав смеси, можно найти следующим путем. Допустим, что для достижения равновесия в системе требуется превращение m % CO_2 из исходного количества в смеси. Тогда, в соответствии с выражением (2.2), количество H_2 уменьшится на m %. Содержание H_2O и CO, которые образуются в результате реакции, увеличится на m % для каждого. Равновесные концентрации реагирующих веществ будут следующими:

$$(\%CO_{2}) = (\%CO_{2})_{\text{ucx}} - m;$$

$$(\%H_{2}) = (\%H_{2})_{\text{ucx}} - m;$$

$$(\%CO) = (\%CO)_{\text{ucx}} + m;$$

$$(\%H_{2}O) = (\%H_{2}O)_{\text{ucx}} + m.$$
(2.8)

Подставляя эти значения в выражение (2.5), получим уравнение

$$K_P = \frac{((\%H_2)_{\text{ucx}} - m) \cdot ((\%CO_2)_{\text{ucx}} - m)}{((\%H_2O)_{\text{ucx}} + m) \cdot ((\%CO)_{\text{ucx}} + m)}.$$
 (2.9)

Решая это уравнение относительно m и подставляя полученное значение в выражения (2.8), получаем равновесные концентрации всех газов при интересующей температуре.

Часто в газовой атмосфере присутствует инертная составляющая, не участвующая ни в одной из реакций (аргон, азот). В этом случае для простейших расчетов можно использовать начальное парциальное давление или содержание инертной составлявшей, которое вычитается из общего давления для определения суммы парциальных давлений газообразных веществ, участвующих в данном равновесии.

2.2 Примеры решения задач

Задача 2.2.1. Определить значение кислородного потенциала газовой смеси исходного состава: 15% CO_2 , 20% CO, 25% H_2 и 40% N_2 при нагреве ее для температуры 800 K.

$(\%CO_2)_{ucx} = 15$	
$(\%CO)_{\text{ucx}} = 20$	
$(\%H_2)_{ucx} = 25$	
$(\%N_2)_{ucx} = 40$	
T = 900 K	
$\Pi_{\rm O}$ – ?	

Решение

Определим равновесный состав смеси при заданной температуре. При нагревании газовой смеси, содержащей СО₂, СО и Н₂, между компонентами будет происходить взаимодействие,

соответствующее реакции водяного газа:

$$H_2O + CO = H_2 + CO_2$$
.

Состав смеси будет непрерывно изменяться до достижения состояния равновесия этой реакции при температуре 800 К. Значение константы равновесия реакции (2.2) определим при помощи уравнения (2.7):

$$ln K_{P(2.2)} = \frac{4041}{T} - 4,03 = \frac{4041}{900} - 4,03 = 0,46;$$

 $K_{P(2.2)} = 1,58.$

Допустим, что для достижения равновесия в системе требуется превращение m% CO₂. В соответствии с выражением (2.9) получим:

$$K_{P(2.2)} = \frac{((\%H_2)_{\text{ucx}} - m) \cdot ((\%CO_2)_{\text{ucx}} - m)}{((\%H_2O)_{\text{ucx}} + m) \cdot ((\%CO)_{\text{ucx}} + m)} = \frac{(25 - m) \cdot (15 - m)}{m \cdot (20 + m)} = 1,58.$$

Решая это уравнение относительно m, приходим к квадратному уравнению

$$0.58 \cdot m^2 + 71.6 \cdot m - 375 = 0,$$

которое имеет корни (-128,48) и 5,03. Отрицательный корень не имеет физического смысла, т.к. соответствует протеканию реакции в сторону образования CO_2 и H_2 , это невозможно в отсутствии воды. Таким образом, m = 5,03.

Тогда согласно уравнению (2.8):

$$(\%CO_2) = (\%CO_2)_{\text{HCX}} - m = 15 - 5,03 = 9,97\%;$$
$$(\%H_2) = (\%H_2)_{\text{HCX}} - m = 25 - 5,03 = 19,97\%;$$
$$(\%CO) = (\%CO)_{\text{HCX}} + m = 20 + 5,03 = 25,03\%;$$
$$(\%H_2O) = (\%H_2O)_{\text{HCX}} + m = 0 + 5,03 = 5,03\%.$$

Количество азота считаем неизменным – 40%. Делаем проверку:

$$9,97 + 19,97 + 25,03 + 5,03 + 40 = 100 \%$$

которая показывает, что расчет равновесного состава газовой фазы проведен корректно.

Кислородный потенциал газовой фазы определяется любым из частных равновесий в системе и может быть рассчитан по уравнениям (1.14) или (1.15). Воспользуемся первым из них:

$$\Pi_{\mathrm{O(CO/CO_2)}} = \Delta G_{(1.6)}^{\circ} + 2 \cdot \mathrm{R} \cdot T \cdot \ln \left(\frac{\% \mathrm{CO_2}}{\% \mathrm{CO}} \right),$$

где

$$\Delta G_{(1.6)}^{\circ} = -566307 - 900 \cdot (-175,47) = -408384$$
 Дж/моль.

Тогда:

$$\Pi_{\mathrm{O(CO/CO_2)}} = -408384 + 2 \cdot 8,31 \cdot 900 \cdot ln \left(\frac{9,97}{25,03}\right) = -422159$$
 Дж/моль $\mathrm{O_2},$

$$\Pi_{O(\stackrel{CO}{CO_2})} = \Pi_{O(\stackrel{H_2}{H_2O})} = \Pi_{O(CO-CO_2-H_2-H_2O)} = -422$$
 кДж/моль O_2 .

Задача 2.2.2. Какое давление кислорода будет в равновесной газовой фазе, образующейся из смеси CO_2 и H_2 в отношении 3:1 при температуре 1000°C?

$$\frac{\binom{\%\text{CO}_2}{\%\text{H}_2}}{7 = 1273 \text{ K}} = 3$$

$$\frac{7 = 1273 \text{ K}}{P_{\text{O}_2} - ?}$$

$$H_2O + CO = H_2 + CO_2,$$

константу равновесия которой определим с использованием уравнения (2.7): $K_P = 0,565$. Согласно выражению (2.9) составим уравнение:

$$\frac{(3-m)\cdot(1-m)}{m^2} = 0,565,$$

приводящее нас к квадратному уравнению $0,435 \cdot m^2 - 4 \cdot m + 3 = 0$, откуда получаем: m = 0.32.

В соответствии с уравнением (2.8) для процентных содержаний компонентов газовой смеси получим следующие значения:

$$(\%CO_2) = 2,68,$$

$$(\%H_2) = 0.68,$$

$$(\%CO) = 0.32,$$

$$(\%H_2O) = 0.32.$$

Определим кислородный потенциал газовой смеси при помощи уравнения (1.14):

$$\Pi_{\mathrm{O}} = -566307 - 1273 \cdot (-175,47) + 2 \cdot 8,31 \cdot 1273 \cdot ln \left(\frac{2,68}{0,32}\right) = -297\,970$$
 Дж/моль O_2 .

Согласно (1.13)

$$\Pi_{\mathcal{O}} = \mathbf{R} \cdot T \cdot \ln P_{\mathcal{O}_2} ,$$

тогда

$$P_{\rm O_2} = {\rm e}^{\frac{\Pi_{\rm O}}{{\rm R} \cdot T}} = {\rm e}^{-\frac{297970}{8.31 \cdot 1273}} = 5,85 \cdot 10^{-13} {\rm \ arm.} = 5,85 \cdot 10^{-8} {\rm \ \Pia.}$$

2.3 Задачи для самостоятельного решения

Задача 2.3.1. В печь для термической обработки, нагретой до температуры Т, подается газовая смесь следующего состава: X % CO, Y % CO₂, Z % H₂, F % N₂, (таблица 2.1). Какой будет равновесный состав газовой смеси, когда она прогреется до температуры печи? Общее давление в печи равно 10^5 Па.

Таблица 2.1

Номер задачи	Т, К	Состав газовой смеси, %)
Помер задачи	I, K	X	Y	Z	F
2.3.1.1	1233	32	11	9	48
2.3.1.2	1250	30	12	9	47
2.3.1.3	1270	34	14	9	43
2.3.1.4	1280	36	16	9	39
2.3.1.5	1293	38	18	9	35
2.3.1.6	1233	32	6	9	53
2.3.1.7	1250	30	10	9	51
2.3.1.8	1270	34	8	9	49
2.3.1.9	1280	36	9	9	46
2.3.1.10	1293	38	11	9	42

Задача 2.3.2. В каком соотношении нужно смешать CO_2 и H_2 , чтобы в образующейся газовой смеси при температуре T равновесное давление кислорода составило X (таблица 2.2)?

Таблица 2.2

Номер задачи	<i>T</i> , K	<i>X</i> , Па
2.3.2.1	1273	10 ⁻⁴
2.3.2.2	1073	0,5·10 ⁻⁴
2.3.2.3	1123	0,6·10-4
2.3.2.4	1173	0,7·10 ⁻⁴
2.3.2.5	1223	0,8·10 ⁻⁴
2.3.2.6	1273	0,9·10 ⁻⁴
2.3.2.7	1073	10 ⁻⁴
2.3.2.8	1123	0,5·10 ⁻⁴
2.3.2.9	1173	0,8·10 ⁻⁴
2.3.2.10	1223	0,9·10 ⁻⁴

2.4 Вопросы для самостоятельного контроля знаний

- 1 Кислородный потенциал сложной газовой фазы.
- 2 Реакция водяного газа и факторы, влияющие на смещение ее равновесия.
 - 3 Термодинамические особенности реакции водяного газа.
- 4 Какое влияние оказывают инертные добавки на равновесие в сложных газовых атмосферах?
- 5 В каких металлургических и литейных системах и агрегатах имеет место химическое равновесие, описываемое реакцией водяного газа?
- 6 Как производится расчет кислородного потенциала сложной газовой смеси, в состав которой входят CO₂, CO, H₂O и H₂?
- 7 Как производится расчет кислородного потенциала сложной газовой смеси, в состав которой входит CO_2 , CO, H_2 и N_2 ?

3 Практическое занятие 3

ВЗАИМОДЕЙСТВИЕ УГЛЕРОДА С КИСЛОРОДОСОДЕРЖАЩЕЙ ГАЗОВОЙ ФАЗОЙ

3.1 Общие сведения

Взаимодействие кислорода с твердым углеродом происходит по следующим реакциям:

$$C + O_2 = CO_2,$$
 (3.1)

$$2 C + O_2 = 2 CO.$$
 (3.2)

При избытке твердого углерода в системе реакции (3.1) и (3.2) характеризуются очень низким остаточным содержанием кислорода в равновесной газовой смеси. Соотношение СО и СО₂ в равновесной газовой смеси будет определяться реакцией газификаций углерода (1.11):

$$C + CO_2 = 2CO$$

константа равновесия которой может быть выражена через парциальные давления газообразных компонентов:

$$K_{P(1.11)} = \frac{P_{CO}^2}{P_{CO_2}}. (3.3)$$

Выразим константу равновесия реакции (1.11) через состав смеси в объемных процентах:

$$K_{P(1.11)} = \frac{(\%CO)^2 P}{(\%CO_2) \cdot 100},$$
 (3.4)

где P – общее давление в системе.

Если газовая фаза состоит только из СО и СО2, то

$$(\%CO) + (\%CO_2) = 100.$$

Обозначим (%CO) = X, тогда (%CO₂) = 100 - X. Подставим полученные выражения в выражение (3.4):

$$K_{P_{(1.11)}} = \frac{X^2}{100 - X} \cdot \frac{P}{100} . \tag{3.5}$$

Выражение (3.5) является квадратным уравнением, решение которого позволяет определить равновесную концентрацию монооксида углерода в газовой смеси:

(%CO) =
$$X = 50 \frac{K_{P(1.11)}}{P} \left[\sqrt{1 + \frac{4P}{K_{P(1.11)}}} - 1 \right].$$
 (3.6)

В реальных металлургических агрегатах, кроме CO и CO_2 , в атмосфере присутствует азот, попадающий в систему в результате подачи воздуха. В этом случае при избытке твердого углерода в системе образуется смесь из CO и CO_2 с определенным содержанием азота.

Для определения равновесного состава газовой фазы для реакции (1.11) введем следующие обозначения:

$$(\%CO) = X; (\%CO_2) = Y; (\%N_2) = Z.$$

Тогда

$$X + Y + Z = 100; (3.7)$$

$$K_{P(1.11)} = \frac{X^2 P}{100 - Y}.$$
 (3.8)

Введем обозначение:

$$\gamma = \frac{(\%N_2)}{(\%O_2)},$$

где (% O_2) – содержание кислорода в подаваемом в систему воздухе;

 $(\%N_2)$ – содержание азота в подаваемом в систему воздухе.

Таким образом, каждый моль O_2 вносит в систему γ молей N_2 . Тогда, с учетом выражений (3.1) и (3.2), получим третье уравнение, связывающее X, Y и Z:

$$Z = \frac{\gamma}{2}X + \gamma Y. \tag{3.9}$$

Решая систему уравнений (3.7)...(3.9), находим содержание монооксида углерода в равновесной газовой смеси:

$$X = \frac{25(\gamma + 2)K_{P(1.11)}}{(\gamma + 1)P} \cdot \left[\sqrt{1 + \frac{16(\gamma + 1)P}{(\gamma + 2)^2 K_{P(1.11)}}} - 1 \right],$$
 (3.10)

где $K_{P_{(1.11)}}$ – константа равновесия реакции (1.11);

P – общее давление в системе.

Далее из уравнения (3.8) находим равновесное содержание диоксида углерода, а из уравнения (3.7) — равновесное содержание азота Z. Относительное содержание CO и CO_2 в составе смеси находим из выражений:

$$(\%CO)_{OTH} = \frac{(\%CO)}{(\%CO) + (\%CO_2)} \cdot 100$$
 (3.11)

И

$$(\%CO_2)_{OTH} = 100 - (\%CO)_{OTH}.$$
 (3.12)

Значение равновесного давления кислорода в газовой смеси может быть получено из анализа равновесия реакции горения монооксида углерода (1.6):

$$P_{\rm O_2} = \frac{(\% \rm CO_2)_{\rm oth}^2}{(\% \rm CO)_{\rm oth}^2 \cdot \rm K_{P(1.6)}},$$
(3.13)

а кислородный потенциал газовой смеси – из уравнения (3.13).

Расчет значения $K_{P(1.6)}$ проводим по выражению

$$K_{P(1.6)} = e^{-\frac{\Delta G_{(1.6)}}{RT}},$$
 (3.14)

где $\Delta G_{(1.6)}$ – стандартная энергия Гиббса реакции (1.6).

Для определения последней воспользуемся приложением A, Дж/моль:

$$\Delta G_{(1.6)} = -566307 + 175,47T.$$

3.2 Примеры решения задач

Задача 3.2.1. Определить равновесный состав газовой смеси, образующейся при взаимодействии кислорода с углеродом при температуре 700°C и общем давлении в системе 10⁴ Па.

температуре 700°С и общем давлении в системе
$$10^4$$
 Па.
$$\begin{array}{c|c} P_{\text{ОБЩ}} = 10^4 \, \Pi \text{a} = \\ = 0.1 \, \text{атм} \\ T = 973 \, \text{K} \end{array}$$
 Для решения задачи воспользуемся выражением (3.6):
$$\begin{array}{c|c} (\%\text{CO})_{\text{PABH}} - ? \\ (\%\text{CO})_{\text{PABH}} - ? \end{array}$$
 (%CO) = $50 \cdot \frac{\text{K}_{P(1.11)}}{\text{P}} \cdot \left[\sqrt{1 + \frac{4 \cdot P}{\text{K}_{P(1.11)}}} - 1 \right].$

Значение константы равновесия реакции (1.11) находим из выражения

$$\mathbf{K}_{P} = \mathbf{e}^{-\frac{\Delta G_{(1.11)}^{\circ}}{R T}},$$

где $\Delta G_{(1.11)}^{\circ}$ — изменение стандартной энергии Гиббса в ходе реакции (1.11).

Выражение для $\Delta G_{(1.11)}^{\circ}$ находим в приложении A:

$$\Delta G_{(1.11)}^{\circ} = 172130 - 177,46 \cdot T$$
 Дж/моль.

При температуре $T=973~{\rm K}~{\rm K}_P=1,07$. Подставив это значение в уравнение (3.6), получим:

(%CO) =
$$50 \cdot \frac{1,07}{0,1} \cdot \left[\sqrt{1 + \frac{4 \cdot 0,1}{1,07}} - 1 \right] = 92,08\%;$$

$$(\%CO_2) = 100 - (\%CO) = 100 - 92,08 = 7,92\%.$$

Задача 3.2.1. Определить состав равновесной газовой смеси, полученной при взаимодействии обогащенного кислородом воздуха $\%O_2$ – 25, $\%N_2$ – 75 с твердым углеродом для T=1073 К и общего давления в системе $P=10^5$ Па.

Находим соотношение между содержаниями азота и кислорода в обогащенном воздухе:

$$\gamma = \frac{(\%N_2)}{(\%O_2)} = \frac{75}{25} = 3.$$

Значение константы равновесия реакции (1.11) находим алогично. Для температуры $T=1073~{\rm K}~{\rm K}_{P_{(1.11)}}=7,77.$ Подставляем полученные значения в выражение (3.10):

$$(\%CO) = \frac{25 \cdot (3+2)}{(3+1)} \cdot \frac{7,77}{1} \cdot \left[\sqrt{1 + \frac{16 \cdot (3+1) \cdot 1}{(3+2)^2 \cdot 7,77}} - 1 \right] = 37,16\%.$$

Из выражения (3.8) находим (% СО₂):

$$(\%CO_2) = \frac{(\%CO)^2 \cdot P}{K_{P(1.11)} \cdot 100} = 1,78\%.$$

Равновесное содержание азота найдем согласно выражению (3.7):

$$(\%N_2) = 100\% - (\%CO_2) - (\%CO) = 100 - 1,78 - 37,16 = 61,06\%.$$

3.3 Задачи для самостоятельного решения

Задача 3.3.1. Определить равновесный состав газовой смеси, образующейся при газификации углерода углекислым газом для условий, указанных в таблице. Построить графическую зависимость (%CO) – T (таблица 3.1).

Таблица 3.1

Номер	Р, атм.	<i>T</i> ₁ , K	T_2 , K	<i>T</i> ₃ , K	<i>T</i> ₄ , K	
задачи	I, aim.	I_1, K	12, K	13, K	14, 10	
3.3.1.I	0,1	700	750	800	850	
3.3.1.2	0,2	705	755	805	855	
3.3.1.3	0,3	710	760	810	860	
3.3.1.4	0,4	715	765	815	865	
3.3.1.5	0,5	720	770	820	870	
3.3.1.6	0,6	725	775	825	875	
3.3.1.7	0,7	730	780	830	880	
3.3.1.8	0,8	735	785	835	885	
3.3.1.9	0,9	740	790	840	890	
3.3.1.10	1,0	745	795	845	895	
3.3.3.11	1,1	750	800	850	900	
3.3.1.12	1,2	810	860	910	960	
3.3.1.13	1,3	820	870	920	970	
3.3.1.14	1,4	830	880	930	980	
3.3.1.15	1,5	840	890	940	990	
3.3.1.16	2,0	850	900	950	1000	

Задача 3.3.2. Определить состав равновесной газовой смеси, полученной при взаимодействии обогащенного кислородом воздуха с твердым углеродом для заданных в варианте условий, и построить графическую зависимость (%CO) – T (таблица 3.2).

Таблица 3.2

Номер	обогаш	став ценного ха, % О ₂	<i>T</i> ₁ , K	<i>T</i> ₂ , K	<i>T</i> ₃ , K	<i>T</i> ₄ , K	<i>P</i> ,атм.
3.3.2.1	74	26	1010	1060	1110	1160	0,5
3.3.2.2	72	28	1015	1065	1115	1165	0,6
3.3.2.3	70	30	1020	1070	1120	1170	0,7
3.3.2.4	68	32	1025	1075	1125	1175	0,8
3.3.2.5	66	34	1030	1080	1130	1180	0,9
3.3.2.6	64	36	1035	1085	1135	1185	1,0
3.3.2.7	62	38	1040	1090	1140	1190	1,1
3.3.2.8	60	40	1045	1095	1145	1195	1,2
3.3.2.9	58	42	1050	1100	1150	1200	1,3
3.3.2.10	56	44	1055	1105	1155	1205	1,4
3.3.2.11	54	46	1060	1110	1160	1210	1,5
3.3.2.12	52	48	1153	1203	1253	1303	1,6
3.3.2.13	50	50	1163	1213	1263	1313	1,8
3.3.2.14	48	52	1173	1223	1273	1323	2,0
3.3.2.15	75	25	1183	1233	1283	1333	2,2
3.3.2.16	73	27	1193	1243	1293	1343	2,4
3.3.2.17	71	29	1203	1253	1303	1353	2,6
3.3.2.18	69	31	1213	1263	1313	1363	2,8
3.3.2.19	67	33	1223	1273	1323	1373	3,0
3.3.2.20	65	35	1233	1283	1333	1383	3,2

3.4 Вопросы для самостоятельного контроля знаний

- 1 Какие реакции могут развиваться в системе $C O_2$?
- 2 Как температура влияет на равновесие реакций (3.1) и (3.2)?

- 3 Равновесие, какой из реакций, (3.1) или (3.2), более подвержено влиянию температуры? Почему?
- 4 Как изменение давления влияет на равновесие реакций (3.1) и (3.2)?
- 5 Определите число степеней свободы для реакций горения углерода в кислороде и в обогащенном кислородом воздухе.
- 6 Каким образом изменение содержания азота в обогащенном кислородом воздухе влияет на смещение равновесия реакций горения углерода?
- 7 При каких условиях и почему равновесие реакций горения углерода может быть охарактеризовано равновесием реакции газификации углерода диоксидом углерода?
- 8 Какая из реакций взаимодействия углерода с кислородом развивается преимущественно в условиях высоких температур? Дайте объяснение этому явлению.

4 Практическое занятие 4 ПРОЦЕССЫ ДИССОЦИАЦИИ И ОБРАЗОВАНИЯ КАРБОНАТОВ И ОКСИДОВ

4.1 Общие сведения

При нагреве карбонаты диссоциируют на оксиды металлов и CO₂. Превращение протекает согласно уравнению эндотермической реакции

$$MeCO_3 = MeO + CO_2. (4.1)$$

Константа равновесия данной реакции может быть записана в виде

$$K_P = \frac{a_{\text{MeO}} \cdot P_{\text{CO}_2}}{a_{\text{MeCO}_3}}.$$
 (4.2)

Если карбонат и оксид металла существуют в виде чистых кристаллических фаз и не образуют твердых растворов, то их активности

равны единице, и константа равновесия реакции численно равна равновесному давлению CO₂ в газовой фазе:

$$K_P = P_{CO_2}. (4.3)$$

Это равновесное давление CO_2 в процессе диссоциации карбоната называется упругостью диссоциации карбоната и может служить количественной характеристикой прочности данного карбона. Величина упругости диссоциации карбоната зависит от температуры и от термодинамической стабильности карбоната, характеризуемой изменением энергии Гиббса для реакции образования карбоната. Реакция образования карбоната возможна при условии, что значение диссоциации P_{CO_2} будет больше, чем парциальное давление CO_2 в окружающей среде $P_{\mathrm{CO}_2 \, \Phi \mathrm{AKT}}$:

$$P_{\rm CO_2} > P_{\rm CO_2 \, \text{\tiny DAKT}} \,. \tag{4.4}$$

Упругость диссоциации карбонатов при различных температурах может быть получена из выражения для $\Delta G^{\rm o}$ реакций образования карбоната (см. приложение A):

$$MeO + CO_2 = MeCO_3. (4.5)$$

В этом случае

$$K_P = \frac{1}{P_{\text{CO}_2}}.$$

Тогда

$$ln K_{P(4.5)} = -ln P_{CO_2} = -\frac{\Delta G_{(4.5)}^{\circ}}{R \cdot T}$$
 (4.6)

или

$$\ln P_{\text{CO}_2} = \frac{\Delta G_{(4.5)}^{\circ}}{\text{R} \cdot T} = \frac{\Delta H^{\circ}}{\text{R} \cdot T} - \frac{\Delta S^{\circ}}{\text{R}}, \tag{4.7}$$

где ΔH° – стандартная теплота реакции образования карбоната;

 $\Delta S^{\rm o}$ – стандартное изменение энтропии в ходе реакции образования карбоната.

Температура, при которой выполняется условие $P_{{\rm CO}_2} = P_{{\rm CO}_2\,\Phi{\rm AKT}}$, называется температурой начала разложения карбоната. Из уравнения (4.7) для температуры начала разложения получаем выражение

$$T_{\text{H.P.}} = \frac{\Delta H^{\circ}}{\left(\frac{\Delta S^{\circ}}{R} - \ln P_{\text{CO}_2 \Phi \text{AKT}}\right) \cdot R}$$
 (4.8)

Температура, при которой упругость диссоциации карбоната становится равной общему давление в системе — $P_{\rm CO_2}$ = $P_{\rm OBIII}$, называется температурой химического кипения:

$$T_{\text{X.K.}} = \frac{\Delta H^{\circ}}{\left(\frac{\Delta S^{\circ}}{R} - lnP_{\text{OBIII}}\right) \cdot R} .$$

Интенсивное разложение карбоната при нагреве начинается тогда, когда величина упругости диссоциации карбоната становится больше, чем общее давление в газовой фазе.

Химическая прочность оксидов и их термодинамическая стабильность могут быть оценены по значению равновесного давления кислорода в системе металл — оксид металла для реакции образования оксида металла из металла и кислорода:

$$2 \text{ Me} + O_2 = 2 \text{ MeO}.$$
 (4.9)

В случае, когда металл и оксид не образуют растворов, константа равновесия может быть представлена как

$$K_P = \frac{1}{P_{O_2}},$$
 (4.10)

где $P_{{
m O}_2}$ — равновесное давление кислорода над оксидом, называемое упругостью диссоциации оксида.

Эта величина может служить количественной характеристикой прочности данного оксида. Если фактическое давление кислорода в газовой фазе $P_{\mathrm{O}_2}^{'}$ превышает равновесное давление кислорода P_{O_2} , создаются условия для окисления металла. Если давление $P_{\mathrm{O}_2}^{'} < P_{\mathrm{O}_2}$, металл не окисляется, и может происходить диссоциация оксида.

Наряду с упругостью диссоциации, одной из широко применяемых характеристик прочности оксидов является стандартное изменение энергии Гиббса ΔG° в ходе реакции (4.9). Для вышеназванных условий ΔG° связано с равновесным давлением кислорода соотношением

$$\Delta G^{\circ} = -RT ln K_{P} = -RT ln \frac{1}{P_{O_{2}}} = RT ln P_{O_{2}}. \qquad (4.11)$$

Чем прочнее оксид металла, тем меньше величина P_{O_2} , и тем больше отрицательное значение ΔG^{o} для реакции его образования.

Еще одной характеристикой термодинамических свойств оксида является величина его кислородного потенциала $\Pi_{O(MeO)}$, равная кислородному потенциалу газовой фазы, находящейся в равновесии с оксидом и металлом:

$$\Pi_{\text{O(MeO)}} = \Pi_{\text{O(\Gamma.\Phi.)}} = RT \ln P_{\text{O}_2}. \tag{4.12}$$

Сопоставление выражений (4.11) и (4.12) показывает, что

$$\Pi_{\mathcal{O}(\Gamma,\Phi)} = \Delta G^{\circ}. \tag{4.13}$$

Последнее обстоятельство позволяет сравнить эти два параметра между собой.

Подставив в выражение (4.11) выражение для ΔG° , взятое из приложения A, мы можем получить уравнение для расчета упругости диссоциации оксида через стандартную теплоту ΔH° и изменение стандартной энтропии ΔS° в ходе реакции образования оксида:

$$ln P_{O_2} = \frac{\Delta H^{\circ}}{RT} - \frac{\Delta S^{\circ}}{R}. \tag{4.14}$$

Значение кислородного потенциала оксида важно при выборе так называемых защитных атмосфер, в которых можно нагревать металл, не подвергая его окислению.

В случае образования растворов в системе металл – оксид металла изменяются характеристики прочности оксида. Для образования оксидов металлов различной валентности уравнение реакции образования оксида Me_XO_Y в расчете на 1 моль O_2 примет вид

$$m Me + O_2 = n Me_X O_Y,$$
 (4.15)

где стехиометрические коэффициенты m и n равны:

$$m = 2X/Y \quad u \quad n = 2/Y.$$
 (4.16)

Константа равновесия этой реакции, выраженная через активность реагирующих веществ в растворах, примет вид

$$K_{P(4.15)} = \frac{a_{\text{Me}_{X}\text{O}_{Y}}^{\text{n}}}{a_{\text{Me}}^{\text{m}} P_{\text{O}_{2}}}.$$
 (4.17)

Из этого выражения следует, что

$$P_{\rm O_2} = \frac{a_{\rm Me_XO_Y}^{\rm n}}{a_{\rm Me}^{\rm m} \, K_{P(4.15)}}.$$
 (4.18)

При понижении активности оксида (понижение его концентрации в растворе) величина равновесного парциального давления кислорода

уменьшается, т.е. термодинамическая прочность оксида увеличивается. Растворение металла (понижение его активности в растворе) увеличивает значение P_{O_2} , т.е. приводит к понижению термодинамической прочности оксида.

Выражение для кислородного потенциала газовой фазы, находящейся в равновесии с оксидом, имеет вид

$$\Pi_{\text{O(MeO)}} = RT \ln P_{\text{O}_{2}} . \tag{4.19}$$

С учетом выражения (4.11):

$$\Pi_{\mathrm{O(Me_{X}O_{Y})}} = \Delta G_{\mathrm{Me_{X}O_{Y}}}^{\circ} + \frac{2}{\mathrm{Y}} RT \ln a_{\mathrm{Me_{X}O_{Y}}} - \frac{2\mathrm{X}}{\mathrm{Y}} RT \ln a_{\mathrm{Me}}, \quad (4.20)$$

ИЛИ

$$\Pi_{\mathrm{O(Me_{X}O_{Y})}} = \Delta G_{\mathrm{Me_{X}O_{Y}}}^{\circ} + \mathrm{nR}T \ln a_{\mathrm{Me_{X}O_{Y}}} - \mathrm{mR}T \ln a_{\mathrm{Me}}. \tag{4.21}$$

Термодинамическое условие окисления металла газовой фазой определяются соотношением кислородных потенциалов газовой фазы и оксида металла:

$$\Pi_{\mathcal{O}(\Gamma,\Phi)} > \Pi_{\mathcal{O}(Me_X\mathcal{O}_Y)}. \tag{4.22}$$

4.2 Примеры решения задач

Задача 4.2.1. Определить температуру, при которой упругость диссоциации карбоната бария будет равна 1,5 атм.

$$P_{{
m CO}_2}$$
 = 1,5 атм.
Ва ${
m CO}_3$ Запишем уравнение реакции разложения карбоната бария:

$$BaCO_{3(T)} = BaO_{(T)} + CO_{2(\Gamma)}.$$
 (4.23)

Так как оксид и карбонат бария взаимно не растворимы, можно считать, что константа равновесия реакции численно равна упругости диссоциации:

$$K_{P(4.23)} = P_{CO_2}. (4.24)$$

С другой стороны

$$\Delta G_{(4.23)}^{\circ} = - R \cdot T \cdot \ln K_{P_{(4.23)}}. \tag{4.25}$$

Комбинируя выражения (4.24) и (4.25), получаем:

$$\Delta G_{(4.23)}^{\circ} = -\operatorname{R} \cdot T \cdot \ln \operatorname{P}_{\text{CO}_{2}}. \tag{4.26}$$

В приложении А находим:

$$\Delta G_{(4.23)}^{\circ} = 250915 - 147,17 \cdot T$$
Дж/моль,

откуда получаем:

$$-R \cdot T \cdot \ln P_{\text{CO}_2} = 250915 - 147,17 \cdot T. \tag{4.27}$$

Отсюда

$$T = \frac{250915}{-\text{R} \cdot lnP_{\text{CO}_2} + 147,17} = \frac{250915}{-8,31 \cdot \ln 1,5 + 147,17} = 1745 \text{ K}.$$

Искомая температура равна 1745 К.

Задача 4.2.2. Определить температуру начала разложения карбоната кальция в атмосфере с содержанием CO_2 20% при общем давлении 1,5 атм.

$$P_{\text{общ}} = 1,5 \text{ атм.}$$
 $(\% \text{CO}_2) = 20$ $= 20$ $= 3$ апишем уравнение реакции разложения карбоната кальция: $= \text{CaCO}_{3 \text{ (T)}} = \text{CaO}_{(\text{T)}} + \text{CO}_{2 \text{ (\Gamma)}}.$ $= (4.28)$

Температуру начала разложения определим из условия равенства упругости диссоциации и парциального давления CO_2 в газовой фазе. По закону Дальтона (1.16) определим P_{CO_2} в газовой фазе:

$$P_{\text{CO}_2} = P_{\text{общ}} \cdot \frac{(\%\text{C}\%_2)}{100} = 1.5 \cdot \frac{20}{100} = 0.3 \text{ atm.}$$

Согласно уравнению (4.8) получим:

$$T_{\text{H.P.}} = \frac{\Delta H_{(4.28)}^{\circ}}{\left(\frac{\Delta S_{(4.28)}^{\circ} - lnP_{\text{CO}_2}}{R}\right) \cdot R}$$
(4.29)

Подставляя в последнее выражение данные из условия задачи и приложения А, получим:

$$T_{\text{H.P.}} = \frac{170577}{\left(\frac{144,19}{8,31} - \ln 0,3\right) \cdot 8,31} = 1106 \text{ K.}$$

Температура начала разложения карбоната кальция при заданных условиях составляет 1106 К.

Задача 4.2.3. Каким должно быть отношение, чтобы не происходило окисление никеля при температуре 1700 К?

$$T = 1700 \ \mathrm{K}$$
 $Peшение$ $Peшение$ $Peшение$ $Peшение$ $Peшение$ $Peшение $Pemenue$ $Pemenu$$

Для предотвращения окисления металла газовой фазой необходимо выполнение условия $\Pi_{O(\Gamma,\Phi_1)} < \Pi_{O(NiO)}$.

Кислородный потенциал газовой фазы, состоящей из водорода и паров воды, определяется выражением (1.15). Кислородный потенциал газовой фазы, находящейся в равновесии с оксидом металла, описывается выражением (4.13). Приравняем два последних выражения:

$$\Delta G_{(1.5)}^{\circ} + 2 \cdot R \cdot T \cdot ln \frac{P_{\text{H}_2\text{O}}}{P_{\text{H}_2}} = \Delta G_{(4.30)}^{\circ},$$

откуда получим

$$ln\left(\frac{P_{\rm H_2O}}{P_{\rm H_2}}\right) = \frac{\Delta G_{(4.30)}^{\circ} - \Delta G_{(1.5)}^{\circ}}{2 \cdot R \cdot T}.$$
 (4.31)

Для дальнейших расчетов воспользуемся приложением А:

$$\Delta G_{(1.5)}^{\circ} = -493038 + 108,40 \cdot \mathrm{T} = -493038 + 108,40 \cdot 1700 = -308758$$
 Дж/моль,

$$\Delta \, G_{(4.30)}^{\circ} = -469006 + 217,\!54 \cdot \mathrm{T} = -469006 + 217,\!54 \cdot 1700 = -99188$$
 Дж/моль.

Подставим полученные значения в уравнение (4.31):

$$ln\left(\frac{P_{\text{H}_2\text{O}}}{P_{\text{H}_2}}\right) = \frac{-99188 + 308758}{2 \cdot 8,31 \cdot 1700} = 7,42;$$

$$\left(\frac{P_{\rm H_2O}}{P_{\rm H_2}}\right) = 1665.$$

Полученное соотношение соответствует равенству кислородных потенциалов. Следовательно, газовые фазы с соотношением $\left(\frac{P_{\rm H_2O}}{P_{\rm H_2}}\right)$ <1665 не будут окислять металлический никель при температуре 1700 К.

Задача 4.2.4. В системе при температуре 1900 К кислород окисляет железо. При этом происходит переход образующегося вюстита в шлаковую фазу, в которой его активность $a_{\text{FeO}} = 0,5$. Определить значение кислородного потенциала равновесной газовой фазы для этих условий.

$$T = 1700 \text{ K}$$
 $a_{\text{FeO}} = 0.5$ B системе протекает химическое превращение, которое может быть описано уравнением реакции: $2 \text{ Fe}_{(\mathbb{K})} + O_{2(\Gamma)} = 2 \text{ FeO}_{(\mathbb{K})}.$ (4.32)

Уравнение (4.20) для кислородного потенциала окиси железа примет вид

$$\Pi_{\rm O} = \Delta G_{(4.32)}^{\circ} + 2 \cdot \mathbf{R} \cdot T \cdot \ln a_{\rm FeO} + 2 \cdot \mathbf{R} \cdot T \cdot \ln a_{\rm Fe}.$$

Для вычисления первого слагаемого воспользуемся приложением А:

$$\Delta$$
 $G_{(4.32)}^{\circ} = -479974 + 99,14 \cdot T = -479974 + 99,14 \cdot 1900 = -291608$ Дж/моль.

Третье слагаемое, поскольку металлическая фаза представляет собой практически чистое железо и $a_{\rm Fe}\approx 1$, равняется нулю. То есть для кислородного потенциала равновесной газовой фазы получаем:

$$\Pi_{O \text{ (\Gamma.\Phi.)}} = \Pi_{O \text{ (FeO)}} = -291608 + 2 \cdot 8,31 \cdot 1900 \cdot ln0,5 = -313496$$
 Дж/моль O_2 .

4.3 Задачи для самостоятельного решения

Задача 4.3.1. Определить температуру, при которой упругость диссоциации карбоната будет равна P. Определить стандартную энергию Гиббса реакции диссоциации для этой температуры (таблица 4.1).

Таблица 4.1

Номер	Диссоциирующий карбонат	Р, атм.
задачи	диссоциирующий кароонат	1, and.
4.3.1.1	BaCO ₃	1,2
4.3.1.2	BaCO ₃	1,4
4.3.1.3	BaCO ₃	2,0
4.3.1.4	CaCO ₃	1,0
4.3.1.5	CaCO ₃	1,5
4.3.1.6	CaCO ₃	2,0
4.3.1.7	MgCO ₃	1,0
4.3.1.8	MgCO ₃	1,2
4.3.1.9	MgCO ₃	1,5
4.3.1.10	MgCO ₃	2,0

Задача 4.3.2. Определить температуру начала разложения карбоната в атмосфере с содержанием X% CO_2 и общим давлением P. (табл. 4.2).

Таблица 4.2

Номер	Карбонат	X, %	<i>P</i> , атм.
задачи	Кароонат	Λ, /0	I, aim.
4.3.2.1	CaCO ₃	20	1,0
4.3.2.2	CaCO ₃	40	1,5
4.3.2.3	CaCO ₃	60	2,0
4.3.2.4	BaCO ₃	20	1,0
4.3.2.5	BaCO ₃	40	1,5
4.3.2.6	BaCO ₃	60	2,0
4.3.2.7	MgCO ₃	20	1,0
4.3.2.8	MgCO ₃	40	1,5
4.3.2.9	MgCO ₃	60	2,0
4.3.2.10	MgCO ₃	80	1,0

Задача 4.3.3. Каким должно быть соотношение парциальных давлений паров воды и водорода, чтобы не происходило окисление металла при температуре T (таблица 4.3)?

Таблица 4.3

Номер		T V
задачи	Металл	<i>T</i> , K
4.3.3.1	Ni	1700
4.3.3.2	Ni	1600
4.3.3.3	Cr	1725
4.3.3.4	Cr	1625
4.3.3.5	Fe	1500
4.3.3.6	Fe	1600
4.3.3.7	Co	1650
4.3.3.8	Co	1750
4.3.3.9	Mn	1500
4.3.3.10	Mn	1400
4.3.3.11	W	1900
4.3.3.12	W	1800

Задача 4.3.3. Будет ли газовая фаза, содержащая X% CO₂ и Y% CO, окислять металл при температуре T (таблица 4.4)?

Таблица 4.4

Номер варианта	Металл	X, %	Y, %	T, K
4.3.4.1	Ni	15	5	1500
4.3.4.2	Ni	25	5	1700
4.3.4.3	Cr	20	5	1550
4.3.4.4	Cr	10	10	1525
4.3.4.5	Cr	0,01	50	1575
4.3.4.6	Fe	15	5	1700
4.3.4.7	Fe	10	10	1650
4.3.4.8	Fe	1	10	1600
4.3.4.9	Mn	1	20	1400
4.3.4.10	Mn	1	50	1500
4.3.4.11	W	20	10	1550
4.3.4.12	W	10	10	1775

4.4 Вопросы для самостоятельного контроля знаний

- 1 Что называется упругостью диссоциации? Какие свойства карбоната характеризует эта величина?
- 2 При каких условиях возможно протекание реакции диссоциации карбоната?
- 3 Какая температура называется температурой начала разложения карбоната? Выведите уравнение для $T_{\rm H.P.}$
- 4 Какая температура называется температурой химического кипения карбоната? Выведите уравнение для нее.
- 5 Какими величинами могут быть охарактеризованы химическая прочность и термодинамическая стабильность оксидов?
 - 6 Выведите уравнение для $\Pi_{O\,(MeO)},\ \Pi_{O\,(Me_xO_y)}$.
- 7 Как давление и температура влияют на термодинамическую стабильность оксидов и карбонатов?
- 8 Каким образом образование растворов влияет на термодинамическую стабильность соединений и на упругость диссоциации?
- 9 Сформулируйте термодинамическое условие окисления металла газовой фазой.

5 Практическое занятие 5 ВОССТАНОВЛЕНИЕ ОКСИДОВ МЕТАЛЛОВ ГАЗООБРАЗНЫМИ ВОССТАНОВИТЕЛЯМИ И В ПРИСУТСТВИИ ТВЕРДОГО

УГЛЕРОДА

5.1 Общие сведения

Термодинамические условия восстановления оксидов газообразными восстановителями определяются соотношением кислородных потенциалов газовой фазы и оксида металла:

$$\Pi_{\mathcal{O}(\Gamma,\Phi)} < \Pi_{\mathcal{O}(Me_X \mathcal{O}_Y)}. \tag{5.1}$$

За счет стремления к выравниванию потенциалов кислород переходит из оксидной фазы в газовую фазу. Реакция восстановления оксида металла может быть записана в общем виде следующим образом:

$$Me_XO_{Y(T)} + Y B_{(\Gamma)} = X Me_{(T)} + Y BO_{(\Gamma)}.$$
 (5.2)

В случае если оксид и металл представляют собой чистые фазы, их активности могут быть приняты равными единице, и константа равновесия примет вид

$$K_{P(2.15)} = \frac{P_{BO}^{Y}}{P_{B}^{Y}}.$$
 (5.3)

Кислородный потенциал $\Pi_{O(Me_XO_Y)}$ в этом случае можно оценить по выражению (4.13). В реальных процессах восстановления участвуют не чистые оксиды, а металлическая и оксидная фазы часто образуют растворы. Для таких систем необходимо пользоваться обобщенным уравнением для кислородного потенциала оксидов металлов (4.21).

В качестве газообразных восстановителей наиболее широко используются водород и монооксид углерода. Кислородный потенциал газовых смесей $H_2 - H_2O$ и $CO - CO_2$ зависит от состава этих смесей, температуры и может быть оценен уравнениями (1.14) и (1.15).

Восстановление оксидов металлов, имеющих несколько степеней окисления, происходит последовательно. Восстановление оксидов железа водородом при температурах выше 843 К происходит в соответствии с реакциями:

$$3 \text{ Fe}_2\text{O}_3 + \text{H}_2 = 2 \text{ Fe}_3\text{O}_4 + \text{H}_2\text{O}$$
 $\Delta H^\circ = -12890 \text{ Дж/моль};$ (5.4)

$$Fe_3O_4 + H_2 = 3 FeO + H_2O$$
 $\Delta H^o = 77520 \, \text{Дж/моль};$ (5.5)

FeO + H₂ = Fe + H₂O
$$\Delta H^{\circ} = 24790 \text{ Дж/моль}.$$
 (5.6)

При температурах ниже 843 К, когда вюстит становится термодинамически неустойчивым, восстановление Fe_3O_4 происходит до железа:

$$\frac{1}{4} \text{ Fe}_3\text{O}_4 + \text{H}_2 = \frac{3}{4} \text{FeO} + \text{H}_2\text{O}$$
 $\Delta H^{\circ} = 37970 \text{ Дж/моль}.$ (5.7)

При восстановлении оксидов железа монооксидом углерода соответствующие реакции примут вид:

$$3 \text{ Fe}_2\text{O}_3 + \text{CO} = 2 \text{ Fe}_3\text{O}_4 + \text{CO}_2$$
 $\Delta H^0 = -52130 \text{ Дж/моль};$ (5.8)

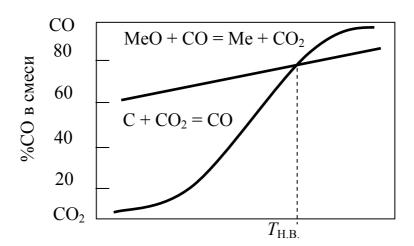
$$Fe_3O_4 + CO = 3 FeO + CO_2$$
 $\Delta H^0 = 35380 \, \text{Дж/моль};$ (5.9)

FeO + CO = Fe + CO₂
$$\Delta H^{\circ} = -1347 \, \text{Дж/моль};$$
 (5.10)

$$\frac{1}{4} \text{ Fe}_3\text{O}_4 + \text{CO} = \frac{3}{4} \text{FeO} + \text{CO}_2$$
 $\Delta H^{\circ} = -247 \text{ Дж/моль}.$ (5.11)

Восстановление оксидов металлов твердым углеродом происходит по реакции

$$MeO + C = Me + CO. (5.12)$$


Эту реакцию можно представить как совместное протекание реакций (5.2) и (1.11):

$$MeO + CO = Me + CO2$$
+
$$\frac{CO2 + C = 2CO}{MeO + C = Me + CO}$$

Поскольку в реакциях (5.2) и (1.11) газовая фаза состоит из одних и тех же компонентов, условием равновесия в системе, то есть условием равновесия реакции (5.12), является одинаковый состав равновесной газовой смеси для двух реакций. Равновесный состав газовой смеси СО—

 ${
m CO_2}$ для реакций зависит от температуры, а для уравнения (1.11) еще и от давления. Для случая, когда Ме, МеО и С представляют собой твердые несмешивающиеся фазы, равновесие реакции (5.12) характеризуется одной степенью свободы. Поэтому при постоянстве давления в системе температура, при которой реакция (5.12) находится в равновесии, имеет строго определенное значение. Эта температура получила название температуры начала восстановления оксида металла твердым углеродом. Протекание реакции (5.12) в направлении восстановления возможно только в том случае, когда фактическая температура смеси оксида металла с углеродом выше температуры начала восстановления: $T > T_{\rm H.B.}$ Значение температуры начала восстановления оксида металла твердым углеродом может быть определено двумя способами.

При использовании первого способа определяют зависимость равновесного состава газовой смеси СО–СО₂ для реакций (2.15) и (1.11). Аналитическим способом находят значение температуры, при которой равновесная газовая фаза для этих двух реакций имеет одинаковый состав. Эта температура и будет температурой начала восстановления оксида металла твердым углеродом. Рисунок 5.1 схематически демонстрирует физическую сущность этого способа.

Pисунок 5.1 — Определение $T_{H.B.}$ оксида металла в присутствии углерода по одинаковому составу газовой фазы

Второй метод расчета основан на том, что температура начала восстановления данного оксида твердым углеродом соответствует температуре, при которой химическое сродство восстанавливаемого

металла к кислороду и химическое сродство углерода к кислороду становятся одинаковыми. Химическое сродство металла и углерода к кислороду оцениваются величинами $\Delta \, G_{(3.2)}^{\circ}$ и $\Delta \, G_{(4.9)}^{\circ}$:

$$2 \text{ C} + \text{O}_2 = 2 \text{ CO}, \ \Delta G_{(3.2)}^{\circ};$$

2 Me + O₂ = 2 MeO,
$$\Delta G_{(4.9)}^{\circ}$$
.

Уравнения зависимости $\Delta \, G_{(3.2)}^{\circ}$ и $\Delta \, G_{(4.9)}^{\circ}$ от температуры имеют вид:

$$\Delta G_{(3.2)}^{\circ} = \Delta H_{(3.2)}^{\circ} - T \Delta S_{(3.2)}^{\circ}; \tag{5.13}$$

$$\Delta G_{(4.9)}^{\circ} = \Delta H_{(4.9)}^{\circ} - T \Delta S_{(4.9)}^{\circ}. \tag{5.14}$$

Рисунок 2.2 иллюстрирует, как, используя последние две зависимости, определить температуру начала восстановления.

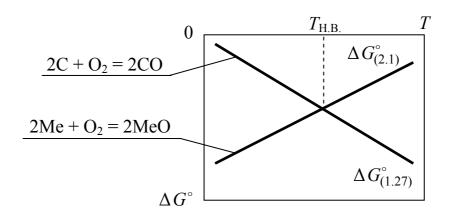


Рисунок 2.2 — Определение $T_{H,B}$ оксида металла в присутствии твердого углерода по одинаковому значению химического сродства к кислороду

Температура, при которой пересекаются две линии, соответствует одинаковому значению химического сродства металла и углерода к кислороду. Эта температура соответствует температуре начала восстановления данного оксида металла в присутствии твердого углерода.

Значение этой температуры может быть найдено аналитическим путем, если приравнять правые части уравнений (5.13) и (5.14):

$$\Delta H_{(3.2)}^{\circ} - T \Delta S_{(3.2)}^{\circ} = \Delta H_{(4.9)}^{\circ} - T \Delta S_{(4.9)}^{\circ}.$$

Тогда

$$T_{\text{H.B}} = \frac{\Delta H_{(3.2)}^{\circ} - \Delta H_{(4.9)}^{\circ}}{\Delta S_{(3.2)}^{\circ} - \Delta S_{(4.9)}^{\circ}}.$$
 (5.15)

Необходимые значения термодинамических величин берутся из приложения А. Уравнения реакций записываются в расчете на 1 моль кислорода.

Во многих случаях восстановленный металл переходит в раствор, и восстанавливаемый оксид может находиться в растворе. Эти обстоятельства влияют на активность компонентов и их сродство к кислороду. Для таких систем количественной характеристикой свойств может служить кислородный потенциал.

Вид зависимости кислородного потенциала газовой фазы при наличии твердого углерода устанавливается из условий равновесия реакции (3.2):

$$\Pi_{\text{O(C/CO)}} = \Delta G_{(3.2)}^{\circ} + 2RT \ln P_{\text{CO}} + 2RT \ln a_{\text{C}}.$$
 (5.16)

Если в реакции участвует чистый углерод в форме графита, $a_{\rm C}$ =1. В связи с очень низким равновесным давлением кислорода в системе можно принять, что $P_{\rm CO}$ = P. С учетом двух последних условий получаем:

$$\Pi_{\text{O(C/CO)}} = \Delta G_{(3.2)}^{\circ} + 2RT lnP. \tag{5.17}$$

В случае образования оксида Me_XO_Y кислородный потенциал равновесной газовой фазы описывается выражением (4.20):

$$\Pi_{\mathrm{O}(\mathrm{Me_{X}O_{Y}})} = \Delta G_{\mathrm{Me_{X}O_{Y}}}^{\circ} + \frac{2}{\mathrm{Y}} \mathrm{R} T \ln a_{\mathrm{Me_{X}O_{Y}}} - \frac{2\mathrm{X}}{\mathrm{Y}} \mathrm{R} T \ln a_{\mathrm{Me}}.$$

C учетом того, что уравнение температурной зависимости $\Delta G_{\text{Me}_{X}\text{O}_{Y}}^{\circ}$ имеет вид

$$\Delta G_{\text{Me}_{X}\text{O}_{Y}}^{\text{o}} = \Delta H_{\text{Me}_{X}\text{O}_{Y}}^{\text{o}} - T \Delta S_{\text{Me}_{X}\text{O}_{Y}}^{\text{o}}, \qquad (5.18)$$

а уравнение температурной зависимости $\Delta G_{(3.2)}^{\circ}$ имеет вид (5.13), получаем уравнение для расчета температуры начала восстановления оксида в присутствии твердого углерода:

$$T_{\text{H.B.}} = \frac{\Delta H_{(3.2)}^{\circ} - \Delta H_{(\text{Me}_{X}\text{O}_{Y})}^{\circ}}{\Delta S_{(3.2)}^{\circ} - \Delta S_{(\text{Me}_{X}\text{O}_{Y})}^{\circ} + 2R \left(\frac{1}{Y} \ln a_{(\text{Me}_{X}\text{O}_{Y})} - \frac{X}{Y} \ln a_{(\text{Me})} - \ln P\right)}.$$
 (5.19)

5.2 Примеры решения задач

Задача **5.2.1.** Для реакции восстановления твердого оксида никеля водородом определить значение константы равновесия для температуры 1200 К и равновесное содержание водорода в газовой фазе.

$$T=1200~{
m K}$$
 $Pешение$ NiO, H_2 Запишем уравнение протекающей реакции: $K_P, (\%H_2)-?$ $NiO_{(T)}+H_{2(\Gamma)}=Ni_{(T)}+H_2O_{(\Gamma)}.$ (5.20)

Для проведения необходимых расчетов необходимо знать температурную зависимость $\Delta G_{(5.20)}^{\circ}$. Однако в приложении А необходимые данные отсутствуют. Они могут быть получены комбинированием термодинамических параметров для реакций горения водорода и окисления никеля:

$$2H_2 + O_2 = 2H_2O$$
 (5.21)

_

$$2Ni + O_2 = 2NiO$$

$$2(H_2 + NiO = Ni + H_2O).$$
(5.22)

Из последней записи следует, что

$$\Delta G_{(5.20)}^{\circ} = \frac{1}{2} \cdot (\Delta G_{(5.16)}^{\circ} - \Delta G_{(5.17)}^{\circ}). \tag{5.23}$$

Из приложения А находим:

$$\Delta G_{(5.16)}^{\circ} = -493038 + 108,40 \cdot T$$
 Дж/моль,

$$\Delta G_{(5.17)}^{\circ} = -469006 + 217,54 \cdot T$$
 Дж/моль,

откуда следует, что

$$\Delta G_{(5.20)}^{\circ} = -12016 + 54,57 \cdot T \, \text{Дж/моль}.$$
 (5.24)

При температуре 1200 К $\Delta G_{(5.20)}^{\circ} = -77500$ Дж/моль. Используя это значение, рассчитаем значение константы равновесия реакции:

$$lnK_P = -\frac{\Delta G^{\circ}}{R \cdot T} = \frac{77500}{8.31 \cdot 1200} = 7,77;$$

$$K_P = 2373$$
.

Выражение для константы равновесия реакции (5.15) при условии, что никель и его оксид существуют в виде чистых фаз и их активности равны единице, примет вид

$$K_P = \frac{P_{\text{H}_2\text{O}}}{P_{\text{H}_2}} = \frac{100 - x}{x},$$

откуда находим содержание водорода

$$(\%H_2) = x = \frac{100}{K_P + 1} = \frac{100}{2373 + 1} = 0.04\%.$$

Задача 5.2.2. Определить температуру начала восстановления вюстита твердым углеродом, если $a_{\rm Fe} = 1$, $a_{\rm FeO} = 0.02$ и общее давление в системе 0.1 атм.

$$a_{\mathrm{Fe}} = 1$$
 $a_{\mathrm{FeO}} = 0{,}02$ $P = 0{,}1$ атм. Для решения этой задачи необходимо знать $T_{\mathrm{H.B}} - ?$ температурную зависимость ΔG° реакций $2 \mathrm{Fe}_{(\mathrm{T})} + \mathrm{O}_{2\,(\mathrm{\Gamma})} = 2 \mathrm{FeO}_{(\mathrm{T})}$ (5.25) и $2 \mathrm{C}_{(\mathrm{T})} + \mathrm{O}_{2\,(\mathrm{\Gamma})} = 2 \mathrm{CO}_{(\mathrm{T})}$.

Заимствуем их из приложения А:

$$\Delta \, G_{(5.25)}^{\circ} = -524774 + 127, 12 \cdot T$$
, Дж/моль;

$$\Delta G_{(5.26)}^{\circ} = -221120 + 179,75 \cdot T$$
, Дж/моль.

Подставляем необходимые значения термодинамических параметров в выражение (5.19) и находим значение температуры начала восстановления:

$$T_{\text{H.B}} = \frac{-221120 + 524774}{127,12 + 179,75 + 2 \cdot 8,31 \cdot (ln0,02 - ln0,1)} = 1084 \text{ K}.$$

5.3. Задачи для самостоятельного решения

Задача 5.3.1. Определить значение константы равновесия и равновесное содержание СО в газовой фазе для реакции восстановления оксида металла монооксидом углерода при температуре Т (таблица 5.1).

Таблица 5.1

Номер задачи	MeO	<i>T</i> , K
5.3.1.1	NiO	1300
5.3.1.2	NiO	1500
5.3.1.3	NiO	1700
5.3.1.4	FeO	900
5.3.1.5	FeO	1200
5.3.1.6	FeO	1500

Задача 5.3.2. Определить значение температуры, при которой реакция восстановления оксида металла газом-восстановителем находится в равновесии, при заданном соотношении парциальных давлений газавосстановителя и его окисленной формы $P_{\rm BO}/P_{\rm B}$ (таблица 5.2).

Таблица 5.2

Номер задачи	Газ-восстановитель	MeO	$P_{ m BO}/P_{ m B}$
5.3.2.1	H_2	PbO	15 000
5.3.2.2	H_2	PbO	12 000
5.3.2.3	H_2	PbO	11 000
5.3.2.4	СО	CuO	10^{5}
5.3.2.5	СО	CuO	$1,5\cdot 10^5$
5.3.2.6	СО	CuO	$2,0.10^5$

Задача 5.3.3. Определить температуру начала восстановления оксида металла, когда его активность $a_{\rm Me_XO_Y}$, активность металла $a_{\rm Me}$, давление в системе P, в присутствии твердого углерода (таблица 5.3).

Таблица 5.3

Номер	Me _X O _Y	an and an	a.	Р, атм.
задачи	WicxOy	$a_{ m MeXOY}$	$a_{ m Me}$	I, aim.
5.3.3.1	Cr ₂ O ₃	0,5	0,2	2,0
5.3.3.2	Cr ₂ O ₃	0,6	0,3	3,0
5.3.3.3	Cr ₂ O ₃	0,7	0,4	2,5
5.3.3.4	MnO	0,5	0,3	2,0
5.3.3.5	MnO	0,6	0,4	2,5
5.3.3.6	MnO	0,7	0,5	3,0

Задача 5.3.4 Определить температуру начала восстановления вюстита, активность которого равна a_{FeO} , при давлении в системе P и a_{Fe} =1, в присутствии твердого углерода (таблица 5.4).

Таблица 5.4

Номер задачи	$a_{ m FeO}$	Р, атм.
5.3.4.1	0,9	1,5
5.3.4.2	0,8	2,0
5.3.4.3	0,7	2,5
5.3.4.4	0,6	3,0
5.3.4.5	0,5	3,5
5.3.4.6	0,4	4,0

5.4 Вопросы для самостоятельного контроля знаний

- 1 Каково термодинамическое условие восстановления оксидов газом-восстановителем?
- 2 Какие факторы влияют на протекание процессов восстановления газом-восстановителем?
 - 3 В чем состоит принцип последовательных превращений?
- 4 В чем состоят особенности восстановления оксидов в присутствии твердого углерода?
 - 5 Что такое температура начала восстановления?

- 6 Какими способами может быть рассчитана температура начала восстановления? Дайте их графическую интерпретацию.
- 7 Какие факторы влияют на значение температуры начала восстановления? Каким образом?
- 8 Выведите аналитическое уравнение для расчета температуры начала восстановления оксида в присутствии твердого углерода.

6 Практическое занятие 6 СВОЙСТВА СЛОЖНЫХ МЕТАЛЛИЧЕСКИХ СПЛАВОВ И ОКСИДНЫХ РАСПЛАВОВ

6.1 Общие сведения

Большинство реакций в процессах производства металлов происходит при участии веществ, растворенных в расплавах. Основной характеристикой находящегося в растворе компонента является его концентрация. Концентрации компонентов в растворе обычно выражаются в процентах по массе [%i] или в мольных долях x_i . Пересчет состава раствора, выраженного в процентах по массе, на мольные доли компонентов может выть проведен по уравнению

$$x_{i} = \frac{[\% i] \cdot M_{i}^{-1}}{\sum_{i=1}^{n} [\% i] \cdot M_{i}^{-1}},$$
(6.1)

где M_i – атомные или молекулярные массы компонентов; n – число компонентов раствора.

Описание свойств реальных растворов обычно проводится в сравнении со свойствами идеальных растворов. В термодинамике растворов идеальным называют раствор, теплота смешения и изменение объема при образовании которого равны нулю. Идеальные растворы использует в качестве стандарта, с которым сравниваются реальные растворы.

В настоящее время наиболее распространенным методом математического представления термодинамических функций реальных растворов является метод активностей. Он состоит в использовании активности a_i и коэффициента активности γ_i в качестве исходных величин для выражения остальных термодинамических функций раствора.

Активность является сложной функцией концентрации определяется как отношение летучести компонента в растворе к его летучести в стандартном состоянии. Степень несовпадения активности с концентрацией В количественной форме выражается величиной коэффициента активности, который представляет собой отношение активности компонента раствора к его концентрации:

$$\gamma_{i} = \frac{a_{i}}{x_{i}}. \tag{6.2}$$

Численное значение активности связано с условием выбора стандартного состояния. Выбор стандартного состояния может быть различным для растворов различных типов.

Если в качестве стандартного состояния выбирают чистое вещество при температуре опыта, активность характеризует степень отклонения системы от закона Рауля:

$$a_{\rm i} = \frac{P_{\rm i}}{P_{\rm i}^{\circ}},\tag{6.3}$$

где $P_{\rm i}$ – давление насыщенного пара компонента i над раствором с концентрацией i, равной $x_{\rm i}$;

 $P_{\rm i}^{\circ}$ — давление насыщенного пара компонента i над чистым веществом i при той же температуре.

Для идеальных растворов $\gamma_i = 1$ и $a_i = x_i$. В случае отрицательных отклонений от закона Рауля $\gamma_i < 1$. Для положительных отклонений от закона Рауля $\gamma_i > 1$.

Применительно к растворам различных компонентов в металлах мы обычно имеем дело с разбавленными растворами этих компонентов.

Поведение растворенного вещества в разбавленном растворе описывается законом Генри:

$$P_{i} = \mathbf{k} \cdot \mathbf{x}_{i}, \tag{6.4}$$

где k – постоянная Генри.

Отклонение от закона Генри характеризуется коэффициентом активности f_i :

$$P_{i} = k a_{i} = k f_{i} x_{i}. \tag{6.5}$$

Такое обозначение для коэффициента активности веществ в разбавленных растворах введено для того, чтобы отличить коэффициент активности, показывающий отклонение от закона Генри, от коэффициента активности γ_i , показывающего отклонение от закона Рауля. Поскольку в разбавленном растворе мольная доля растворенного компонента пропорциональна его массовому проценту, удобным для 1% практических расчетов является использование стандартного состояния. В разбавленных растворах активность растворенного компонента по отношению к этому стандартному состоянию становится равной концентрации, выраженной в процентах по массе:

$$a_{i[1\%]} = f_i [\% i].$$
 (6.6)

Активность компонента B в сложном растворе, где A является растворителем, обычно изменяется при добавлении в расплав других компонентов (C, D и т.д.). В сложном растворе коэффициент активности $f_{\rm B}$ будет зависеть от природы и концентрации других компонентов раствора:

$$lnf_{\rm B} = F(x_{\rm B}, x_{\rm C}, x_{\rm D}, ..., x_{\rm i}).$$
 (6.7)

Параметры взаимодействия первого порядка показывают влияние добавляемых компонентов (C, D, и т.д.) на коэффициент активности рассматриваемого компонента В. Параметры взаимодействия второго порядка показывают характер изменения параметров взаимодействия

первого порядка под влиянием увеличения концентрации других компонентов в расплаве.

При принятии в качестве стандартного состояния однопроцентного раствора компонента i в расплаве и использовании десятичных логарифмов вместо натуральных, выражение (6.7) примет вид:

$$lgf_{i} = \sum_{j=2}^{n} e_{i}^{j} [\% j] + \sum_{j=2}^{n} r_{i}^{j} [\% j]^{2} + \sum_{j=2}^{n} \sum_{k=2}^{n} r_{i}^{j,k} [\% j] [\% k],$$
(6.8)

где $e_{\rm i}^{\rm j}$ – параметр взаимодействия первого порядка;

 $r_{\rm i}^{\,\rm j},\; r_{\rm i}^{\,\rm j,k}$ – параметры взаимодействия второго порядка.

При невысоких концентрациях растворенных компонентов слагаемыми, включающими параметры взаимодействия второго порядка, можно пренебречь. Тогда выражение (3.8) упрощается:

$$lgf_{\rm B} = e_{\rm B}^{\rm B}[\%{\rm B}] + e_{\rm B}^{\rm C}[\%{\rm C}] + e_{\rm B}^{\rm D}[\%{\rm D}] = \sum_{j=2}^{\rm n} e_{\rm i}^{j} [\% j].$$
 (6.9)

Параметры взаимодействия $e_{\rm i}^{\rm j}$ зависят от температуры расплава. Эта зависимость имеет общий вид

$$e_{\rm i}^{\rm j} = \frac{\rm A}{T} + {\rm B} \,.$$
 (6.10)

Значения коэффициентов A и B для некоторых параметров взаимодействия приведены в приложении Б.

Одной из важнейших теплофизических характеристик сплавов является температурный интервал кристаллизации, равный разности температуры ликвидуса $T_{\rm L}$ и температуры солидуса $T_{\rm S}$. В большинстве случаев эти величины определяются методом термического анализа. Однако для многих сплавов значения $T_{\rm L}$ и $T_{\rm S}$ отсутствуют в справочной литературе.

Для расчета температур ликвидуса и солидуса сплавов на основе железа используют простой метод, основанный на приближении

аддитивного влияния содержащихся в расплаве примесей на температуру плавления чистого железа:

$$T_{\rm L} = T_{\rm \Pi \Pi \, (Fe)} - \sum_{i} a_{\rm L_i} [\% i];$$
 (6.11)

$$T_{\rm S} = T_{\rm \PiJI \, (Fe)} - \sum_{\rm i} a_{\rm S_i} [\% i],$$
 (6.12)

где $T_{\Pi \Pi \text{ (Fe)}}$ – температура плавления чистого железа;

 $a_{\rm L_i}$, $a_{\rm S_i}$ — коэффициенты, показывающие, на сколько градусов изменяется температура ликвидуса и солидуса сплава при добавлении 1% i-го компонента.

Значения $a_{\rm L_i}$ и $a_{\rm S_i}$ находят по диаграммам состояния двойных систем. Уравнения (6.11) и (6.12) позволяют оценить $T_{\rm L}$ и $T_{\rm S}$ разбавленных растворов на основе железа с точностью до 5 К. Значения параметра приведены в приложении В.

В настоящее время металлургия производит значительное количество марок стали с регулируемым содержанием газов. В связи с этим важным является теоретически предвидеть их растворимость в металлических расплавах в зависимости от состава, температуры и парциального давления газа.

Процесс растворения азота в жидком железе обычно представляют уравнением реакции

$$\frac{1}{2}N_{2(\Gamma)} = [N], \tag{6.13}$$

константа равновесия которой зависит от температуры:

$$lg K_N = lg \frac{a_N}{P_{N_2}^{0.5}} = -\frac{364}{T} - 1,144.$$
 (6.14)

Активность азота в расплаве может быть представлена как произведение растворимости в жидком металле [%N] (масс. %) и коэффициента активности азота f_N :

$$a_{\rm N} = [\% N] f_{\rm N}.$$
 (6.15)

Комбинируя выражения (6.2) и (6.3), получим:

$$lg [\%N] = lgK_N - lg f_N + 0.5lg P_{N_2}.$$

Выплавляемые стали и сплавы содержат легирующие элементы, существенно влияющие на поведение азота. Их влияние проявляется через значение коэффициента активности азота в расплаве, который может быть рассчитан с привлечением параметров взаимодействия азота с компонентами металлического расплава (приложение Б).

При небольших концентрациях легирующих элементов, когда зависимость lgf_i от содержания примесей практически прямолинейная, расчеты можно делать с использованием только параметров взаимодействия первого порядка. Тогда выражение (6.8) примет вид:

$$lgf_{N} = \sum_{i=2}^{n} e_{N}^{i} [\% i].$$
 (6.16)

При высоких концентрациях легирующих элементов это может привести к значительным погрешностям, и для более точного определения коэффициента активности азота $f_{\rm N}$ требуется учет параметров взаимодействия второго порядка.

Шлаки выполняют важные и разнообразные функции в высокотемпературных металлургических процессах. Под шлаком понимают расплав различных оксидов. Металлургические шлаки имеют в своем составе следующие оксиды: FeO, MnO, CaO, MgO, SiO₂, Cr₂O₃, Al_2O_3 , P_2O_5 и др.

Расчет активностей компонентов шлаковых расплавов проводят на основании двух модельных представлений о строении шлакового расплава, получивших название молекулярной и ионной теории расплавленных шлаков.

Согласно молекулярной теории шлак состоит из молекул свободных оксидов и соединений между оксидами различной химической природы (силикаты, ферриты, фосфаты). Химические соединения частично диссоциированы. В реакциях с металлом принимают участие только свободные оксиды. Поэтому мольная доля этих оксидов принимается равной их активности в шлаковом расплаве.

Более обоснованной является ионная теория строения шлаковых расплавов, в соответствии с которой шлак в расплавленном состоянии представляет собой ионный раствор. Расплавленные шлаки представляют собой реальные растворы, показывающие значительные отклонения от идеальности. Поэтому для количественных расчетов равновесий с участием жидких шлаков нужно знать активность компонентов шлакового расплава. Для учета взаимодействия между компонентами шлакового расплава предложены различные модели, учитывающие состав, форму, размеры и заряд отдельных частиц и энергии связи между ними.

Разработанная В.А.Кожеуровым статистическая теория регулярных ионных растворов основана на предположении о полной диссоциации ионы. Расплавленный компонентов шлака на одноатомные рассматривается как система, состоящая из отдельных некислородных одноатомных частиц катионов, которые окружены анионами кислорода. Между действуют катионами И анионами СИЛЫ межчастичного взаимодействия.

Свободная энергия 1 моля смеси из k компонентов выражается уравнением

$$G = \sum_{i=1}^{k} x_i G_i + R T \sum_{i=1}^{k} x_i \ln x_i + \sum_{i=1}^{k-1} \sum_{j=i+1}^{k} x_i x_j Q_{ij},$$
 (6.17)

где G – свободная энергия чистого компонента i;

 $Q_{\rm ij}$ – энергия смешения компонентов i и j , $Q_{\rm ij}$ = $Q_{\rm ji}$;

 x_{i} — ионная доля компонента шлака i.

Последняя величина может быть рассчитана по выражению

$$x_{\mathbf{i}} = \frac{v_{\mathbf{i}} n_{\mathbf{i}}}{\sum_{\mathbf{i}} v_{\mathbf{i}} n_{\mathbf{i}}},\tag{6.18}$$

где $n_{\rm i} = \frac{[\% i]}{{
m M}_{
m i}}$ — число молей i-го компонента;

 M_{i} — молекулярная масса *i*-го компонента;

[%i] — содержание компонента i в шлаке в мас.%;

 $v_{\rm i}$ — число катионов в молекуле компонента.

Умножая уравнение (6.17) на общее число катионов в данном количестве раствора, т.е. на $\sum\limits_{i=1}^k v_i\,n_i$, получаем выражение для полной свободной энергии раствора

$$G' = G \sum_{i=1}^{k} v_i \, n_i \,. \tag{6.19}$$

Дифференцируя G' по числу молей компонента ℓ , получим химический потенциал μ_ℓ компонента ℓ :

$$\frac{\partial G'}{\partial n_{\ell}} = \mu_{\ell} = \nu_{\ell} \left[G_{\ell} + R T \ln x_{\ell} + \sum_{i=1}^{\ell-1} x_{i} Q_{i\ell} + \sum_{i=\ell+1}^{k} x_{i} Q_{\ell i} - \sum_{i=1}^{k-1} \sum_{j=i+1}^{k} x_{i} x_{j} Q_{ij} \right].$$
 (6.20)

С другой стороны,

$$\mu_{\ell} = \nu_{\ell} (G_{\ell} + R T \ln x_{\ell} + R T \ln \gamma_{\ell}). \tag{6.21}$$

Сравнивая выражения (6.20) и (6.21), получим выражение для коэффициента активности γ_{ℓ} компонента:

$$R T \ln \gamma_{\ell} = \sum_{i=1}^{\ell-1} x_{i} Q_{i\ell} + \sum_{i=\ell+1}^{k} x_{i} Q_{\ell i} - \sum_{i=1}^{k-1} \sum_{j=i+1}^{k} x_{i} x_{j} Q_{ij}.$$
 (6.22)

Обозначим ионные доли катионов, входящих в состав оксидов шестикомпонентного шлакового расплава, через $x_1, x_2, ..., x_6$ (таблица 6.1).

Таблица 6.1

Компоненты	FeO	MnO	CaO	MgO	SiO ₂	P_2O_5
шлака	100	WIIIO	Cao	Wigo	5102	1 205
Ионные доли	Y.	ν.	ν.	ν.	ν-	ν.
катионов	x_1	x_2	x_3	x_4	x_5	x_6

Последний член уравнения (6.22) запишем в развернутом виде:

$$\sum_{i=1}^{k-1} \sum_{j=i+1}^{k} x_i x_j Q_{ij} = x_1 x_2 Q_{12} + x_1 x_3 Q_{13} + x_1 x_4 Q_{14} + x_1 x_5 Q_{15} + x_1 x_6 Q_{16} + x_2 x_3 Q_{23} + x_2 x_5 Q_{25} + x_2 x_6 Q_{26} + x_3 x_4 Q_{34} + x_3 x_5 Q_{35} + x_3 x_6 Q_{36} + x_4 x_5 Q_{45} + x_4 x_6 Q_{46} + x_6 x_5 Q_{56}.$$

$$(6.23)$$

Принято, что:

$$Q_{25} = -41900$$
 Дж,

$$Q_{36} = -201000$$
 Дж,

$$Q_{35} = Q_{45} = -113000$$
 Дж.

Остальные $Q_{ij} = 0$. Тогда уравнение (6.23) примет вид:

$$\sum_{i=1}^{k-1} \sum_{j=i+1}^{k} x_i x_j Q_{ij} = x_2 x_5 Q_{25} + x_3 x_5 Q_{35} + x_3 x_6 Q_{36} + x_4 x_5 Q_{45}.$$
 (6.24)

В этом случае уравнение (6.22) будет иметь вид:

для $\ell = 1 -$

$$R T \ln \gamma_1 = -x_2 x_5 Q_{25} - x_3 x_5 Q_{35} - x_3 x_6 Q_{36} - x_4 x_5 Q_{45};$$
 (6.25)

для $\ell = 2$ —

$$R T \ln \gamma_2 = x_5 Q_{25} + R T \ln \gamma_1;$$
 (6.26)

для $\ell = 3$ —

$$R T \ln \gamma_3 = x_5 Q_{35} + x_6 Q_{36} + R T \ln \gamma_1; \qquad (6.27)$$

для $\ell = 4$ —

$$R T \ln \gamma_4 = x_5 Q_{45} + R T \ln \gamma_1;$$
 (6.28)

для $\ell = 5$ —

$$R T \ln \gamma_5 = x_5 Q_{25} + x_5 Q_{35} + x_4 Q_{45} + R T \ln \gamma_1; \qquad (6.29)$$

для $\ell = 6$ —

$$R T \ln \gamma_6 = x_6 Q_{36} + R T \ln \gamma_1.$$
 (6.30)

Все выведенные уравнения (6.24)...(6.30) относятся к сильно основным шлакам. Они достаточно хорошо согласуются с экспериментальными данными. Поскольку сделано допущение о существовании в шлаковом расплаве анионов только одного сорта (O^{2-}) , ионная доля анионов кислорода будет равна единице. Активности компонентов шлака определяются по найденным значением γ_i и x_i :

$$a_i = (\gamma_i x_i)^{v_i}$$
. (6.31)

Процесс перехода кислорода из шлака в металл можно представить уравнением реакции

$$(FeO) = [Fe] + [O].$$
 (6.32)

Коэффициент распределения кислорода между металлом и шлаком представляет собой отношение

$$L_{\rm O} = -\frac{a_{\rm [O]}}{a_{\rm (FeO)}},$$
 (6.33)

где $a_{[O]}$ – активность кислорода в металле;

 $a_{
m (FeO)}$ – активность FeO в шлаке.

Для разбавленных растворов кислорода в железе можно принять $a_{\rm [O]}$ = [%O].

Зависимость максимальной растворимости кислорода в чистом железе от температуры определяется уравнением

$$lg [\%O]_{max} = -\frac{6320}{T} + 2,730.$$
 (6.34)

Исходя из выражений (6.25), (6.33) и (6.34), находим:

$$[\%O] = a_{(FeO)}[\%O]_{\text{max}} = x_1 \gamma_1 [\%O]_{\text{max}}.$$
 (6.35)

Равновесное распределение марганца между металлом и шлаком можно представить уравнением

$$(FeO) + [Mn] = (MnO) + [Fe].$$
 (6.36)

Константа равновесия реакции (6.36) –

$$K_{Mn} = \frac{a_{(MnO)}}{a_{(FeO)}[\%Mn]} = \frac{a_2}{a_1[\%Mn]},$$
 (6.37)

ее температурная зависимость -

$$lg K_{Mn} = \frac{6700}{T} - 3.12. (6.38)$$

Равновесное содержание марганца в процентах к массе определится по уравнению

$$[\%Mn] = \frac{a_2}{a_1 K_{Mn}} = \frac{x_2 \gamma_2}{x_1 \gamma_1 K_{Mn}}.$$
 (6.39)

Равновесное распределение фосфора между металлом и шлаком выразим уравнением

$$2 [P] + 5 (FeO) = (P_2O_5) + 5 [Fe].$$
 (6.40)

Константа равновесия реакции –

$$K_{P} = \frac{a_{(P_{2}O_{5})}}{a_{(FeO)}^{5}[\%P]^{2}} = \frac{a_{6}}{a_{1}^{5}[\%P]^{2}},$$
 (6.41)

где $a_6 = (x_6 \gamma_6)^{\text{v}} = (x_6 \gamma_6)^2$. Отсюда

$$[\%P] = \frac{x_6 \gamma_6}{\frac{5}{2} \frac{1}{2}}.$$

$$(x_1 \gamma_1)^{\frac{1}{2}} K_P^{\frac{1}{2}}$$
(6.42)

Значение K_P , по данным В.А.Кожеурова, для интервала температур 1550...1710°С изменяется незначительно, а ее среднее значение для данного интервала температур принимается постоянным: $K_P = 0.0229$.

Термодинамические расчеты равновесий для реакций между металлом и шлаком позволяют установить наиболее благоприятные условия для проведения металлургических процессов. В современных процессах получения чугуна и стали имеет место интенсивное перемешивание газа, металла и шлака, что приближает систему к

равновесию и тем самым повышает эффективность использования результатов подобных расчетов.

6.2 Примеры решения задач

Задача 6.2.1. Расплавленная сталь имеет состав, %: 0,40 C; 1,30 Cr; 4,50 Ni; 0,80 Mo. Рассчитать активность углерода в этом расплаве при T = 1600°C. Рассчитать температуру ликвидус этой стали.

$$[\%C] = 0.40$$

$$[\%Cr] = 1.30$$

$$[\%Ni] = 4.50$$

$$[\%Mo] = 0.80$$

$$T = 1873 \text{ K}$$

$$a_{C} - ?$$

$$T_{L} - ?$$

Решение

Активность углерода по отношению к 1%-ному стандартному состоянию

$$a_{C(1\%)} = f_C[\%C]$$

Найдем коэффициент активности углерода в в расплаве по уравнению (6.9). Для этого с помощью приложения Б найдем соответствующие параметры взаимодействия первого порядка:

$$e_{\rm C}^{\rm C} = \frac{158}{1873} + 0,0581 = 0,14;$$

$$e_{\rm C}^{\rm Cr} = -0,024;$$

$$e_{\rm C}^{\rm Ni} = 0,012;$$

$$e_{\rm C}^{\rm Mo} = -0,008.$$

Отсюда следует, что

$$lgf_{C} = e_{C}^{C} \cdot [\%C] + e_{C}^{Cr} \cdot [\%Cr] + e_{C}^{Ni} \cdot [\%Ni] + e_{C}^{Mo} \cdot [\%Mo] =$$

$$= 0.14 \cdot 0.40 - 0.024 \cdot 1.30 + 0.012 \cdot 4.50 - 0.008 \cdot 0.80 = 0.0722;$$

$$f_{\rm C} = 1,18;$$

$$a_{\rm C} = 1.18 \cdot 0.40 = 0.47$$
.

Температура ликвидує стали может быть рассчитана по уравнению (6.11). Воспользуемся приложением В для нахождения коэффициентов $a_{\rm L_i}$:

$$a_{L(C)} = 73 \text{ K};$$
 $a_{L(Cr)} = 1 \text{ K};$ $a_{L(Ni)} = 3.5 \text{ K};$ $a_{L(Mo)} = 3 \text{ K}.$

Температура ликвидус составит

$$T_{\rm L} = T_{\rm \PiJI (Fe)} - a_{\rm L(C)} \cdot [\%{\rm C}] - a_{\rm L(Cr)} \cdot [\%{\rm Cr}] - a_{\rm L(Ni)} \cdot [\%{\rm Ni}] - a_{\rm L(Mo)} \cdot [\%{\rm Mo}] =$$

$$= 1812 - 73 \cdot 0.40 - 1 \cdot 1.30 - 3.5 \cdot 4.50 - 3 \cdot 0.80 = 1763 \text{ K}.$$

Задача 6.2.2. Рассчитать растворимость азота в расплавленном железе, содержащем (масс. %): 0,15 C; 2,10 Cr; 3,00 Mn; 2,50 Мо при температуре 1600° C и при двух давлениях азота в газовой фазе над расплавом: P' = 0,2 атм. и P'' = 1 атм.

$$[\%C] = 0.15$$

 $[\%Cr] = 2.10$
 $[\%Mn] = 3.00$
 $[\%Mo] = 2.50$
 $T = 1873 \text{ K}$
 $P'_{N2} = 0.2 \text{ atm.}$
 $P''_{N2} = 1 \text{ atm}$
 $[\%N'] - ?$
 $[\%N''] - ?$

Решение

Расчет производим при помощи параметров взаимодействия. Из приложения Б находим значения параметров взаимодействия первого порядка в жидком железе $e_{\rm N}^{\rm X}$ при 1873 К:

$$e_{\rm N}^{\rm C} = 0.13$$
;

$$e_{\rm N}^{\rm Cr} = -\frac{164}{1873} + 0.0415 = -0.046;$$

$$e_{\rm N}^{\rm Mn} = -\frac{134}{1873} + 0.03 = -0.042;$$

$$e_{\rm N}^{\rm Mo} = -\frac{33.2}{1873} + 0.0064 = -0.011.$$

Далее по уравнению (6.16) находим

$$lgf_{N} = e_{N}^{C} \cdot [\%C] + e_{N}^{Cr} \cdot [\%Cr] + e_{N}^{Mn} \cdot [\%Mn] + e_{N}^{Mo} \cdot [\%Mo] =$$

$$= 0,13 \cdot 0,15 - 0,046 \cdot 2,10 + 0,042 \cdot 3,00 - 0,011 \cdot 2,50 = -0,2306.$$

Находим растворимость азота при заданной температуре и его давлениях в газовой фазе:

$$lg[\%N'] = -\frac{364}{T} - 1,144 + 0,5 \cdot lg \, 0,2 - lg \, f_{N} =$$

$$= -\frac{364}{1873} - 1,144 + 0,5 \cdot lg \, 0,2 - lg \, 0,2306 = -1,347;$$

$$[\%N'] = 0,045\%.$$

$$lg[\%N''] = -\frac{364}{T} - 1,144 + 0,5 \cdot lg \, 1,0 - lg \, f_{N} =$$

$$= -\frac{364}{1873} - 1,144 + 0,5 \cdot lg \, 1,0 - lg \, 0,2306 = -0,997;$$

$$[\%N''] = 0,101\%.$$

Понижение давления азота в газовой фазе приводит к уменьшению его растворимости в расплаве.

Задача 6.2.3. Рассчитать в рамках теории регулярных ионных растворов активности и коэффициенты активности компонентов

шлакового расплава, содержащего 68,10 % (масс.) Fe0, 2,47 % MnO, 16,0 % CaO, 6,04 % MgO, 6,52 % SiO₂, 0,85 P₂O₅, при температуре 1700 К.

$$(\% \text{FeO}) = 68,10$$

 $(\% \text{MnO}) = 2,47$
 $(\% \text{CaO}) = 16,0$
 $(\% \text{MgO}) = 6,04$
 $(\% \text{SiO}_2) = 6,52$
 $(\% \text{P}_2 \text{O}_5) = 0,85$
 $T = 1700 \text{ K}$
 $\gamma_{\ell} - ?$
 $a_{\ell} - ?$

Решение

Найдем молярную массу каждого компонента шлака (г/моль): $M_{FeO}=71,85;$ $M_{MnO}=70,49;$ $M_{CaO}=56,08;$ $M_{MgO}=30,41;$ $M_{SiO2}=60,09;$ $M_{P2O5}=141,95.$

Рассчитаем количество молей каждого компонента в 100 г шлака:

$$n_{\text{FeO}} = (\% \text{FeO}) / M_{\text{FeO}} = 68,10 / 71,85 = 0,948;$$

$$n_{\text{MnO}} = 0.035$$
; $n_{\text{CaO}} = 0.285$; $n_{\text{MgO}} = 0.150$; $n_{\text{SiO2}} = 0.109$; $n_{\text{P2O5}} = 0.006$.

С использованием формулы (6.18) рассчитаем ионные доли катионов в шлаковом расплаве:

$$x_{\text{FeO}} = 0.621$$
; $x_{\text{MnO}} = 0.023$; $x_{\text{CaO}} = 0.187$; $x_{\text{MgO}} = 0.098$; $x_{\text{SiO2}} = 0.071$; $x_{\text{P2O5}} = 0.008$.

Вычисляем по формулам (6.25)...(6.30) коэффициент активностей катионов при температуре 1700 К:

$$ln\gamma_{\text{FeO}} = 0.188$$
, $\gamma_{\text{FeO}} = 1.207$; $ln\gamma_{\text{MnO}} = -0.023$, $\gamma_{\text{MnO}} = 0.977$; $ln\gamma_{\text{CaO}} = -0.492$, $\gamma_{\text{CaO}} = 0.611$; $ln\gamma_{\text{MgO}} = -0.381$, $\gamma_{\text{MgO}} = 0.683$; $ln\gamma_{\text{SiO2}} = -2.159$, $\gamma_{\text{SiO2}} = 0.115$; $ln\gamma_{\text{P2O5}} = -1.208$, $\gamma_{\text{P2O5}} = 0.299$.

С использованием выражения (6.31) находим активности компонентов шлака:

$$a_{\text{FeO}} = 0.745$$
; $a_{\text{MnO}} = 0.022$; $a_{\text{CaO}} = 0.114$; $a_{\text{MgO}} = 0.067$; $a_{\text{SiO2}} = 0.008$; $a_{\text{P2O5}} = 6.10^{-6}$.

6.3 Задачи для самостоятельного решения

Задача 6.3.1. Рассчитать значения коэффициента активности и активности углерода в многокомпонентном расплаве на основе железа указанного в таблице 6.2 состава для температуры *Т.* Рассчитать температурный интервал кристаллизации для этого сплава.

Таблица 6.2

Номер		Состав сплава, %					
варианта	Cr	Ni	Mo	Si	Mn	V	
6.3.1.1	2,0	4,0		0,5	0,8		
6.3.1.2	1,3		0,8	0,9	1,5		
6.3.1.3	1,4			0,4	0,5		
6.3.1.4	1,2	0,8	1,0	0,3	0,4		
6.3.1.5	19,0	9,0		2,0	0,5	2,0	
6.3.1.6				2,1	0,6	0,2	
6.3.1.7	18,0	6,0		0,3	0,2	_	
6.3.1.8	25,0			0,3	0,4	_	
6.3.1.9	19,0	11,0	3,0	0,2	0,3	0,3	
6.3.1.10	20,0	14,0	_	2,2	0,4	_	
6.3.1.11	17,0	4,0		0,3	9,0	0,3	
6.3.1.12	16,0	3,0	1,2	0,3	0,5	0,2	
6.3.1.13	17,0	2,0		0,4	0,6		
6.3.1.14	23,0	18,0	2,0	0,3	0,5	0,3	
6.3.1.15	22,0	6,0		0,4	0,6		
6.3.1.16	4,0		0,5	0,7	0,3	2,0	
6.3.1.17	5,0	5,0	_	0,6	0,3	_	
6.3.1.18	6,0		1,1	0,8	0,4		
6.3.1.19		4,0	1,5	0,9	0,4	0,2	
6.3.1.20	7,0		1,0	1,0	0,6	0,3	
6.3.1.21	8,0	0,5		1,2	0,6		
6.3.1.22		1,0	2,0	0,3	1,0		
6.3.1.23	9,0	7,0	0,6	0,4	1,0	0,3	

Задача 6.3.2. Рассчитать значение коэффициента активности азота и его растворимость в многокомпонентном расплаве на основе железа указанного в таблице 6.3 состава для температуры T и парциальных давлений азота $P_{\rm N_2}$ и $P_{\rm N_2}$ +1 атм.

Таблица 6.3

Номер	% Cr	% Ni		$P_{\mathrm{N}_{2}}$, атм.	T V
варианта	% CI	70 INI	% Mn	1_{N_2} , arm.	<i>T</i> , K
6.3.2.1	24,5	16,5	6,0	1,0	1680
6.3.2.2	20,3	5,5	6,8	0,8	1700
6.3.2.3	17,0	4,0	9,3	1,5	1720
6.3.2.4	21,0	4,0	9,0	2,0	1740
6.3.2.5	24,5	1,0	6,0	0,5	1760
6.3.2.6	17,0	5,0	1,0	1,0	1780
6.3.2.7	21,0	10,0	2,0	0,8	1800
6.3.2.8	20,3	20,0	4,0	1,5	1820
6.3.2.9	17,0	2,5	8,0	2,0	1840
6.3.2.10	24,5	16,5	10,0	0,5	1860
6.3.2.11	20,3	5,5	6,0	1,0	1880
6.3.2.12	21,0	4,0	9,0	0,8	1900
6.3.2.13	24,5	1,0	1,0	1,5	1920
6.3.2.14	17,0	5,0	2,0	2,0	1940
6.3.2.15	21,0	10,0	4,0	0,5	1960
6.3.2.16	20,3	20,0	8,0	1,0	1980
6.3.2.17	24,5	2,5	10,0	0,8	2000
6.3.2.18	21,0	16,5	6,0	1,5	2020
6.3.2.19	17,0	4,0	9,0	2,0	2040
6.3.2.20	20,3	1,0	1,0	0,5	2060

Задача 6.3.3. Рассчитать температурные зависимости активности и коэффициентов активности компонентов шестикомпонентного шлакового расплава (таблица 6.4). Расчет произвести для указанного интервала температур с шагом в 500К.

Таблица 6.4

Вариант	FeO	MnO	CaO	MgO	SiO ₂	P_2O_5	Температурный интервал, К
1	68,10	2,47	16,0	6,04	6,52	0,85	15001700
2	67,78	3,09	17,78	4,71	5,73	0,90	15051705
3	59,54	2,83	19,99	6,35	10,49	0,96	15101710
4	71,84	2,18	13,83	5,71	5,76	0,69	15151715
5	59,97	2,90	20,44	7,10	8,77	0,83	15201720
6	50,00	3,19	24,10	6,98	14,75	0,98	15251725
7	56,18	2,28	15,86	9,60	15,70	0,50	15301730
8	7,12	5,39	38,24	15,77	32,84	0,64	15351735
9	24,40	1,12	39,41	8,98	24,96	1,14	15401740
10	0,67	6,84	36,11	14,97	33,04	1,37	15451745
11	17,53	3,70	25,79	22,58	29,40	1,03	15501750
12	23,00	1,18	34,34	11,45	28,92	1,09	15001700
13	32,16	1,10	32,25	9,46	24,48	0,55	15551755
14	26,42	2,25	37,93	8,26	24,10	1,04	15601760
15	17,79	1,18	40,01	10,19	29,98	0,85	15651765
16	61,00	2,35	18,64	8,25	8,77	0,99	15701770
17	21,82	1,18	35,00	11,54	29,98	0,48	15751775
18	10,69	6,81	32,59	16,52	32,27	1,12	15801780
19	26,19	3,32	39,41	8,98	20,96	1,14	15851785
20	30,12	3,54	35,4	6,52	16,50	0,92	15901790
21	30,39	8,54	25,75	9,44	25,40	0,48	15951795
22	35,00	8,20	24,80	10,50	20,50	1,00	16001800
23	40,00	8,00	25,60	10,00	15,50	0,90	15501750
24	45,00	7,50	14,60	11,00	10,00	0,90	15551755
25	50,00	7,00	15,00	12,00	15,00	1,00	15601760

6.3 Вопросы для самостоятельного контроля знаний

1 Что такое окислительное рафинирование металлов?

- 2 Охарактеризуйте распределение кислорода между металлом и шлаком.
- 3 Какие факторы влияют на растворимость кислорода в жидких металлах и сложных растворах?
- 4 Термодинамические основы реакции окисления углерода в кислородосодержащем железе.
- 5 Охарактеризуйте распределение кремния между расплавами железа и оксидными расплавами.
- 6 Охарактеризуйте распределение марганца между расплавами железа и оксидными расплавами.
- 7 Охарактеризуйте распределение фосфора между расплавами железа и оксидными расплавами.
- 8 Охарактеризуйте распределение серы между расплавами железа и оксидными расплавами.
- 9 Какие реакции определяют межфазное распределение кислорода, марганца и фосфора?
- 10 Какие факторы влияют на межфазное распределение примесей при окислительном рафинировании?
- 11 Кинетические закономерности реакции обезуглероживания железа.
 - 12 Что такое осаждающее и диффузионное раскисление стали?
- 13 Каким термодинамическим и кинетическим закономерностям подчиняется растворение азота в металлах и сплавах?
- 14 Каким термодинамическим и кинетическим закономерностям подчиняется растворение водорода в металлах и сплавах?
- 15 Термодинамические и кинетические закономерности дегазации металла.
- 16 Сформулируйте основные положения молекулярной теории строения шлаков
 - 17 Как рассчитать ионную долю катиона компонента шлака?
 - 18 Чему равна мольная доля анионов кислорода?
- 19 Сформулируйте основные положения теории совершенных ионных растворов и теории регулярных ионных растворов.

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

- **Борнацкий, И.И.** Теория металлургических процессов И.И. Борнацкий. Киев ; Донецк : Выща школа, 1978. 287 с.
- **Казачков, Е. А.** Расчеты по теории металлургических процессов: учеб. пособие для вузов / Е.А. Казачков. М. : Металлургия, 1988. 288 с. ISBN 5-220-00047-3.
- **Киреев, В. А.** Методы практических расчетов в термодинамике химических реакций / В.А. Киреев. М.: Химия, 1970. 520 с.
- **Кубашевский, О.** Металлургическая термохимия : пер. с англ. / О. Кубашевский, С.Б. Олкокк. М. : Металлургия, 1982. 390 с.
- **Морачевский, А. Г.** Термодинамические расчеты в металлургии : справочник/ А.Г. Морачевский, И.Б. Сладков. М. : Металлургия, 1985. 137 с.
- **Рыжонков**, Д. И. Расчеты металлургических процессов на ЭВМ : учеб. пособие для вузов / Д.И. Рыжонков, С.Н. Падерин, Г.В. Серов, Л.К. Жидкова. М. : Металлургия, 1987. 231 с.
- **Рыжонков**, Д. И. Теория металлургических процессов : учебник для вузов / Д.И.Рыжонков, П.П.Арсеньев, В.В.Яковлев, Л.А. Пронин, М.Г. Крашенинников, Н.Н. Дроздов. М. : Металлургия, 1989. 392 с.
- **Сабирзянов, Т. Г.** Термодинамика металлургических реакций : учеб. пособие / Т.Г. Сабирзянов. К. : УМК ВО, 1990. 56 с. ISBN 5-7763-0282-X.
- **Турчанин, М. А.** Методическое пособие к выполнению самостоятельной работы и изучению дисциплины "Теория и технология металлургического производства" для студентов специальности 7.090403. Ч.1. Теория металлургического производства / М.А. Турчанин, А.Р. Абдулов. Краматорск : ДГМА, 2006. 48 с. ISBN 966-379-088-1.
- **Чернега,** Д. Ф. Основи металургійного виробництва металів та сплавів : підручник / Д.Ф. Чернега, В.С. Богушанський, Ю.Я. Говтянський та. ін. ; за ред. Д.Ф. Чернеги, Ю.Я. Говтянського. К. : Вища школа, 2006. 503 с. ISBN 966-642-310-3

Приложение А

Tаблица A.1- Изменение энергии Γ иббса для реакций, протекающих в стандартных состояниях

Реакция	$\Delta G^{ m o}$, Дж/моль	Температурный
200 + 0 200	5((207 + 175 A7 T	интервал, К
$2CO + O_2 = 2CO_2$	$-566307 + 175,47 \cdot T$	7732273
$2H_2 + O_2 = 2H_2O$	$-493038 + 108,40 \cdot T$	4003000
$2C_{(T)} + O_2 = 2CO$	$-221120 - 179,75 \cdot T$	7732273
$C_{(T)} + O_2 = CO_2$	$-393260 - 2,29 \cdot T$	7732273
$C_{(T)} + CO_2 = 2CO$	$172130 - 177,46 \cdot T$	7732273
$H_2O + CO = H_2 + CO_2$	$-36600 + 33,50 \cdot T$	7732273
$CaCO_{3 (T)} = CaO_{(T)} + CO_2$	170577 – 144,19· <i>T</i>	9731473
$BaCO_{3(T)} = BaO_{(T)} + CO_2$	250915 – 147,17· <i>T</i>	10731333
$MgCO_{3 (T)} = MgO_{(T)} + CO_2$	$110825 - 120,16 \cdot T$	2981000
$2Fe_{\alpha} + O_2 = 2FeO_{(T)}$	$-524774 + 127,12 \cdot T$	8431184
$2Fe_{\gamma} + O_2 = 2FeO_{(T)}$	$-526364 + 128,44 \cdot T$	11841650
$2Fe_{(\mathcal{K})} + O_2 = 2FeO_{(\mathcal{K})}$	$-457868 + 86,92 \cdot T$	18093000
$\frac{3}{2} \operatorname{Fe}_{(T)} + \operatorname{O}_2 = \frac{1}{2} \operatorname{Fe}_3 \operatorname{O}_{4 (T)}$	-552804 + 153,66·T	8431809
$\frac{4}{3} \operatorname{Fe}_{(T)} + \operatorname{O}_2 = \frac{2}{3} \operatorname{Fe}_2 \operatorname{O}_{3 (T)}$	-542916 + 165,88· <i>T</i>	2981809
$2Ni_{(T)} + O_2 = 2NiO_{(T)}$	$-469006 + 217,54 \cdot T$	2981725
$\frac{4}{3}\operatorname{Cr}_{(T)} + \operatorname{O}_2 = \frac{2}{3}\operatorname{Cr}_2\operatorname{O}_3$	-740589 + 164,99· <i>T</i>	11731923
$2Mn_{(T)} + O_2 = 2MnO_{(T)}$	$-770372 + 147,46 \cdot T$	2981517
$4Cu_{(T)} + O_2 = 2Cu_2O_{(T)}$	$-337038 + 142,60 \cdot T$	2981356
$Si_{(T)} + O_2 = SiO_{2(T)}$	$-906555 + 174,05 \cdot T$	2981685
$2Ca_{(\mathcal{K})} + O_2 = 2CaO_{(T)}$	$-1283676 + 220,40 \cdot T$	11231765
$\frac{4}{3} \text{Al}_{(3K)} + \text{O}_2 = \frac{2}{3} \text{Al}_2 \text{O}_{3 \text{ (T)}}$	$-11252 + 126,80 \cdot T$	9232303
$2Pb_{(\mathcal{K})} + O_2 = 2PbO_{(T)}$	$-437352 + 195,60 \cdot T$	6001159
$2\operatorname{Co}_{(T)} + \operatorname{O}_2 = 2\operatorname{CoO}_{(T)}$	-474616 + 145,44· <i>T</i>	2981766
$W_{(T)} + O_2 = WO_{2(T)}$	$-585440 + 171,95 \cdot T$	2982000

Приложение Б

Таблица Б. 1 — Температурная зависимость параметров взаимодействия первого $e_{\rm i}^{\rm j}$ и второго $r_{\rm i}^{\rm j}$ порядков

для растворов в жидком железе

Параметр взаимодействия	A	В	Параметр взаимодействия	A	В
$e_{\mathrm{C}}^{\mathrm{C}}$	158	0,0581	$r_{ m N}^{ m Cr}$	1,68	-0,0006
$e_{ m C}^{ m Cr}$	0	-0,0240	$r_{ m N}^{ m Ni}$	-1,83	0,0010
$e_{ m C}^{ m Mn}$	0	-0,0240	$r_{ m N}^{ m Mn}$	8,82	-0,0056
$e_{ m C}^{ m Mo}$	0	-0,0080	$r_{ m N}^{ m Mo}$	-2,78	0,0013
$e_{ m C}^{ m Ni}$	0	0,0120	$r_{ m N}^{ m CrNi}$	1,60	-0,0009
$e_{ m C}^{ m Si}$	162	0,0080	$r_{ m N}^{ m CrMn}$	2,16	0,0005
$e_{ m C}^{ m V}$	0	-0,0770	$r_{ m N}^{ m CrMo}$	1,20	-0,0005
$e_{ m N}^{ m Cr}$	-164	0,0415	$r_{ m N}^{ m NiMn}$	0,09	0,0007
$e_{ m N}^{ m Ni}$	8,33	0,0019	$r_{ m N}^{ m NiMo}$	-0,26	0,0003
$e_{ m N}^{ m Mn}$	-134	0,0300	$r_{ m N}^{ m MnMo}$	0	0
$e_{ m N}^{ m Mo}$	-33,2	0,0064	$r_{ m O}^{ m Ni}$	0	0,0060
$e_{\mathrm{O}}^{\mathrm{O}}$	-1750	0,7340	$r_{ m O}^{ m Mo}$	0	0,0040
$e_{\mathrm{C}}^{\mathrm{N}}$	0	0,1300	$r_{\mathrm{O}}^{\mathrm{Co}}$	0	0,0080

Приложение В

Таблица B.1 – Коэффициенты a_L и a_S , характеризующие снижение температур ликвидуса и солидуса стали при введении 1% компонента

Компонент	$a_{\rm L}$, K a	a _S , K	Интервал применения	Примечания	
			$a_{ m S}$	к определению $T_{\rm S}$	
С	73,0	410,0	[%C]≤0,10		
		180,0	$0.13 \le [\%C] \le 2.14$		
Cr	1,0	2,0	$[\%Cr] \le 25,0$	Для $0.10 \le [\%C] \le 0.13$ $\Delta T = 41 \text{ K}$	
Ni	3,5	6,5	[%Ni] \le 20,0		
Mn	3,0	6,5	[%Mn] ≤ 9,5		
Mo	3,0	6,5	[%Mo] \le 10,0		
Si	12,0	19,0	[%Si] \le 14,4		
V	2,0	6,0	$[\%V] \le 10,0$		

Навчальне видання

ТУРЧАНІН Михайло Анатолійович

ТЕОРІЯ І ТЕХНОЛОГІЯ МЕТАЛУРГІЙНОГО ВИРОБНИЦТВА Ч. 1. ТЕОРІЯ МЕТАЛУРГІЙНИХ ПРОЦЕСІВ

Навчальний посібник до практичних занять і вивчення дисципліни

(для студентів спеціальності 7.090403)

(Російською мовою)

Редактор О.О. Дудченко

Комп'ютерна верстка О. П. Ордіна

50/2008 Підп. до друку 18.09.08. Формат 60х84/16. Папір офсетний. Ум. друк. арк. 4,65. Обл.-вид. арк. 2,73. Тираж 100 прим. Зам. № 167

Видавець і виготівник «Донбаська державна машинобудівна академія» 84313, м. Краматорськ, вул. Шкадінова, 72. Свідоцтво про внесення суб'єкта видавничої справи до Державного реєстру серія ДК №1633 від 24.12.03.