Министерство образования и науки Украины

ДОНБАССКАЯ ГОСУДАРСТВЕННАЯ МАШИНОСТРОИТЕЛЬНАЯ АКАДЕМИЯ

Турчанин М.А., Абдулов А.Р.

МЕТОДИЧЕСКОЕ ПОСОБИЕ

к выполнению самостоятельной работы и изучению дисциплины "Теория и технология металлургического производства" для студентов специальности 7.090403

Ч.1. ТЕОРИЯ МЕТАЛЛУРГИЧЕСКОГО ПРОИЗВОДСТВА

Утверждено на заседании ученого совета ДГМА Протокол №12 от 29.06.06

Рецензенты:

Сыропоршнев Л.Н., зав. кафедрой литейного производства черных и цветных металлов НТУУ «КПИ», профессор;

Готвянский Ю.Я., доцент кафедры физико-химических основ технологии металлов НТУУ «КПИ»;

Карпенко В.М., зав. кафедрой сварочного производства ДГМА, профессор

Турчанин М.А., Абдулов А.Р.

Т89 Методическое пособие к выполнению самостоятельной работы и изучению дисциплины "Теория и технология металлургического производства" для студентов специальности 7.090403. — Ч.1. Теория металлургического производства. — Краматорск: ДГМА, 2006. — 48 с.

ISBN 966-379-088-1

Содержит теоретические сведения, расчетно-графические работы, порядок их выполнения и требования к их оформлению по первой части дисциплины "Теория и технология металлургического производства". Кроме того, приведены контрольные вопросы к каждой теме для самостоятельного контроля знаний студентов и теоретические вопросы, выносимые на экзамен.

ББК 34.3

©Турчанин М.А., Абдулов А.Р., 2006

© ДГМА, 2006

ISBN 966-379-088-1

СОДЕРЖАНИЕ

	Введение	5
1	Процессы горения газов и окислительно-восстановительные свойства высокотемпературной газовой фазы	5
	1.1 Общие сведения	5
	1.2 Расчетно-графическая работа 1. Состав и свойства высокотемпературной газовой фазы в присутствии твердого углерода	14
	1.3 Вопросы для самостоятельного контроля знаний	16
2	Процессы образования и восстановления оксидов	17
	2.1 Общие сведения	17
	2.2 Расчетно-графическая работа 2. Процессы восстановления оксидов	23
	2.3 Вопросы для самостоятельного контроля знаний	26
3	Свойства сложных металлических сплавов	27
	3.1 Общие сведения	27
	3.2 Расчетно-графическая работа 3. Расчет коэффициентов активности компонентов и температурного интервала кристаллизации сложного металлического расплава. определение растворимости азота в легированных расплавах железа	31
	3.3 Вопросы для самостоятельного контроля знаний	34
4	Свойства сложных оксидных расплавов	35
	4.1 Общие сведения	35
	4.2 Расчетно-графическая работа 4. Расчет активностей компонентов шлакового расплава и содержания примесей в жидком железе, равновесным с этим шлаком	40
	4.3 Вопросы для самостоятельного контроля знаний	41

5	Теоретические вопросы, выносимые на экзамен	41
	Список рекомендуемой литературы	44
	Приложение А. Изменение энергии Гиббса для реакций, протекающих в стандартных состояниях	45
	Приложение Б. Температурная зависимость параметров взаимодействия первого $e_{\rm i}^{\rm j}$ и второго $r_{\rm i}^{\rm j}$ порядков для растворов в жидком железе	46
	Приложение В. Коэффициенты $a_{\rm L}$ и $a_{\rm S}$, характеризующие снижение температур ликвидуса и солидуса стали при введении 1% компонента	47

ВВЕДЕНИЕ

Настоящее методическое пособие составлено для студентов дневной и заочной форм обучения по направлению подготовки 0904 «Металлургия», специальности 7.090403 «Литейное производство черных и цветных металлов». Для студентов этой специальности курс «Теория и технология металлургического производства» является специальной дисциплиной. Данное пособие предназначено для изучения первой части курса — «Теория металлургического производства».

Цель изучения курса — уяснить физико-химический характер превращений, протекающих в металлургических системах и процессах.

Преподавание дисциплины базируется на знаниях, полученных в процессе усвоения курсов «Физика», «Химия», «Физическая химия» и др.

Задачи изучения курса состоят не только в углублении теоретической подготовки будущего специалиста по металлургии, но и в получении практических навыков, которые впоследствии будут использованы при изучении второй части дисциплины – «Технология металлургического производства».

Настоящее издание содержит методические указания по изучению дисциплины, расчетно-графические работы, вопросы для самопроверки, список рекомендуемой литературы.

1 ПРОЦЕССЫ ГОРЕНИЯ ГАЗОВ И ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ СВОЙСТВА ВЫСОКОТЕМПЕРАТУРНОЙ ГАЗОВОЙ ФАЗЫ

1.1 Общие сведения

Термодинамические характеристики реакций включают значения тепловых эффектов и величины стандартного изменения свободной энергии. Зависимость $\Delta G^{\rm o}$ для различных реакций от температуры выражается формулой

$$\Delta G^{o} = \Delta H^{o} - T\Delta S^{o} , \qquad (1.1)$$

где ΔH° — среднее значение теплового эффекта в заданном температурном интервале;

 $\Delta S^{\rm o}$ — среднее значение стандартного изменения энтропии в ходе реакции.

Значения $\Delta G^{\rm o}$ используют для расчета значений констант равновесия соответствующих реакций:

$$\Delta G^{o} = -RT \ln K_{P}, \tag{1.2}$$

где $R = 8,314 \, \text{Дж/(моль·К)}$ – универсальная газовая постоянная.

Для проведения расчетов используют уравнения зависимости ΔG° , приведенные в приложении A.

Для реакции, протекающей в газовой фазе:

$$aA + bB = cC + dD$$
,

константа равновесия может быть выражена через равновесные парциальные давления компонентов:

$$K_{P} = \frac{P_{C}^{c} P_{D}^{d}}{P_{A}^{a} P_{B}^{b}},$$
(1.3)

где $P_{\rm i}$ – равновесные парциальные давления компонентов.

Оценить возможность протекания процесса можно при помощи уравнения изотермы реакции:

$$\Delta G = RT \ln \frac{P_{\rm C}^{'c} P_{\rm D}^{'d}}{P_{\rm A}^{'a} P_{\rm B}^{'b}} - RT \ln K_{\rm P},$$
 (1.4)

где $P_{\rm i}^{'}$ – фактические парциальные давления компонентов.

Если $\Delta G < 0$ – протекание реакции возможно;

 $\Delta G > 0$ – невозможно;

 $\Delta G = 0$ – система находится в состоянии равновесия.

Окислительные свойства газовой атмосферы определяются парциальным давлением кислорода P_{O_2} . Поэтому необходимо производить расчет равновесия реакций, в ходе которых связывается кислород:

$$2 H_2 + O_2 = 2 H_2O$$
, (1.5)

$$2 CO + O_2 = 2 CO_2$$
, (1.6)

$$C + O_2 = CO_2.$$
 (1.7)

При высоких температурах в газовой фазе развиваются процессы термической диссоциации сложных молекул на более простые, диссоциация сложных молекул при этом оценивается степенью диссоциации α , которая равна отношению числа распавшихся молекул к исходному числу молекул:

$$\alpha = \frac{n_{\text{pacn}}}{n_{\text{MCX}}}.$$
 (1.8)

Окислительные свойства углекислого газа и паров воды при высоких температурах определяются степенью диссоциации молекул CO_2 и H_2O . В случае малых значений степеней диссоциации (характерных для температур протекания большинства металлургических реакций) значение находят из выражения

$$\alpha = \sqrt[3]{\frac{2}{K_p P_{\text{общ}}}},$$
(1.9)

где $P_{\text{общ}}$ – общее давление в системе;

 K_{P} — константа равновесия реакции образования сложной молекулы.

Парциальное давление кислорода может быть найдено из выражения

$$P_{\mathcal{O}_2} = \frac{\alpha}{2+\alpha} P_{\text{общ}}. \tag{1.10}$$

Окислительные свойства CO_2 при высоких температурах определяются развитием реакции диссоциации с образованием CO и углерода. Соотношение CO и CO_2 для этого случая будет определяться равновесием реакции газификации углерода:

$$C + CO_2 = 2 O.$$
 (1.11)

Зная соотношение между парциальными давлениями ${\rm CO}$ и ${\rm CO}_2$ для этой реакции, можно определить равновесное давление кислорода в соответствии с реакцией горения:

$$2 O + O_2 = 2 O_2$$
;

$$P_{\rm O_2} = \frac{P_{\rm CO}^2}{P_{\rm CO_2}^2 \,\rm K_p},\tag{1.12}$$

где K_P – константа равновесия реакции (1.6).

Для оценки окислительных свойств газовой фазы используется величина кислородного потенциала газовой фазы. Значение кислородного потенциала определяется парциальным давлением кислорода и температурой. Кислородный потенциал газовой фазы равен химическому потенциалу ки-

слорода в данной фазе при использовании в качестве стандартного состояния с давлением кислорода $P_{\mathrm{O}_2}=10^6\,\mathrm{\Pi a}=1\,\mathrm{arm.}$:

$$\Pi_{\rm O} = \mu_{\rm O_2} - \mu_{\rm O_2}^{\circ} = RT \ln P_{\rm O_2},$$
 (1.13)

где μ_{O_2} – химический потенциал кислорода в газовой фазе;

 $\mu_{\mathrm{O}_2}^{\circ}$ — химический потенциал кислорода в стандартном состоя-

нии;

 $\Pi_{\rm O}$ – кислородный потенциал газовой фазы.

При постоянной температуре значение кислородного потенциала газовой фазы тем выше, чем выше парциальное давление кислорода в ней, что позволяет использовать его в качестве меры окислительной способности газовой фазы. Чем выше значение кислородного потенциала, тем выше окислительная способность газовой смеси.

Для газовой смеси $CO-CO_2$ кислородный потенциал связан с температурой и составом зависимостью вида

$$\Pi_{O(CO/CO_2)} = \Delta G_{1.6}^{\circ} + 2RT \ln \left(\frac{P_{CO_2}}{P_{CO}} \right),$$
(1.14)

где $\Delta G_{1.6}^{\circ}$ — стандартное изменение свободной энергии для реакции (1.6):

$$2 \text{ CO} + \text{O}_2 = 2 \text{ CO}_2$$
.

Аналогичный вид имеет выражение для кислородного потенциала смеси $H_2 \! - \! H_2 O$:

$$\Pi_{O(H_2/H_2O)} = \Delta G_{1.5}^{\circ} + 2RT \ln \left(\frac{P_{H_2O}}{P_{H_2}}\right),$$
(1.15)

где $\Delta G_{1.5}^{\circ}$ – стандартное изменение свободной энергии для реакции (1.5).

Парциальные давления компонентов газовой смеси могут быть рассчитаны из общего давления смеси и состава смеси по уравнению

$$P_{\rm i} = \frac{P_{\rm oбiц}(C_{\rm i})}{100},$$
 (1.16)

отражающему суть закона Дальтона, где $C_{\rm i}$ – объемная процентная концентрация компонента в газовой смеси.

Из выражений (1.14) и (1.15) следует, что кислородный потенциал газовой фазы зависит от температуры линейно. Для различных давлений кислорода в газовой фазе получается семейство прямых, берущих начало в точке, соответствующей значениям $\Pi_{\rm O} = 0$ Дж/моль и T = 0 К. Для давлений кислорода в газовой фазе, меньших, чем 10^5 Па, кислородные потенциалы располагаются в области отрицательных значений (рис. 1.1).

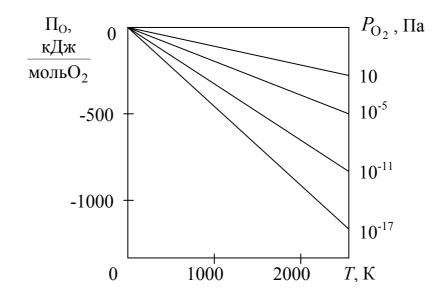


Рисунок 1.1 – Кислородный потенциал газовой фазы из чистого кислорода в зависимости от T и P_{O_2}

В атмосферах металлургических агрегатов обычно присутствуют несколько газообразных веществ, способных реагировать с кислородом с образованием при этом нескольких продуктов. Такое сложное равновесие достигается лишь при одновременном достижении всех возможных в системе частных равновесий.

Для сложных газовых фаз в состоянии равновесия характерно условие общности равновесного парциального давления молекулярного кислорода и кислородного потенциала для частных равновесий, в которых участвует кислород. Следовательно, такая атмосфера будет иметь определенный кислородный потенциал, обусловленный любым из частных равновесий, включающих газообразный молекулярный кислород:

$$\begin{split} &\Pi_{\mathrm{O}(\mathrm{H}_2-\mathrm{O}_2-\mathrm{H}_2\mathrm{O})} = \Pi_{\mathrm{O}(\mathrm{CO}-\mathrm{O}_2-\mathrm{CO}_2)} = \\ &= \Pi_{\mathrm{O}(\mathrm{SO}_2-\mathrm{O}_2-\mathrm{SO}_3)} = \Pi_{\mathrm{O}(\mathrm{сложная атмосфера})} \end{split} \tag{1.17}$$

Кислородный потенциал данной реакции может быть вычислен по данным любого из этих равновесий, например, по уравнениям (1.14) и (1.15).

Одной из реакций такого типа, часто встречающейся в металлургических системах, является реакция водяного газа:

$$H_2O + CO = H_2 + CO_2.$$
 (1.18)

Равновесие, описываемое уравнением (1.18), является регулирующим в газовых атмосферах при использовании природного газа или увлажненного дутья в доменной печи и других металлургических системах.

Реакция водяного газа может быть представлена как сумма последовательно протекающих превращений — диссоциации ${\rm CO_2}$ и окисления ${\rm H_2}$:

$$2CO_{2} = 2CO + O_{2}$$
+
$$\frac{2H_{2} + O_{2} = 2H_{2}O}{2(CO_{2} + H_{2} = CO + H_{2}O)}$$
 (1.19)

Приведенная последовательность реакций не означает, что процесс действительно протекает по такому пути, а является удобной иллюстрацией тесной взаимосвязи двух частных равновесий в данной газовой фазе.

Константа равновесия реакции определяется выражением

$$K_{P} = \frac{P_{H_{2}} P_{CO_{2}}}{P_{H_{2}O} P_{CO}}.$$
 (1.20)

В широком интервале температур константа равновесия не сильно отличается от единицы, и реакция протекает практически обратимо. При высоких температурах равновесие реакции существенно смещается в сторону исходных продуктов.

Часто при проведении практических расчетов удобно пользоваться объемными процентными концентрациями компонентов в газовой смеси. В этом случае уравнение (1.20) для константы равновесия примет вид

$$K_{P} = \frac{(\%H_{2}) \cdot (\%CO_{2})}{(\%H_{2}O) \cdot (\%CO)}.$$
(1.21)

Для расчета значений константы равновесия реакции (1.18) можно воспользоваться уравнением (1.2). Выражение $\Delta G_{(1.18)}^{\circ}$ может быть получено с использованием приложения A, Дж/моль:

$$\Delta G_{(1.18)}^{\circ} = -33600 + 33,5T. \tag{1.22}$$

Для константы равновесия получим:

$$\ln K_{P_{(1.18)}} = \frac{4041}{T} - 4,03. \tag{1.23}$$

Равновесный состав газовой смеси для реакции водяного газа, если известен исходный состав смеси, можно найти следующим путем. Допустим, что для достижения равновесия в системе требуется превращение m% CO_2 из исходного количества в смеси. Тогда в соответствии с (1.18) количество H_2 уменьшится на m%. Содержание H_2O и CO, которые образуются в результате реакции, увеличится на m% для каждого. Равновесные концентрации реагирующих веществ будут следующими:

$$(\%CO_{2}) = (\%CO_{2})_{HCX} - m;$$

$$(\%H_{2}) = (\%H_{2})_{HCX} - m;$$

$$(\%CO) = (\%CO)_{HCX} + m;$$

$$(\%H_{2}O) = (\%H_{2}O)_{HCX} + m.$$

$$(1.24)$$

Подставляя эти значения в (1.21), получим уравнение

$$K_{P} = \frac{((\%H_{2})_{\text{ucx}} - m) \cdot ((\%CO_{2})_{\text{ucx}} - m)}{((\%H_{2}O)_{\text{ucx}} + m) \cdot ((\%CO)_{\text{ucx}} + m)}.$$
(1.25)

Решая это уравнение относительно m и подставляя полученное значение в выражения (1.24), получаем равновесные концентрации всех газов при интересующей температуре.

Часто в газовой атмосфере присутствует инертная составляющая, не участвующая ни в одной из реакций (аргон, азот). В этом случае для простейших расчетов можно использовать начальное парциальное давление или содержание инертной составлявшей, которое вычитается из общего давления для определения суммы парциальных давлений газообразных веществ, участвующих в данном равновесии.

Взаимодействие кислорода с твердым углеродом происходит по следующим реакциям:

$$C + O_2 = CO_2$$
, (1.26)

$$2 C + O_2 = 2 CO.$$
 (1.27)

При избытке твердого углерода в системе реакции (1.26) и (1.27) характеризуются очень низким остаточным содержанием кислорода в равновесной газовой смеси. Соотношение СО и CO_2 в равновесной газовой смеси будет определяться реакцией газификаций углерода (1.11):

$$C + CO_2 = 2CO$$

константа равновесия которой может быть выражена через парциальные давления газообразных компонентов:

$$K_{P_{(1.11)}} = \frac{P_{CO}^2}{P_{CO_2}}.$$
 (1.28)

Выразим константу равновесия реакции (1.11) через состав смеси в объемных процентах:

$$K_{P_{(1.11)}} = \frac{(\%CO)^2 P}{(\%CO_2) \cdot 100},$$
 (1.29)

где P – общее давление в системе.

Если газовая фаза состоит только из CO и CO_2 , то:

$$(\%CO) + (\%CO_2) = 100.$$

Обозначим (%CO) = X, тогда (%CO₂) = 100 - X. Подставим полученные выражения в выражение (1.29):

$$K_{P_{(1.11)}} = \frac{X^2}{100 - X} \cdot \frac{P}{100} \ . \tag{1.30}$$

Выражение (1.30) является квадратным уравнением, решение которого позволяет определить равновесную концентрацию монооксида углерода в газовой смеси:

(%CO) =
$$X = 50 \frac{K_{P_{(1.11)}}}{P} \left[\sqrt{1 + \frac{4P}{K_{P_{(1.11)}}}} - 1 \right].$$
 (1.31)

В реальных металлургических агрегатах, кроме CO и CO_2 , в атмосфере присутствует азот, попадающий в систему в результате подачи воздуха. В этом случае при избытке твердого углерода в системе образуется смесь из CO и CO_2 с определенным содержанием азота.

Для определения равновесного состава газовой фазы для реакции (1.11) введем следующие обозначения:

$$(\%CO) = X; (\%CO_2) = Y; (\%N_2) = Z.$$

Тогда

$$X + Y + Z = 100; (1.32)$$

$$K_{P_{(1.11)}} = \frac{X^2 P}{100 - Y}.$$
 (1.33)

Введем обозначение:

$$\gamma = \frac{(\%N_2)}{(\%O_2)},$$

где $(\%O_2)$ – содержание кислорода в подаваемом в систему воздухе;

(%N₂) – содержание азота в подаваемом в систему воздухе.

Таким образом, каждый моль O_2 вносит в систему γ молей N_2 . Тогда с учетом (1.26) и (1.27) получим третье уравнение, связывающее X, Y и Z:

$$Z = \frac{\gamma}{2}X + \gamma Y. \tag{1.34}$$

Решая систему уравнений (1.32)...(1.34), находим содержание монооксида углерода в равновесной газовой смеси:

$$X = \frac{25(\gamma + 2)K_{P_{(1.11)}}}{(\gamma + 1)P} \cdot \left[\sqrt{1 + \frac{16(\gamma + 1)P}{(\gamma + 2)^2 K_{P_{(1.11)}}}} - 1 \right],$$
 (1.35)

где $K_{P_{(1.11)}}$ – константа равновесия реакции (1.11);

P – общее давление в системе.

Далее из уравнения (1.33) находим равновесное содержание диоксида углерода, а из уравнения (1.32) – равновесное содержание азота Z.

Относительное содержание ${\rm CO}$ и ${\rm CO}_2$ в составе смеси находим из выражений:

$$(\%CO)_{\text{OTH}} = \frac{(\%CO)}{(\%CO) + (\%CO_2)} \cdot 100$$
 (1.36)

И

$$(\%CO_2)_{OTH} = 100 - (\%CO)_{OTH}.$$
 (1.37)

Значение равновесного давления кислорода в газовой смеси может быть получено из анализа равновесия реакции горения монооксида углерода (1.6):

$$P_{\rm O_2} = \frac{(\% \rm CO_2)_{\rm oth}^2}{(\% \rm CO)_{\rm oth}^2 \cdot \rm K_{P(1.6)}},$$
(1.38)

а кислородный потенциал газовой смеси – из уравнения (1.19).

Расчет значения $K_{P(1.6)}$ проводим по выражению

$$K_{P(1.6)} = e^{-\frac{\Delta G_{(1.6)}}{RT}},$$
 (1.39)

где $\Delta G_{(1.6)}$ – стандартная энергия Гиббса реакции (1.6).

Для определения последней воспользуемся приложением A, Дж/моль:

$$\Delta G_{(1.6)} = -566307 + 175,47T$$

1.2 Расчетно-графическая работа 1. СОСТАВ И СВОЙСТВА ВЫСОКОТЕМПЕРАТУРНОЙ ГАЗОВОЙ ФАЗЫ В ПРИСУТСТВИИ ТВЕРДОГО УГЛЕРОДА

1.2.1 Содержание задания

Рассчитать температурные зависимости равновесного состава газовой смеси, относительных содержаний СО и СО₂, равновесного парциального давления О₂, константы равновесия и стандартной энергии Гиббса реакции (1.11) и кислородного потенциала для атмосферы, образующейся при взаимодействии обогащенного кислородом воздуха с твердым углеродом для заданных условий: P, [%N₂], [%O₂], T_1 , T_2 , T_3 , T_4 , T_5 , T_6 .

Построить графические зависимости: $\Delta G_{(1.11)} - T$, $\ln K_{P(1.11)} - \frac{1}{T}$, $(\%CO)_{\text{отн}} - T$, $\Pi_{\text{O}} - T$, $K_{P(1.11)} - T$.

1.2.2 Содержание отчета

- 1 Краткая теория взаимодействия углерода с кислородосодержащей высокотемпературной газовой фазой.
- 2 Исходные данные расчетно-графического задания.
- 3 Расчет величин. Если расчеты выполнялись на ЭВМ, представляется текст программы и ее описание.
- 4 Результаты расчетов, занесенные в таблицу 1.2, или таблица выходных данных с ЭВМ, составленная по образцу таблицы 1.2.
- 5 Графические зависимости.
- 6 Выводы.
- 7 Результаты расчетов необходимо сохранить для выполнения РГР 2.

Таблица 1.1 – Варианты задания

	Давление,	arm.	0,5	0,5	0,5	0,5	0,5	6,0	6,0	6,0	6,0	6,0	6,0	1,3	1,3	1,3	1,3	1,3	1,3	1,7	1,7	1,7	1,7	1,7	1,7	2,1	2,1	2,1	2,1	2,1	2,1
		T_6	096	970	086	066	1000	952	962	972	982	992	1002	954	964	974	984	994	1004	926	964	926	986	966	1006	958	896	826	886	866	1008
		T_5	910	920	930	940	950	902	912	922	932	942	952	904	914	924	934	944	954	906	914	926	936	946	956	908	918	928	938	948	958
	гура, °С	T_4	098	870	880	068	006	852	862	872	882	892	902	854	864	874	884	894	904	856	864	928	988	968	906	858	898	878	888	868	806
	Температура, °С	T_3	810	820	830	840	850	802	812	822	832	842	852	804	814	824	834	844	854	908	814	826	836	846	856	808	818	828	838	848	858
		T_2	092	770	780	190	800	752	762	772	782	792	802	754	764	774	784	794	804	756	764	922	982	962	908	758	892	778	788	862	808
1771		T_1	710	720	730	740	750	702	712	722	732	742	752	704	714	724	734	744	754	902	714	726	736	746	756	708	718	728	738	748	758
oforamethoro	(a(c.)	O_2	26	28	30	32	34	36	38	40	42	44	46	48	50	52	25	27	29	31	33	35	37	39	41	43	45	47	49	51	53
Состав обогашенного	воздуха.		74	72	70	89	99	64	62	09	58	56	54	52	50	48	75	73	71	69	29	65	63	61	59	57	55	53	51	49	47
	Вариант		1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29

Таблица 1.2 – Результаты расчета

T,	$\Delta G_{(1.11)},$ кДж/моль	$\frac{1}{T}$	lnK _{P(1.11)}	K _{P(1.11)}	весно	гав раг ой газ иеси, ^о	овой	Относи	тельное ание, %	P_{O_2} ,	По
					CO	CO_2	N_2	CO	CO_2		
T_1											
T_2											
T_3											
T_4											
T_5											
T_6											

1.3 Вопросы для самостоятельного контроля знаний

- 1 Константа равновесия и ее температурная зависимость.
- 2 Связь между константой равновесия реакции и величиной стандартного изменения свободной энергии.
- 3 Уравнение изотермы реакции.
- 4 Степень диссоциации и ее связь с константой равновесия.
- 5 Уравнение кислородного потенциала газовой фазы.
- 6 Выражение для кислородного потенциала систем CO_2 —CO и H_2O — H_2 .
- 7 Какие реакции могут развиваться в системе $C O_2$?
- 8 Как температура влияет на равновесие реакций (1.26) и (1.27)?
- 9 Равновесие, какой из реакций, (1.26) или (1.27), более подвержено влиянию температуры? Почему?
- 10 Как изменение давления влияет на равновесие реакций (1.26) и (1.27)?
- 11 Определите число степеней свободы для реакций горения углерода в кислороде и в обогащенном кислородом воздухе.
- 12 Каким образом изменение содержания азота в обогащенном кислородом воздухе влияет на смещение равновесия реакций горения углерода?
- 13 Какая из реакций взаимодействия углерода с кислородом развивается преимущественно в условиях высоких температур? Дайте объяснение этому явлению.

2 ПРОЦЕССЫ ОБРАЗОВАНИЯ И ВОССТАНОВЛЕНИЯ ОКСИДОВ

2.1 Общие сведения

Химическая прочность оксидов и их термодинамическая стабильность могут быть оценены по значению равновесного давления кислорода в системе *металл* – *оксид металла* для реакции образования оксида металла из металла и кислорода:

$$2 \text{ Me} + O_2 = 2 \text{ MeO}.$$
 (2.1)

В случае, когда металл и оксид не образуют растворов, константа равновесия может быть представлена как

$$K_{P} = \frac{1}{P_{O_2}},$$
 (2.2)

где P_{O_2} — равновесное давление кислорода над оксидом, называемое упругостью диссоциации оксида.

Эта величина может служить количественной характеристикой прочности данного оксида. Если фактическое давление кислорода в газовой фазе $P_{\mathrm{O}_2}^{'}$ превышает равновесное давление кислорода P_{O_2} , создаются условия для окисления металла. Если давление $P_{\mathrm{O}_2}^{'} < P_{\mathrm{O}_2}$, металл не окисляется, и может происходить диссоциация оксида.

Наряду с упругостью диссоциации, одной из широко применяемых характеристик прочности оксидов является стандартное изменение энергии Гиббса ΔG° в ходе реакции (2.1). Для вышеназванных условий ΔG° связано с равновесным давлением кислорода соотношением

$$\Delta G^{\circ} = -RT \ln K_{P} = -RT \ln \frac{1}{P_{O_{2}}} = RT \ln P_{O_{2}}.$$
 (2.3)

Чем прочнее оксид металла, тем меньше величина P_{O_2} , и тем больше отрицательное значение ΔG^{o} для реакции его образования.

Еще одной характеристикой термодинамических свойств оксида является величина его кислородного потенциала $\Pi_{O(MeO)}$, равная кислородному потенциалу газовой фазы, находящейся в равновесии с оксидом:

$$\Pi_{\text{O(MeO)}} = \Pi_{\text{O(\Gamma.\Phi.)}} = RT \ln P_{\text{O}_2}. \tag{2.4}$$

Сопоставление выражений (2.3) и (2.4) показывает, что

$$\Pi_{\mathcal{O}(\Gamma,\Phi,)} = \Delta G^{\circ}. \tag{2.5}$$

Последнее обстоятельство позволяет сравнить эти два параметра между собой.

Подставив в выражение (2.3) выражение для ΔG° , взятое из приложения A, мы можем получить уравнение для расчета упругости диссоциации оксида через стандартную теплоту ΔH° и изменение стандартной энтропии ΔS° в ходе реакции образования оксида:

$$\ln P_{\rm O_2} = \frac{\Delta H^{\circ}}{R T} - \frac{\Delta S^{\circ}}{R}. \tag{2.6}$$

Значение упругости диссоциации оксида важно при выборе так называемых защитных атмосфер, в которых можно нагревать металл, не подвергая его окислению.

В случае образования растворов в системе *металл* – *оксид металла* изменяются характеристики прочности оксида. Для образования оксидов металлов различной валентности уравнение реакции образования оксида Me_XO_Y в расчете на 1 моль O_2 примет вид

$$m Me + O_2 = n Me_X O_Y,$$
 (2.7)

где стехиометрические коэффициенты m и n равны:

$$m = 2X/Y$$
 μ $n = 2/Y$. (2.8)

Константа равновесия этой реакции, выраженная через активность реагирующих веществ в растворах, примет вид

$$K_{P_{(2.7)}} = \frac{a_{Me_XO_Y}^n}{a_{Me}^m P_{O_2}}.$$
 (2.9)

Из этого выражения следует, что

$$P_{\rm O_2} = \frac{a_{\rm Me_XO_Y}^{\rm n}}{a_{\rm Me}^{\rm m} \, {\rm K}_{\rm P_{(2.7)}}}.$$
 (2.10)

При понижении активности оксида (понижение его концентрации в растворе) величина равновесного парциального давления кислорода уменьшается, т.е. термодинамическая прочность оксида увеличивается. Растворение металла (понижение его активности в растворе) увеличивает

значение $P_{{
m O}_2}$, т.е. приводит к понижению термодинамической прочности оксида.

Кислородный потенциал газовой фазы, находящейся в равновесии с оксидом, имеет вид

$$\Pi_{\text{O(MeO)}} = RT \ln P_{\text{O}_2} . \tag{2.11}$$

С учетом выражения (2.3):

$$\Pi_{\mathrm{O(Me_XO_Y)}} = \Delta G_{\mathrm{Me_XO_Y}}^{\circ} + \frac{2}{\mathrm{Y}} RT \ln a_{\mathrm{Me_XO_Y}} - \frac{2\mathrm{X}}{\mathrm{Y}} RT \ln a_{\mathrm{Me}}, \qquad (2.12)$$

или

$$\Pi_{\mathrm{O(Me_{X}O_{Y})}} = \Delta G_{\mathrm{Me_{X}O_{Y}}}^{\circ} + \mathrm{nR}T \ln a_{\mathrm{Me_{X}O_{Y}}} - \mathrm{mR}T \ln a_{\mathrm{Me}}. \tag{2.13}$$

Термодинамические условия восстановления оксидов газообразными восстановителями определяются соотношением кислородных потенциалов газовой фазы и оксида металла:

$$\Pi_{O \text{ (MeO)}} < \Pi_{O \text{ (Me_YO_Y)}}. \tag{2.14}$$

За счет стремления к выравниванию потенциалов кислород переходит из оксидной фазы в газовую фазу. Реакция восстановления оксида металла может быть записана в общем виде следующим образом:

$$Me_XO_{Y(T)} + y B_{(T)} = x Me_{(T)} + y BO_{(T)}.$$
 (2.15)

В случае если оксид и металл представляют собой чистые фазы, их активности могут быть приняты равными единице и константа равновесия примет вид:

$$K_{P_{(2.15)}} = \frac{P_{BO}^{Y}}{P_{P}^{Y}}.$$
 (2.16)

Кислородный потенциал $\Pi_{O(Me_XO_Y)}$ в этом случае можно оценить по (2.5). В реальных процессах восстановления участвуют не чистые оксиды, а металлическая и оксидная фазы часто образуют растворы. Для таких систем необходимо пользоваться обобщенным уравнением для кислородного потенциала оксидов металлов (2.13).

В качестве газообразных восстановителей наиболее широко используются водород и монооксид углерода. Кислородный потенциал газовых смесей

 $H_2 - H_2O$ и $CO - CO_2$ зависит от состава этих смесей, температуры и может быть оценен уравнениями (1.14) и (1.15).

Восстановление оксидов металлов, имеющих несколько степеней окисления, происходит последовательно. Восстановление оксидов железа водородом при температурах выше 843 К происходит в соответствии с реакциями:

$$3 \text{ Fe}_2\text{O}_3 + \text{H}_2 = 2 \text{ Fe}_3\text{O}_4 + \text{H}_2\text{O}$$
 $\Delta H^\circ = -12890 \text{ Дж/моль};$ (2.17)

$$Fe_3O_4 + H_2 = 3 FeO + H_2O$$
 $\Delta H^0 = 77520 \, \text{Дж/моль};$ (2.18)

FeO + H₂ = Fe + H₂O
$$\Delta H^{\circ} = 24790 \text{ Дж/моль}.$$
 (2.19)

При температурах ниже 843 K, когда вюстит становится термодинамически неустойчивым, восстановление Fe_3O_4 происходит до железа:

$$\frac{1}{4}$$
 Fe₃O₄ + H₂ = $\frac{3}{4}$ FeO + H₂O ΔH° = 37970 Дж/моль. (2.20)

Восстановление оксидов металлов твердым углеродом происходит по реакции

$$MeO + C = Me + CO. (2.21)$$

Эту реакцию можно представить как совместное протекание реакций (2.15) и (1.11):

$$MeO + CO = Me + CO2$$
+
$$\frac{CO2 + C = 2CO}{MeO + C = Me + CO}$$

Поскольку в реакциях (2.15) и (1.11) газовая фаза состоит из одних и тех же компонентов, условием равновесия в системе, то есть условием равновесия реакции (2.21), является одинаковый состав равновесной газовой смеси для двух реакций. Равновесный состав газовой смеси СО–СО₂ для реакций зависит от температуры, а для (1.11) еще и от давления. Для случая, когда Ме, МеО и С представляют собой твердые несмешивающиеся фазы, равновесие реакции (2.21) характеризуется одной степенью свободы. Поэтому при постоянстве давления в системе, температура, при которой реакция (2.21) находится в равновесии, имеет строго определенное значение. Эта температура получила название температуры начала восстановления оксида металла твердым углеродом. Протекание реакции (2.21) в направлении восстановления возможно только в том случае, когда фактиче-

ская температура смеси оксида металла с углеродом выше температуры начала восстановления: $T > T_{\rm H.B.}$

Значение температуры начала восстановления оксида металла твердым углеродом может быть определено двумя способами.

При использовании первого способа определяют зависимость равновесного состава газовой смеси $CO-CO_2$ для реакций (2.15) и (1.11). Аналитическим способом находят значение температуры, при которой равновесная газовая фаза для этих двух реакций имеет одинаковый состав. Эта температура и будет температурой начала восстановления оксида металла твердым углеродом. Рисунок 5.1 схематически демонстрирует физическую сущность этого способа.

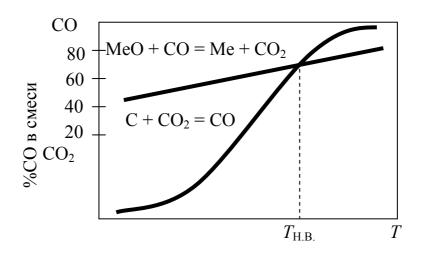


Рисунок 2.1 — Определение $T_{H.B.}$ оксида металла в присутствии углерода по одинаковому составу газовой фазы

Второй метод расчета основан на том, что температура начала восстановления данного оксида твердым углеродом соответствует температуре, при которой химическое сродство восстанавливаемого металла к кислороду и химическое сродство углерода к кислороду становятся одинаковыми. Химическое сродство металла и углерода к кислороду оцениваются величинами $\Delta G_{(1.27)}^{\circ}$ и $\Delta G_{(2.7)}^{\circ}$:

$$2 \text{ C} + \text{O}_2 = 2 \text{ CO}$$
 $\Delta G_{(1.27)}^{\circ}$;
 $2 \text{ Me} + \text{O}_2 = 2 \text{ MeO}$ $\Delta G_{(2.1)}^{\circ}$.

Уравнения зависимости $\Delta G_{(1.27)}^{\circ}$ и $\Delta G_{(2.1)}^{\circ}$ от температуры имеют вид:

$$\Delta G_{(1,27)}^{\circ} = \Delta H_{(1,27)}^{\circ} - T \Delta S_{(1,27)}^{\circ}; \tag{2.22}$$

$$\Delta G_{(2.1)}^{\circ} = \Delta H_{(2.1)}^{\circ} - T \Delta S_{(2.1)}^{\circ}. \tag{2.23}$$

Рисунок 2.2 иллюстрирует, как, используя последние две зависимости, определить температуру начала восстановления.

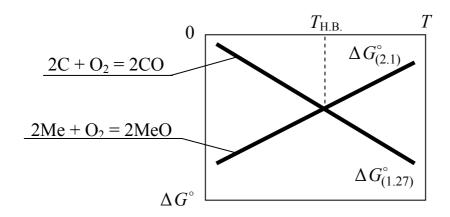


Рисунок 2.2 — Определение $T_{H.B.}$ оксида металла в присутствии твердого углерода по одинаковому значению химического сродства к кислороду

Температура, при которой пересекаются две линии, соответствует одинаковому значению химического сродства металла и углерода к кислороду. Эта температура соответствует температуре начала восстановления данного оксида металла в присутствии твердого углерода. Значение этой температуры может быть найдено аналитическим путем, если приравнять правые части уравнений (2.22) и (2.23):

$$\Delta H_{(1.27)}^{\circ} - T \Delta S_{(1.27)}^{\circ} = \Delta H_{(2.1)}^{\circ} - T \Delta S_{(2.1)}^{\circ}.$$

Тогда

$$T_{\text{H.B.}} = \frac{\Delta H_{(1.27)}^{\circ} - \Delta H_{(2.1)}^{\circ}}{\Delta S_{(1.27)}^{\circ} - \Delta S_{(2.1)}^{\circ}}.$$
 (2.24)

Необходимые значения термодинамических величин берутся из приложения А. Уравнения реакций записываются в расчете на 1 моль кислорода.

Во многих случаях восстановленный металл переходит в раствор, и восстанавливаемый оксид может находиться в растворе. Эти обстоятельства влияют на активность компонентов и их сродство к кислороду. Для таких систем количественной характеристикой свойств может служить кислородный потенциал.

Вид зависимости кислородного потенциала газовой фазы при наличии твердого углерода устанавливается из условий равновесия реакции (1.27):

$$\Pi_{\text{O(C/CO)}} = \Delta G_{(1.27)}^{\circ} + 2RT \ln P_{\text{CO}} + 2RT \ln a_{\text{C}}.$$
 (2.25)

Если в реакции участвует чистый углерод в форме графита, $a_{\rm C}$ =1. В связи с очень низким равновесным давлением кислорода в системе можно принять, что $P_{\rm CO}$ = P. С учетом двух последних условий получаем:

$$\Pi_{\text{O(C/CO)}} = \Delta G_{(1.27)}^{\circ} + 2RT \ln P.$$
 (2.26)

В случае образования оксида Me_XO_Y кислородный потенциал равновесной газовой фазы описывается выражением (2.12):

$$\Pi_{\mathrm{O}(\mathrm{Me_{X}O_{Y}})} = \Delta G_{\mathrm{Me_{X}O_{Y}}}^{\circ} + \frac{2}{\mathrm{Y}} \mathrm{R} T \ln a_{\mathrm{Me_{X}O_{Y}}} - \frac{2\mathrm{X}}{\mathrm{Y}} \mathrm{R} T \ln a_{\mathrm{Me}}.$$

С учетом того, что уравнение температурной зависимости $\Delta G_{\text{Me}_{X}\text{O}_{Y}}^{\circ}$ имеет вид:

$$\Delta G_{\text{Me}_{\text{Y}}\text{O}_{\text{Y}}}^{\text{o}} = \Delta H_{\text{Me}_{\text{Y}}\text{O}_{\text{Y}}}^{\text{o}} - T \Delta S_{\text{Me}_{\text{Y}}\text{O}_{\text{Y}}}^{\text{o}}, \qquad (2.27)$$

а уравнение температурной зависимости $\Delta G_{(1.27)}^{\circ}$ имеет вид (2.22), получаем уравнение для расчета температуры начала восстановления оксида в присутствии твердого углерода:

$$T_{\text{H.B.}} = \frac{\Delta H_{(1.27)}^{\circ} - \Delta H_{(\text{Me}_{X}\text{O}_{Y})}^{\circ}}{\Delta S_{(1.27)}^{\circ} - \Delta S_{(\text{Me}_{X}\text{O}_{Y})}^{\circ} + 2R \left(\frac{1}{Y} \ln a_{(\text{Me}_{X}\text{O}_{Y})} - \frac{X}{Y} \ln a_{(\text{Me})} - \ln P\right)} . \quad (2.28)$$

2.2 Расчетно-графическая работа 2. **ПРОЦЕССЫ ВОССТАНОВЛЕНИЯ ОКСИДОВ**

2.2.1 Содержание задания № 1

Какими свойствами обладает рассчитанная согласно условию РГР №1 газовая фаза по отношению к оксидам железа FeO, Fe₃O₄ и Fe₂O₃ в интервале температур T_1 – T_6 ? Построить на одном графике зависимости $\Pi_{O(\Gamma,\Phi,\cdot)}$, $\Pi_{O(Fe_0)}$, $\Pi_{O(Fe_2O_3)}$ от температуры. Определить равновесное парциальное давление кислорода и кислородный потенциал $\Pi_{O(FeO)}$ для активностей FeO в жидком шлаке 1; 0,8; 0,6; 0,4; 0,2; a_{Fe} = 1 и для температуры T_1 + 1000 К. Построить графическую зависимость Π_O – a_{FeO} .

2.2.2 Содержание отчета по заданию № 1

- 1 Краткая теория восстановления оксидов металлов.
- 2 Исходные данные расчетно-графического задания.
- 3 Расчеты величин, тексты программ для ЭВМ и описание к ним.
- 4 Результаты расчетов, занесенные в таблицу 2.1 и 2.2, или таблицы выходных данных с ЭВМ, составленные по подобию.

- 5 Графические зависимости.
- 6 Выводы.

Таблица 2.1 – Pезультаты расчетов Π_O по заданию № 1

<i>T</i> , K	$\Pi_{\mathrm{O}(r. \varphi.)}$	$\Pi_{\mathrm{O(FeO)}}$	$\Pi_{O(Fe_3O_4)}$	$\Pi_{\mathrm{O(Fe_2O_3)}}$
1,11		кДж/	′моль	
T_1				
T_2				
T_3				
T_4				
T_5				
T_6				

Таблица 2.2 – Pезультаты расчетов P_{O_2} и Π_O по заданию № 1

$a_{ m FeO}$	P_{O_2} , атм	П _{О(FeO)} , кДж/моль
1		
0,8		
0,6		
0,6 0,4		
0,2		

2.2.3 Содержание задания № 2

Определить температуры начала восстановления заданного оксида металла в присутствии твердого углерода при значении давления P, активности металла $a_{\rm Me}$ и активностях оксида металла $a_{\rm Me_XO_Y}$: a_1 , a_2 , a_3 , a_4 , приведенных в таблице 2.3. Построить графики изменения с температурой кислородного потенциала восстанавливаемого оксида $\Pi_{\rm O(Me_XO_Y)}$ и кислородного потенциала газовой фазы в присутствии твердого углерода, график зависимости температуры начала восстановления от активности металла.

2.2.4 Содержание отчета по заданию № 2

- 1 Краткая теория восстановления оксидов металлов.
- 2 Исходные данные расчетно-графического задания.
- 3 Расчеты величин, тексты программ для ЭВМ и описания к ним.
- 4 Результаты расчетов, занесенные в таблицу 2.4 или таблица выходных данных с ЭВМ, составленная по подобию.
- 5 Графические зависимости.
- 6 Выводы.

Таблица 2.3 – Варианты задания № 1

	ì			η,			
Вариант	Оксид	a_{Me}		w Me	⊄ Me _X O _Y		P, atm.
1			A_1	a_2	a_3	a_4	
1	FeO	0,1	0,10	0,30	0,50	0,70	0,1
2	FeO	6,0	0,20	0,40	09'0	0,80	0,2
3	FeO	6,0	0,30	0,50	0,70	06,0	0,3
4	FeO	2'0	0,40	0,60	08'0	1,00	0,4
5	FeO	6,0	0,05	0,35	0,65	0,95	0,5
9	MnO	0,1	0,10	0,30	0,50	0,70	0,6
7	OuM	6,0	0,20	0,40	09'0	0,80	0,7
8	OuM	5,0	0,30	0,50	0,70	06,0	8,0
6	OuM	2.0	0,40	09'0	08'0	1,00	6,0
10	OuM	6'0	0,05	0,35	9,0	0,95	1,0
11	$\mathrm{Cr}_2\mathrm{O}_3$	0,1	0,10	0,30	0,50	0,70	1,1
12	$\mathrm{Cr}_2\mathrm{O}_3$	0,3	0,20	0,40	09'0	0,80	1,2
13	$\mathrm{Cr}_2\mathrm{O}_3$	0,5	0,30	0,50	0,70	0,90	1,3
14	$\mathrm{Cr}_2\mathrm{O}_3$	0,7	0,40	0,60	0,80	1,00	1,4
15	$\mathrm{Cr}_2\mathrm{O}_3$	6,0	0,05	0,35	0,65	0,95	1,5
16	SiO_2	0,1	0,10	0,30	0,50	0,70	1,6
17	SiO_2	0,3	0,20	0,40	09'0	0,80	1,7
18	SiO_2	0,5	0,30	0,50	0,70	0,90	1,8
19	SiO_2	L'0	0,40	0,60	08'0	1,00	1,9
20	SiO_2	6,0	0,05	0,35	0,65	0,95	2,0
21	C_0O	0,1	0,10	0,30	0,50	0,70	2,1
22	C_0O	0,3	0,20	0,40	09'0	0,80	2,2
23	C_0O	0,5	0,30	0,50	0,70	0,90	2,3
24	C_0O	2'0	0,40	0,60	08'0	1,00	2,4
25	C_0O	6,0	0,05	0,35	9,65	0,95	2,5
26	NiO	0,1	0,10	0,30	0,50	0,70	2,6
27	NiO	0,3	0,20	0,40	0,60	0,80	2,7
28	NiO	0,5	0,30	0,50	0,70	0,90	2,8
29	NiO	0,7	0,40	0,60	0,80	1,00	2,9
30	NiO	6,0	0,05	0,35	0,65	0,95	3,0

Таблица 2.4 – Результаты расчетов по заданию №2

		П _{О(Ме}	_{хОу)} , кДж	к/моль	$\Pi_{\mathrm{O}(\Gamma)}$, кДж	[/] моль
$a_{\mathrm{Me_XO_Y}}$	$T_{ m H.B.}$	T _{H.B.} -300	$T_{ m H.B.}$	T _{H.B.} -300	T _{H.B.} -300	$T_{ m H.B.}$	T _{H.B.} +300
a_1							
a_2							
a_3							
a_4							

2.3 Вопросы для самостоятельного контроля знаний

- 1 Какими величинами могут быть охарактеризованы химическая прочность и термодинамическая стабильность оксидов?
- 2 Выведите уравнение для $\Pi_{O \, (MeO)}, \; \Pi_{O \, (Me_XO_Y)}$.
- 3 Как давление и температура влияют на термодинамическую стабильность оксидов и карбонатов?
- 4 Каким образом образование растворов влияет на термодинамическую прочность соединений и на упругость диссоциации?
- 5 Каково термодинамическое условие восстановления оксидов газом-восстановителем?
- 6 Какие факторы влияют на протекание процессов восстановления газом-восстановителем?
- 7 В чем состоит принцип последовательных превращений?
- 8 В чем состоят особенности восстановления оксидов в присутствии твердого углерода?
- 9 Что такое температура начала восстановления?
- 10 Какими способами может быть рассчитана температура начала восстановления? Дайте их графическую интерпретацию.
- 11 Какие факторы влияют на значение температуры начала восстановления? Каким образом?
- 12 Выведите аналитическое уравнение для расчета температуры начала восстановления оксида в присутствии твердого углерода.

3 СВОЙСТВА СЛОЖНЫХ МЕТАЛЛИЧЕСКИХ СПЛАВОВ

3.1 Общие сведения

Большинство реакций в процессах производства металлов происходит при участии веществ, растворенных в расплавах. Основной характеристикой находящегося в растворе компонента является его концентрация. Концентрации компонентов в растворе обычно выражаются в процентах по массе [%i] или в мольных долях x_i . Пересчет состава раствора, выраженного в процентах по массе, на мольные доли компонентов может выть проведен по уравнению:

$$x_{i} = \frac{\left[\%i\right] \cdot M_{i}^{-1}}{\sum_{1}^{n} \left[\%i\right] \cdot M_{i}^{-1}},$$
(3.1)

где M_i — атомные или молекулярные массы компонентов; n — число компонентов раствора.

Описание свойств реальных растворов обычно проводится в сравнении со свойствами идеальных растворов. В термодинамике растворов идеальным называют раствор, теплота смешения и изменение объема при образовании которого равны нулю. Идеальные растворы использует в качестве стандарта, с которым сравниваются реальные растворы.

В настоящее время наиболее распространенным методом математического представления термодинамических функций реальных растворов является метод активностей. Он состоит в использовании активности a_i и коэффициента активности γ_i в качестве исходных величин для выражения остальных термодинамических функций раствора.

Активность является сложной функцией концентрации и определяется как отношение летучести компонента в растворе к его летучести в стандартном состоянии. Степень несовпадения активности с концентрацией в количественной форме выражается величиной коэффициента активности, который представляет собой отношение активности компонента раствора к его концентрации:

$$\gamma_{i} = \frac{a_{i}}{x_{i}}. \tag{3.2}$$

Численное значение активности связано с условием выбора стандартного состояния. Выбор стандартного состояния может быть различным для растворов различных типов.

Если в качестве стандартного состояния выбирают чистое вещество при температуре опыта, активность характеризует степень отклонения системы от закона Рауля:

$$a_{\rm i} = \frac{P_{\rm i}}{P_{\rm i}^{\circ}},\tag{3.3}$$

где P_i – давление насыщенного пара компонента i над раствором с концентрацией i, равной x_i ;

 P_{i}° — давление насыщенного пара компонента i над чистым веществом i при той же температуре.

Для идеальных растворов $\gamma_i = 1$ и $a_i = x_i$. В случае отрицательных отклонений от закона Рауля $\gamma_i < 1$. Для положительных отклонений от закона Рауля $\gamma_i > 1$.

Применительно к растворам различных компонентов в металлах мы обычно имеем дело с разбавленными растворами этих компонентов. Поведение растворенного вещества в разбавленном растворе описывается законом Генри:

$$P_i = \mathbf{k} \cdot x_i, \tag{3.4}$$

где k – постоянная Генри.

Отклонение от закона Генри характеризуется коэффициентом активности f_i :

$$P_{i} = k a_{i} = k f_{i} x_{i}. \tag{3.5}$$

Такое обозначение для коэффициента активности веществ в разбавленных растворах введено для того, чтобы отличить этот коэффициент активности, показывающий отклонение от закона Генри, от коэффициента активности γ_i , показывающего отклонение от закона Рауля. Поскольку в разбавленном растворе мольная доля растворенного компонента пропорциональна его массовому проценту, удобным для практических расчетов является использование 1% стандартного состояния. В разбавленных растворах активность растворенного компонента по отношению к этому стандартному состоянию становится равной концентрации, выраженной в процентах по массе:

$$a_{i[1\%]} = f_{i}[\%i].$$
 (3.6)

Активность компонента B в сложном растворе, где A является растворителем, обычно изменяется при добавлении в расплав других компонентов (C, D и т.д.). В сложном растворе коэффициент активности $f_{\rm B}$ будет зависеть от природы и концентрации других компонентов раствора:

$$ln f_{\rm B} = F(x_{\rm B}, x_{\rm C}, x_{\rm D}, ..., x_{\rm i}).$$
(3.7)

Параметры взаимодействия первого порядка показывают влияние добавляемых компонентов (C, D, и т.д.) на коэффициент активности рассматриваемого компонента В. Параметры взаимодействия второго порядка показывают характер изменения параметров взаимодействия первого порядка под влиянием увеличения концентрации других компонентов в расплаве.

При принятии в качестве стандартного состояния однопроцентного раствора компонента i в расплаве и использовании десятичных логарифмов вместо натуральных, выражение (3.7) примет вид:

$$\lg f_{i} = \sum_{j=2}^{n} e_{i}^{j} [\% j] + \sum_{j=2}^{n} r_{i}^{j} [\% j]^{2} + \sum_{j=2}^{n} \sum_{k=2}^{n} r_{i}^{j,k} [\% j] [\% k],$$
(3.8)

где $e_{\rm i}^{\rm j}$ – параметр взаимодействия первого порядка; $r_{\rm i}^{\rm j},\ r_{\rm i}^{\rm j,k}$ – параметры взаимодействия второго порядка.

При невысоких концентрациях растворенных компонентов слагаемыми, включающими параметры взаимодействия второго порядка, можно пренебречь. Тогда выражение (3.8) упрощается:

$$\lg f_{\rm B} = e_{\rm B}^{\rm B}[\%{\rm B}] + e_{\rm B}^{\rm C}[\%{\rm C}] + e_{\rm B}^{\rm D}[\%{\rm D}] = \sum_{j=2}^{\rm n} e_{\rm i}^{j} [\% j].$$
 (3.9)

Параметры взаимодействия e_{i}^{j} зависят от температуры расплава. Эта зависимость имеет общий вид

$$e_{\rm i}^{\rm j} = \frac{\rm A}{T} + {\rm B} \,.$$
 (3.10)

Значения коэффициентов А и В для некоторых параметров взаимодействия приведены в приложении Б.

Одной из важнейших теплофизических характеристик сплавов является температурный интервал кристаллизации, равный разности температуры ликвидуса $T_{\rm L}$ и температуры солидуса $T_{\rm S}$. В большинстве случаев эти величины определяются методом термического анализа. Однако для многих сплавов значения $T_{\rm L}$ и $T_{\rm S}$ отсутствуют в справочной литературе.

Для расчета температур ликвидуса и солидуса сплавов на основе железа используют простой метод, основанный на приближении аддитивного влияния содержащихся в расплаве примесей на температуру плавления чистого железа:

$$T_{\rm L} = T_{\rm \Pi \Pi \, (Fe)} - \sum_{i} a_{\rm L_i} [\% i];$$
 (3.11)

$$T_{\rm S} = T_{\rm \Pi JI \, (Fe)} - \sum_{i} a_{\rm S_i} [\% i],$$
 (3.12)

где $T_{\Pi\Pi \text{ (Fe)}}$ – температура плавления чистого железа;

 $a_{\rm L_i}$, $a_{\rm S_i}$ — коэффициенты, показывающие, на сколько градусов изменяется температура ликвидуса и солидуса сплава при добавлении 1% *i*-го компонента.

Значения $a_{\rm L_i}$ и $a_{\rm S_i}$ находят по диаграммам состояния двойных систем. Уравнения (3.11) и (3.12) позволяют оценить $T_{\rm L}$ и $T_{\rm S}$ разбавленных растворов на основе железа с точностью до 5 К. Значения параметра приведены в приложении В.

В настоящее время металлургия производит значительное количество марок стали с регулируемым содержанием газов. В связи с этим важным является теоретически предвидеть их растворимость в металлических расплавах в зависимости от состава, температуры и парциального давления газа.

Процесс растворения азота в жидком железе обычно представляют уравнением реакции

$$\frac{1}{2} N_{2(\Gamma)} = [N], \tag{3.13}$$

константа равновесия которой зависит от температуры:

$$\lg K_{N} = \lg \frac{a_{N}}{P_{N_{2}}^{0.5}} = -\frac{364}{T} - 1,144.$$
 (3.14)

Активность азота в расплаве может быть представлена как произведение растворимости в жидком металле [%N] (масс. %) и коэффициента активности азота f_N :

$$a_{\rm N} = [\% N] f_{\rm N}.$$
 (3.15)

Комбинируя выражения (3.2) и (3.3), получим:

$$\lg [\%N] = \lg K_N - \lg f_N + 0.5\lg P_{N_2}$$
.

Выплавляемые стали и сплавы содержат легирующие элементы, существенно влияющие на поведение азота. Их влияние проявляется через значение коэффициента активности азота в расплаве, который может быть рассчитан с привлечением параметров взаимодействия азота с компонентами металлического расплава (приложение Б).

При небольших концентрациях легирующих элементов, когда зависимость $\lg f_i$ от содержания примесей практически прямолинейная, расчеты можно делать с использованием только параметров взаимодействия первого порядка. Тогда выражение (3.8) примет вид:

$$\lg f_{N} = \sum_{i=2}^{n} e_{N}^{i} [\% i]. \tag{3.16}$$

При высоких концентрациях легирующих элементов это может привести к значительным погрешностям и для более точного определения коэффициента активности азота f_N требуется учет параметров взаимодействия второго порядка.

3.2 Расчетно-графическая работа 3. РАСЧЕТ КОЭФФИЦИЕНТОВ АКТИВНОСТИ КОМПОНЕНТОВ И ТЕМПЕРАТУРНОГО ИНТЕРВАЛА КРИСТАЛЛИЗАЦИИ СЛОЖНОГО МЕТАЛЛИЧЕСКОГО РАСПЛАВА. ОПРЕДЕЛЕНИЕ РАСТВОРИМОСТИ АЗОТА В ЛЕГИРОВАННЫХ РАСПЛАВАХ ЖЕЛЕЗА

3.2.1 Содержание задания № 1

Рассчитать концентрационную зависимость коэффициента активности и активности углерода в расплаве на основе железа указанного в таблице 3.1 состава, в интервале составов углерода [%C] = 0,1–2,1 с шагом 0,5% для температур 1850, 1900, 1950, 2000 и 2050 К. Построить графики зависимостей $f_{(C)}$ – [%C] и $a_{(C)[1\%]}$ – [%C] для пяти фиксированных концентраций. Рассчитать температуры ликвидуса и солидуса, а также температурные интервалы кристаллизации для пяти сплавов с фиксированными содержаниями углерода. Построить графики зависимостей $T_{\rm L}$ и $T_{\rm S}$ сплавов от [%C].

3.2.2 Содержание отчета по заданию № 1

- 1 Краткая теория термодинамических свойств металлических расплавов.
 - 2 Исходные данные расчетно-графического задания.
 - 3 Расчеты величин. Если расчеты выполнялись на ЭВМ, представляется текст программы и ее описание.
 - 4 Результаты расчетов, занесенные в таблицу 3.2, или таблица исходных данных ЭВМ, составленная по подобию.
 - 5 Графические зависимости.
 - 6 Выводы.

3.2.3 Содержание задания № 2

В указанном интервале температур с шагом в 100 К рассчитать температурную зависимость растворимости азота в многокомпонентном расплаве заданного состава (таблица 3.3) на основе железа, находящемся в равновесии с атмосферой с парциальным давлением азота при его парциальных давлениях в равновесной газовой атмосферой P_1 = 0,5; P_2 = 1,0; P_3 = 1,5; P_4 = 2,0 и P_5 = 2,5 атм. Построить зависимость [%N] - $P_{\rm N_2}$. Для температуры T^* и давления $P_{\rm N_2}^*$ рассчитать зависимость растворимости азота и его коэффициента активности в сплаве от содержания легирующего компонен-

та [%Me]. Построить графические зависимости [%N] - [%Me] и $\lg f_{\rm N}$ - [%Me].

 ${\it Таблица}~3.1 - {\it Варианты}~{\it задания}~{\it №}~1$

Ворхионт			Состав с	плава, %		
Вариант	Cr	Ni	Mo	Si	Mn	V
1	2	4	-	0,5	0,8	-
2	1,3	ı	0,8	0,9	1,5	-
3	1,4	ı	-	0,4	0,5	-
4	1,2	0,8	1,0	0,3	0,4	-
5	19	9	-	2	0,5	2
6	-	1	-	2,1	0,6	0,2
7	18	6	-	0,3	0,2	-
8	25	ı	-	0,3	0,4	-
9	19	11	3	0,2	0,3	0,3
10	20	14	-	2,2	0,4	-
11	17	4	-	0,3	9	0,3
12	16	3	1,2	0,3	0,5	0,2
13	17	2	-	0,4	0,6	-
14	23	18	2	0,3	0,5	0,3
15	22	6	-	0,4	0,6	-
16	4	-	0,5	0,7	0,3	2
17	5	5	-	0,6	0,3	-
18	6	-	1,1	0,8	0,4	-
19	-	4	1,5	0,9	0,4	0,2
20	7	-	1,0	1,0	0,6	0,3
21	8	0,5	-	1,2	0,6	-
22	-	1	2,0	0,3	1,0	-
23	9	7	0,6	0,4	1,0	0,3

 $\it T$ аблица $\it 3.2$ – $\it P$ езультаты расчета по заданию $\it № 1$

					Τ,	К					T	$T_{\rm S}$,	ΔT ,
%C	18	50	19	00	19	50	20	00	20	50	$T_{\rm L},$	K	K
	$f_{(C)}$	$a_{\rm (C)}$	IX.	N	N								
0,1													
0,6													
1,1													
1,6													
2,1													

 $T a \delta лица \ 3.3 - B a рианты задания <math>N_{\overline{e}} \ 2$

[%Me] ₅	2,5	5,0	10,0	15,0	12,5	8,5	5,0	9,0	10,0	2,5	2,5	10,0	12,5	9,0	5,0	2,5	5,0	10,0	12,5	8,5
[%Me]4	2,0	4,0	8,0	12,0	10,0	6,5	4,0	7,0	8,0	2,0	2,0	8,0	10,0	7,0	4,0	2,0	4,0	8,0	10,5	6,5
[%Me] ₃	1,5	3,0	0,9	0,6	7,5	4,5	3,0	5,0	6,0	1,5	1,5	6,0	7,5	5,0	3,0	1,5	3,0	6,0	7,5	4,5
[%Me] ₂	1,0	2,0	4,0	0,9	5,0	2,5	3,0	3,0	4,0	1,0	1,0	4,0	5,0	3,0	2,0	1,0	2,0	4,0	5,0	2,5
[%Me] ₁	6,5	1,0	2,0	3,0	2,5	5,0	1,0	1,0	2,0	5,0	5,0	2,0	2,5	1,0	1,0	6,5	1,0	2,0	2,5	0,5
Me	Cr	Cr	Cr	Cr	Cr	Mn	Mn	Mn	Mn	Mn	N_{i}	N_{i}	N_{i}	$N_{\mathbf{i}}$	N_{i}	Mo	Mo	Mo	Mo	Mo
T^*, K	1680	1700	1720	1740	1760	1780	1800	1820	1840	1860	1880	1900	1920	1940	1960	1980	2000	2020	2040	2060
$P_{ m N_2}^*$, atm	1,0	8,0	1,5	2,0	0,5	1,0	8,0	1,5	2,0	0,5	1,0	8,0	1,5	2,0	0,5	1,0	8,0	1,5	2,0	0,5
% Mn	6,0	8,9	6,3	0,6	6,0	1,0	2,0	4,0	8,0	10,0	6,0	0,6	1,0	2,0	4,0	8,0	10,0	6,0	0,6	1,0
% Ni	16,5	5,5	4,0	4,0	1,0	5,0	10,0	20,0	2,5	16,5	5,5	4,0	1,0	5,0	10,0	20,0	2,5	16,5	4,0	1,0
% Cr	24,5	20,3	17,0	21,0	24,5	17,0	21,0	20,3	17,0	24,5	20,3	21,0	24,5	17,0	21,0	20,3	24,5	21,0	17,0	20,3
Температурны й интервал, К	17002100	17052105	17102110	17152115	17202120	17252125	17302130	17352135	17402140	17452145	17502150	16502050	16552055	16602060	16652065	16702070	16752075	16802080	16852085	16902090
Вариан т	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20

3.2.4 Содержание отчета по заданию № 2

- 1 Краткая теория растворимости газов в металлах.
- 2 Краткая теория расчета активностей компонентов металлического расплава.
- 3 Исходные данные расчетно-графического задания.
- 4 Расчеты величин.
- 5 Результаты расчетов, занесенные в таблицу 3.4.
- 6 Графические зависимости.
- 7 Выводы.

Таблица 3.4 – Pезультаты расчетов по заданию № 2

Т, К	[%N]	Р, атм	[%N]	[%Me], масс. %	$\lg f_{ m N}$	[%N]
T_1 T_2						
T_2 T_3						
T_4 T_5						

3.3 Вопросы для самостоятельного контроля знаний

- 1 Как пересчитать состав раствора, выраженный в процентах по массе, на мольные доли компонентов?
- 2 По отношению к каким стандартным состояниям рассчитывают активность компонентов в металлических расплавах?
- 3 Чем отличаются коэффициенты активности γ и f?
- 4 Какие имеются способы расчета активности компонентов по экспериментальным данным?
- 5 Как производится расчет активности компонента раствора по данным о равновесии реакций с участием металлического расплава?
- 6 Как производится расчет активности по данным об ЭДС концентрационного гальванического элемента?
- 7 Как производится расчет активности компонента раствора по данным о значении активности другого компонента раствора?
- 8 Как производится расчет коэффициентов активности компонентов в сложном металлическом расплаве?
- 9 Что такое параметры взаимодействия e_{i}^{j} и r_{i}^{j} ?
- 10 Какие факторы влияют на величину коэффициента активности и растворимости азота в жидком железе?
- 11 Как рассчитывается коэффициент активности азота в жидком железе и сплавах на его основе?
- 12 При каких условиях азот может выделяться из жидкого железа в виде самостоятельной нитридной фазы?
- 13 Как давление газа влияет на его растворимость в металле?

4 СВОЙСТВА СЛОЖНЫХ ОКСИДНЫХ РАСПЛАВОВ

4.1 Общие сведения

Шлаки выполняют важные и разнообразные функции в высокотемпературных металлургических процессах. Под шлаком понимают расплав различных оксидов. Металлургические шлаки имеют в своем составе следующие оксиды: FeO, MnO, CaO, MgO, SiO₂, Cr₂O₃, Al₂O₃, P₂O₅ и др.

Расчет активностей компонентов шлаковых расплавов проводят на основании двух модельных представлений о строении шлакового расплава, получивших название молекулярной и ионной теории расплавленных шлаков.

Согласно молекулярной теории шлак состоит из молекул свободных оксидов и соединений между оксидами различной химической природы (силикаты, ферриты, фосфаты). Химические соединения частично диссоциированы. В реакциях с металлом принимают участие только свободные оксиды. Поэтому мольная доля этих оксидов принимается равной их активности в шлаковом расплаве.

Более обоснованной является ионная теория строения шлаковых расплавов, в соответствии с которой шлак в расплавленном состоянии представляет собой ионный раствор. Расплавленные шлаки представляют собой реальные растворы, показывающие значительные отклонения от идеальности. Поэтому для количественных расчетов равновесий с участием жидких шлаков нужно знать активность компонентов шлакового расплава. Для учета взаимодействия между компонентами шлакового расплава предложены различные модели, учитывающие состав, форму, размеры и заряд отдельных частиц и энергии связи между ними.

Разработанная В.А.Кожеуровым статистическая теория регулярных ионных растворов основана на предположении о полной диссоциации компонентов шлака на одноатомные ионы. Расплавленный шлак рассматривается как система, состоящая из отдельных некислородных одноатомных частиц катионов, которые окружены анионами кислорода. Между катионами и анионами действуют силы межчастичного взаимодействия.

Свободная энергия 1 моля смеси из k компонентов выражается уравнением

$$G = \sum_{i=1}^{k} x_i G_i + R T \sum_{i=1}^{k} x_i \ln x_i + \sum_{i=1}^{k-1} \sum_{j=i+1}^{k} x_i x_j Q_{ij},$$
 (4.1)

где G — свободная энергия чистого компонента i; Q_{ij} — энергия смешения компонентов i и j, Q_{ij} = Q_{ji} ; x_i — ионная доля компонента шлака i.

$$x_{i} = \frac{v_{i}n_{i}}{\sum_{i}v_{i}n_{i}},\tag{4.2}$$

где $n_{\rm i} = \frac{[\% i]}{{
m M}_{
m i}}$ – число молей i-го компонента;

 M_{i} – молекулярная масса *i*-го компонента;

[%i] – содержание компонента *i* в шлаке в мас.%;

 $v_{\rm i}$ – число катионов в молекуле компонента.

Умножая уравнение (4.1) на общее число катионов в данном количестве раствора, т.е. на $\sum\limits_{i=1}^k v_i \, n_i$, получаем выражение для полной свободной энергии раствора

$$G' = G \sum_{i=1}^{k} v_i \, n_i \,, \tag{4.3}$$

Дифференцируя G' по числу молей компонента ℓ , получим химический потенциал μ_{ℓ} компонента ℓ :

$$\frac{\partial G'}{\partial n_{\ell}} = \mu_{\ell} = \nu_{\ell} \left[G_{\ell} + R T \ln x_{\ell} + \sum_{i=1}^{\ell-1} x_{i} Q_{i\ell} + \sum_{i=\ell+1}^{k} x_{i} Q_{\ell i} - \sum_{i=1}^{k-1} \sum_{j=i+1}^{k} x_{i} x_{j} Q_{ij} \right], \quad (4.4)$$

с другой стороны,

$$\mu_{\ell} = \nu_{\ell} (G_{\ell} + R T \ln x_{\ell} + R T \ln \gamma_{\ell})$$
(4.5)

Сравнивая выражения (4.4) и (4.5), получим выражение для коэффициента активности γ_ℓ компонента:

$$R T \ln \gamma_{\ell} = \sum_{i=1}^{\ell-1} x_i Q_{i\ell} + \sum_{i=\ell+1}^{k} x_i Q_{\ell i} - \sum_{i=1}^{k-1} \sum_{j=i+1}^{k} x_i x_j Q_{ij}.$$
 (4.6)

Обозначим ионные доли катионов, входящих в состав оксидов шестикомпонентного шлакового расплава, через x_1, x_2, \dots, x_6 .

Компоненты шлака FeO MnO CaO MgO SiO
$$_2$$
 Р $_2$ О $_5$ Ионные доли катионов x_1 x_2 x_3 x_4 x_5 x_6

Последний член уравнения (4.6) запишем в развернутом виде:

$$\sum_{i=1}^{k-1} \sum_{j=i+1}^{k} x_i x_j Q_{ij} = x_1 x_2 Q_{12} + x_1 x_3 Q_{13} + x_1 x_4 Q_{14} + x_1 x_5 Q_{15} + x_1 x_6 Q_{16} + x_2 x_3 Q_{23} + x_2 x_5 Q_{25} + x_2 x_6 Q_{26} + x_3 x_4 Q_{34} + x_3 x_5 Q_{35} + x_3 x_6 Q_{36} + x_4 x_5 Q_{45} + x_4 x_6 Q_{46} + x_6 x_5 Q_{56}.$$

$$(4.7)$$

Принято, что Q_{25} = -41,9 кДж, Q_{36} = -201 кДж, Q_{35} = Q_{45} = -113 кДж. Остальные Q_{ij} = 0. Тогда:

$$\sum_{i=1}^{k-1} \sum_{j=i+1}^{k} x_i x_j Q_{ij} = x_2 x_5 Q_{25} + x_3 x_5 Q_{35} + x_3 x_6 Q_{36} + x_4 x_5 Q_{45}.$$
 (4.8)

Уравнение (4.6) будет иметь вид:

для $\ell = 1$ -

$$R T \ln \gamma_1 = -x_2 x_5 Q_{25} - x_3 x_5 Q_{35} - x_3 x_6 Q_{36} - x_4 x_5 Q_{45}. \tag{4.9}$$

для $\ell = 2$ -

$$R T \ln \gamma_2 = x_5 Q_{25} + R T \ln \gamma_1;$$
 (4.10)

для $\ell = 3$ -

$$R T \ln \gamma_3 = x_5 Q_{35} + x_6 Q_{36} + R T \ln \gamma_1;$$
 (4.11)

для $\ell = 4$ -

$$R T \ln \gamma_4 = x_5 Q_{45} + R T \ln \gamma_1;$$
 (4.12)

лля $\ell = 5$ -

$$R T \ln \gamma_5 = x_5 Q_{25} + x_5 Q_{35} + x_4 Q_{45} + R T \ln \gamma_1; \qquad (4.13)$$

для $\ell = 6$ -

$$R T \ln \gamma_6 = x_6 Q_{36} + R T \ln \gamma_1.$$
 (4.14)

Все выведенные уравнения (4.8)...(4.14) относятся к сильно основным шлакам. Они достаточно хорошо согласуются с экспериментальными данными. Поскольку сделано допущение о существовании в шлаковом расплаве анионов только одного сорта (O^2) , ионная доля анионов кислорода будет равна единице. Активности компонентов шлака определяются по найденным значением γ_i и x_i :

$$a_i = (\gamma_i x_i)^{v_i}. \tag{4.15}$$

Процесс перехода кислорода из шлака в металл можно представить уравнением реакции

$$(FeO) = [Fe] + [O].$$
 (4.16)

Коэффициент распределения кислорода между металлом и шлаком представляет собой отношение

$$L_{\rm O} = -\frac{a_{\rm [O]}}{a_{\rm (FeO)}},$$
 (4.17)

где $a_{[O]}$ – активность кислорода в металле;

 $a_{\rm (FeO)}$ – активность FeO в шлаке.

Для разбавленных растворов кислорода в железе можно принять $a_{\mathrm{[O]}}$ = [%O].

Зависимость максимальной растворимости кислорода в чистом железе от температуры определяется уравнением

$$\lg [\%O]_{\text{max}} = -\frac{6320}{T} + 2,730. \tag{4.18}$$

Исходя из выражений (4.9), (4.17) и (4.18), находим:

$$[\%O] = a_{(FeO)}[\%O]_{max} = x_1 \gamma_1 [\%O]_{max}.$$
 (4.19)

Равновесное распределение марганца между металлом и шлаком можно представить уравнением:

$$(FeO) + [Mn] = (MnO) + [Fe].$$
 (4.20)

Константа равновесия реакции (4.20)

$$K_{Mn} = \frac{a_{(MnO)}}{a_{(FeO)}[\%Mn]} = \frac{a_2}{a_1[\%Mn]},$$
 (4.21)

и ее температурная зависимость

$$\lg K_{Mn} = \frac{6700}{T} - 3.12. \tag{4.22}$$

Равновесное содержание марганца в процентах к массе определится по уравнению

$$[\%Mn] = \frac{a_2}{a_1 K_{Mn}} = \frac{x_2 \gamma_2}{x_1 \gamma_1 K_{Mn}}.$$
 (4.23)

Равновесное распределение фосфора между металлом и шлаком выразим уравнением

$$2 [P] + 5 (FeO) = (P_2O_5) + 5 [Fe].$$
 (4.24)

Константа равновесия реакции

$$K_{P} = \frac{a_{(P_{2}O_{5})}}{a_{(FeO)}^{5} [\%P]^{2}} = \frac{a_{6}}{a_{1}^{5} [\%P]^{2}},$$
 (4.25)

где $a_6 = (x_6 \gamma_6)^{\text{v}} = (x_6 \gamma_6)^2$.

Отсюда

$$[\%P] = \frac{x_6 \gamma_6}{\frac{5}{2} \frac{1}{2}}.$$
 (4.26)

Значение K_P , по данным В.А.Кожеурова, для интервала температур 1550...1710°C изменяется незначительно, а ее среднее значение для данного интервала температур принимается постоянным: $K_P = 0.0229$.

Термодинамические расчеты равновесий для реакций между металлом и шлаком позволяют установить наиболее благоприятные условия для проведения металлургических процессов. В современных процессах получения чугуна и стали имеет место интенсивное перемешивание газа, металла и шлака, что приближает систему к равновесию и, тем самым, повышает эффективность использования результатов подобных расчетов.

4.2 Расчетно-графическая работа 4. РАСЧЕТ АКТИВНОСТЕЙ КОМПОНЕНТОВ ШЛАКОВОГО РАСПЛАВА И СОДЕРЖАНИЯ ПРИМЕСЕЙ В ЖИДКОМ ЖЕЛЕЗЕ, РАВНОВЕСНЫМ С ЭТИМ ШЛАКОМ

4.2.1 Содержание задания

Рассчитать температурные зависимости активности и коэффициентов активности компонентов шестикомпонентного шлакового расплава, содержания кислорода, марганца и фосфора в жидком железе, находящемся в равновесии со шлаком. Расчет произвести для указанного интервала температур с шагом в 500К. Построить графические зависимости логарифмов коэффициентов активности компонентов шлака от обратной температуры $\ln \gamma_{\ell} - 1/T$, активностей компонентов шлака от температуры $a_{\ell} - T$, равновесного содержания примесей от температуры [%i]. Данные для расчета брать из таблицы 4.1.

Таблица 4.1 – Варианты задания

Вари-	FeO	MnO	CaO	MgO	SiO ₂	P_2O_5	Температурный интервал, К
1	68,10	2,47	16,0	6,04	6,52	0,85	15001700
2	67,78	3,09	17,78	4,71	5,73	0,90	15051705
3	59,54	2,83	19,99	6,35	10,49	0,96	15101710
4	71,84	2,18	13,83	5,71	5,76	0,69	15151715
5	59,97	2,90	20,44	7,10	8,77	0,83	15201720
6	50,00	3,19	24,10	6,98	14,75	0,98	15251725
7	56,18	2,28	15,86	9,60	15,70	0,50	15301730
8	7,12	5,39	38,24	15,77	32,84	0,64	15351735
9	24,40	1,12	39,41	8,98	24,96	1,14	15401740
10	0,67	6,84	36,11	14,97	33,04	1,37	15451745
11	17,53	3,70	25,79	22,58	29,40	1,03	15501750
12	23,00	1,18	34,34	11,45	28,92	1,09	15001700
13	32,16	1,10	32,25	9,46	24,48	0,55	15551755
14	26,42	2,25	37,93	8,26	24,10	1,04	15601760
15	17,79	1,18	40,01	10,19	29,98	0,85	15651765
16	61,00	2,35	18,64	8,25	8,77	0,99	15701770
17	21,82	1,18	35,00	11,54	29,98	0,48	15751775
18	10,69	6,81	32,59	16,52	32,27	1,12	15801780
19	26,19	3,32	39,41	8,98	20,96	1,14	15851785
20	30,12	3,54	35,4	6,52	16,50	0,92	15901790
21	30,39	8,54	25,75	9,44	25,40	0,48	15951795
22	35,00	8,20	24,80	10,50	20,50	1,00	16001800
23	40,00	8,00	25,60	10,00	15,50	0,90	15501750
24	45,00	7,50	14,60	11,00	10,00	0,90	15551755
25	50,00	7,00	15,00	12,00	15,00	1,00	15601760

4.2.2 Содержание отчета

- 1 Краткая теория регулярных ионных расплавов.
- 2 Исходные данные расчетно-графического задания.
- 3 Расчеты величин. Если расчеты выполнялись на ЭВМ, представляется текст программы и ее описание.
- 4 Результаты расчетов, занесенные в таблицу 4.2, или таблица выходных данных ЭВМ, составленная по подобию.
- 5 Графические зависимости.
- 6 Выводы.

Таблица 4.2 – Результаты расчета

T	Fe	eO	Mı	nO	Ca	ıO	M	gO	Si	O_2	P_2	O_5	Γ0/	Γ0/ λ /Ι	Γ0/
<i>Т</i> , К	lnγ	a_1	lnγ	a_2	lnγ 3	a_3	lnγ 4	a_4	lnγ 5	a_5	lnγ ₆	a_6	[% O]	[%M n]	[% P]
T_1	1										0				
T_2															
T_3															
T_4															
T_5															

4.3 Вопросы для самостоятельного контроля знаний

- 1 Молекулярная теория строения шлаков.
- 2 Теория совершенных ионных растворов.
- 3 Теория регулярных ионных растворов.
- 4 Определение ионной доли катиона компонента шлака.
- 5 Вывод основных расчетных уравнений.
- 6 Какие реакции определяют межфазное распределение кислорода, марганца и фосфора.
- 7 Как различные факторы влияют на межфазное распределение примесей.

5 ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ, ВЫНОСИМЫЕ НА ЭКЗАМЕН

- 1 Окислительно-восстановительные свойства высокотемпературных газовых фаз.
- 2 Реакция горения монооксида углерода.
- 3 Реакция горения водорода.
- 4 Реакция водяного газа.
- 5 Механизм взаимодействия реагентов с окислителем в газовых смесях.

- 6 Механизм реакций горения монооксида углерода и водорода.
- 7 Диссоциация молекул на атомы и радикалы.
- 8 Физико-химические свойства углерода.
- 9 Реакции неполного и полного горения углерода.
- 10 Реакции взаимодействия углерода с водяным паром.
- 11 Реакция взаимодействия углерода с диоксидом углерода.
- 12 Кинетический и диффузионный режимы гетерогенной реакции.
- 13 Механизм взаимодействия углерода с газообразными окислителями.
- 14 Механизм и кинетика распада монооксида углерода.
- 15 Термодинамический анализ процессов образования и диссоциации соединений в гетерогенных системах.
- 16 Газообразная диссоциация.
- 17 Конденсатная диссоциация.
- 18 Влияние образования растворов на упругость диссоциации.
- 19 Термодинамические условия образования и роста новой фазы.
- 20 Образование и рост зародышей новой фазы.
- 21 Кинетические особенности процессов диссоциации.
- 22 Реакция разложения карбоната кальция.
- 23 Механизм реакции разложения карбоната кальция.
- 24 Общие закономерности окисления металлов.
- 25 Факторы, влияющие на термодинамическую стабильность оксилов.
- 26 Термодинамические закономерности образования и диссоциации оксидов железа.
- 27 Диаграмма состояния системы "железо-кислород".
- 28 Изотермы упругости диссоциации оксидов железа.
- 29 Кинетические закономерности окисления металлов.
- 30 Диффузионные процессы в твердых телах.
- 31 Механизм окисления железа. Опыт Пфейля.
- 32 Структура окалины.
- 33 Термодинамические основы восстановления газообразным восстановителем.
- 34 Восстановление оксидов железа монооксидом углерода.
- 35 Восстановление оксидов железа водородом.
- 36 Термодинамические основы восстановления в присутствии твердого углерода.
- 37 Температура начала восстановления. Графическая интерпретация способов определения температуры начала восстановления.
- 38 Восстановление оксидов железа в присутствии твердого углерода.
- 39 Процессы науглероживания железа.
- 40 Металлотермическое восстановление оксидов металлов.
- 41 Особенности восстановления оксидов металлов из растворов.
- 42 Изотермы давления газа-восстановителя при восстановлении оксидов железа.

- 43 Восстановление оксидов при переходе продукта восстановления в раствор
- 44 Восстановление оксидов, связанных в сложные соединения.
- 45 Кинетика восстановления оксидов газом-восстановителем.
- 46 Механизм восстановительных процессов.
- 47 Строение жидких металлов.
- 48 Дифракционный анализ структуры жидких металлов.
- 49 Межчастичное взаимодействие в жидких металлах.
- 50 Вязкость, плотность, поверхностное натяжение, электрическое сопротивление жидких металлов.
- 51 Химический и минералогический состав шлаков.
- 52 Диаграммы состояния шлаковых систем.
- 53 Строение шлаков.
- 54 Плотность, поверхностные свойства, вязкость шлаковых расплавов.
- 55 Молекулярная теория шлаковых расплавов.
- 56 Ионная теория шлаковых расплавов.
- 57 Статическая теория регулярных ионных растворов.
- 58 Термодинамические основы окислительного рафинирования металлов.
- 59 Распределение кислорода между металлом и шлаком.
- 60 Растворимость кислорода в жидких металлах и сложных растворах.
- 61 Термодинамические основы реакции окисления углерода в кислородосодержащем железе.
- 62 Распределение кремния, марганца, фосфора и серы между расплавами железа и оксидными расплавами.
- 63 Межфазное распределение примесей при окислительном рафинировании.
- 64 Кинетические закономерности реакции обезуглероживания желе-
- 65 Раскисление стали.
- 66 Осаждающее раскисление.
- 67 Диффузионное раскисление.
- 68 Термодинамические и кинетические закономерности растворения азота и водорода в металлах и сплавах.
- 69 Дегазация металла.
- 70 Азот и водород в оксидных расплавах.

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

- 1 Казачков Е. А. Расчеты по теории металлургических процессов: Учеб. пособие для вузов. М.: Металлургия, 1988. 288 с.
- 2 Расчеты металлургических процессов на ЭВМ: Учеб. пособие для вузов / Д.И.Рыжонков, С.Н.Падерин, Г.В.Серов, Л.К.Жидкова. М.: Металлургия, 1987.-231 с.
- 3 Теория металлургических процессов: Учебник для вузов / Д.И.Рыжонков, П.П.Арсеньев, В.В.Яковлев, Л.А. Пронин, М.Г. Крашенинников, Н.Н. Дроздов. М.: Металлургия, 1989. 392 с.
- 4 Борнацкий И.И. Теория металлургических процессов. Киев; Донецк: Выща школа, 1978. 287 с.
- 5 Филиппов С.И. Теория металлургических процессов. М.: Металлургия, $1967.-279~{\rm c}.$
- 6 Морачевский А.Г. Термодинамические расчеты в металлургии: Справочник/ А.Г.Морачевский, И.Б.Сладков. М.: Металлургия, 1985. 137 с.
- 7 Кубашевский О., Олкокк С.Б. Металлургическая термохимия / Пер. с англ. М.: Металлургия, 1982. 390 с.
- 8 Применение ЭВМ для термодинамических расчетов металлургических процессов / Г.Б.Синяев, Н.А.Ватолин, Б.О.Трусов, Г.К.Моисеев. М.: Наука, 1982. 202 с.
- 9 Киреев В.А. Методы практических расчетов в термодинамике химических реакций. М.: Химия, 1970. 520 с.

Приложение А

Таблица А.1 – Изменение энергии Гиббса для реакций, протекающих в стандартных состояниях

		1_		
Реакция	$\Delta G^{\rm o}, \frac{\mathcal{L}_{\rm W}}{\mathcal{L}_{\rm o}}$	Температурный		
	моль	интервал, К		
$2CO + O_2 = 2CO_2$	$-566307 + 175,47 \cdot T$	7732273		
$2H_2 + O_2 = 2H_2O$	$-493038 + 108,40 \cdot T$	4003000		
$2C_{(T)} + O_2 = 2CO$	$-221120 - 179,75 \cdot T$	7732273		
$C_{(T)} + O_2 = CO_2$	$-393260 - 2,29 \cdot T$	7732273		
$C_{(T)} + CO_2 = 2CO$	$172130 - 177,46 \cdot T$	7732273		
$H_2O + CO = H_2 + CO_2$	$-36600 + 33,50 \cdot T$	7732273		
$CaCO_{3 (T)} = CaO_{(T)} + CO_2$	$170577 - 144,19 \cdot T$	9731473		
$BaCO_{3 (T)} = BaO_{(T)} + CO_2$	250915 - 147,17· <i>T</i>	10731333		
$MgCO_{3 (T)} = MgO_{(T)} + CO_2$	$110825 - 120,16 \cdot T$	2981000		
$2Fe_{\alpha} + O_2 = 2FeO_{(T)}$	$-524774 + 127,12 \cdot T$	8431184		
$2Fe_{\gamma} + O_2 = 2FeO_{(T)}$	$-526364 + 128,44 \cdot T$	11841650		
$2Fe_{(\mathcal{K})} + O_2 = 2FeO_{(\mathcal{K})}$	$-457868 + 86,92 \cdot T$	18093000		
$\frac{3}{2} \operatorname{Fe}_{(T)} + \operatorname{O}_2 = \frac{1}{2} \operatorname{Fe}_3 \operatorname{O}_{4 (T)}$	-552804 + 153,66· <i>T</i>	8431809		
$\frac{4}{3} \operatorname{Fe}_{(T)} + O_2 = \frac{2}{3} \operatorname{Fe}_2 O_{3 (T)}$	-542916 + 165,88· <i>T</i>	2981809		
$2Ni_{(T)} + O_2 = 2NiO_{(T)}$	$-469006 + 217,54 \cdot T$	2981725		
$\frac{4}{3}\operatorname{Cr}_{(T)} + \operatorname{O}_2 = \frac{2}{3}\operatorname{Cr}_2\operatorname{O}_3$	−740589 + 164,99· <i>T</i>	11731923		
$2Mn_{(T)} + O_2 = 2MnO_{(T)}$	$-770372 + 147,46 \cdot T$	2981517		
$4Cu_{(T)} + O_2 = 2Cu_2O_{(T)}$	$-337038 + 142,60 \cdot T$	2981356		
$Si_{(T)} + O_2 = SiO_{2(T)}$	$-906555 + 174,05 \cdot T$	2981685		
$2Ca_{(\mathcal{K})} + O_2 = 2CaO_{(T)}$	$-1283676 + 220,40 \cdot T$	11231765		
$\frac{4}{3} \text{Al}_{(\mathcal{K})} + \text{O}_2 = \frac{2}{3} \text{Al}_2 \text{O}_{3 \text{ (T)}}$	$-11252 + 126,80 \cdot T$	9232303		
$2Pb_{(X)} + O_2 = 2PbO_{(T)}$	$-437352 + 195,60 \cdot T$	6001159		
$2Co_{(T)} + O_2 = 2CoO_{(T)}$	$-474616 + 145,44 \cdot T$	2981766		
$W_{(T)} + O_2 = WO_{2(T)}$	$-585440 + 171,95 \cdot T$	2982000		

Приложение Б

Таблица Б.1 – Температурная зависимость параметров взаимодействия первого $e_{\rm i}^{\rm j}$ и второго $r_{\rm i}^{\rm j}$ порядков для растворов в жидком железе

Параметр взаимодейст-	A	В	Параметр взаимодейст-	A	В
ВИЯ			ВИЯ		
$e_{ m C}^{ m C}$	158	0,0581	$r_{ m N}^{ m Cr}$	1,68	-0,0006
$e_{\mathrm{C}}^{\mathrm{Cr}}$	0	-0,0240	$r_{ m N}^{ m Ni}$	-1,83	0,0010
$e_{ m C}^{ m Mn}$	0	-0,0240	$r_{ m N}^{ m Mn}$	8,82	-0,0056
$e_{ m C}^{ m Mo}$	0	-0,0080	$r_{ m N}^{ m Mo}$	-2,78	0,0013
$e_{ m C}^{ m Ni}$	0	0,0120	$r_{ m N}^{ m CrNi}$	1,60	-0,0009
$e_{ m C}^{ m Si}$ $e_{ m C}^{ m V}$ $e_{ m N}^{ m Cr}$	162	0,0080	$r_{ m N}^{ m CrMn}$	2,16	0,0005
$e_{ m C}^{ m V}$	0	-0,0770	r _N CrMo	1,20	-0,0005
$e_{ m N}^{ m Cr}$	-164	0,0415	r _N iMn	0,09	0,0007
$e_{ m N}^{ m Ni}$	8,33	0,0019	$r_{ m N}^{ m NiMo}$	-0,26	0,0003
$e_{ m N}^{ m Mn}$	-134	0,0300	MnMo r _N	0	0
$e_{ m N}^{ m Mo}$	-33,2	0,0064	$r_{\rm O}^{ m Ni}$	0	0,0060
$e_{\mathrm{O}}^{\mathrm{O}}$	-1750	0,7340	$r_{ m O}^{ m Mo}$	0	0,0040
$e_{ m C}^{ m N}$	0	0,1300	$r_{\mathrm{O}}^{\mathrm{Co}}$	0	0,0080

Приложение В

Таблица В.1 – Коэффициенты $a_{\rm L}$ и $a_{\rm S}$, характеризующие снижение температур ликвидуса и солидуса стали при введении 1% компонента

Компонент	<i>a</i> _L , K	a _S , K	Интервал применения	Примечания		
Komnoheni			$a_{ m S}$	к определению $T_{ m S}$		
С	73,0	410,0	[%C]≤0,10			
		180,0	$0.13 \le [\%C] \le 2.14$			
Cr	1,0	2,0	$[\%Cr] \le 25,0$	Ппа		
Ni	3,5	6,5	[%Ni] ≤ 20,0	Для 0.10 < [0/ C] < 0.12		
Mn	3,0	6,5	$[\%Mn] \le 9.5$	$0.10 \le [\%C] \le 0.13$ $\Delta T = 41 \text{ K}$		
Mo	3,0	6,5	$[\%Mo] \le 10.0$	$\Delta I = 41 \text{ K}$		
Si	12,0	19,0	$[\%Si] \le 14,4$			
V	2,0	6,0	$[\%V] \le 10.0$			

Навчальне видання

ТУРЧАНІН Михайло Анатолійович, АБДУЛОВ Олександр Радикович

МЕТОДИЧНИЙ ПОСІБНИК

до виконання самостійної роботи та вивчення дисципліни "Теорія та технологія металургійного виробництва" для студентів спеціальності 7.090403

Ч.1. ТЕОРІЯ МЕТАЛУРГІЙНОГО ВИРОБНИЦТВА

(Російською мовою)

Редактор Дудченко О.О.

Підп. до друку 06.09.06 Формат 60х84/16 Папір офсетний. Ризограф. друк. Ум. друк.арк 3,0. Обл.-вид.арк. 2,18. Тираж 100 экз. Зам. № 232

Видавець і виготівник «Донбаська державна машинобудівна академія» Свідоцтво про внесення суб'єкта видавничої справи до Держ. реєстру серія ДК №1633 от 24.12.2003г. 84313, м. Краматорськ, вул. Шкадінова, 72