Министерство образования и науки, молодежи и спорта Украины

Донбасская государственная машиностроительная академия (ДГМА)

ИНФОРМАТИКА

ПРАКТИКУМ

Учебное пособие

для студентов инженерного направления ускоренной формы обучения

> Утверждено на заседании ученого совета Протокол № 6 от 31.01.2013

Краматорск ДГМА 2013

Авторы:

И. А. Гетьман, Л. В. Васильева, С. В. Малыгина, Е. А. Клеваник

Рецензенты:

Размышляев А.Д., проф., д.т.н., профессор кафедры "Оборудование и технология сварочного производства" ГВУЗ "Приазовский государственый технический университет".

Бойко В. Г., доц., к.т.н., зав. каф. "Информатика и прикладная математика" Краматорский экономико-гуманитарный институт.

Навчальний посібник розроблений відповідно до програми курсу «Інформатика» і містить теоретичні відомості і практичну частину з таких розділів: розв'язання інженерних завдань засобами електронних таблиць, комп'ютерної математики; програмування в системах комп'ютерної математики; елементи чисельних методів на базі систем комп'ютерної математики. Розглянуті прийоми роботи в Microsoft Excel і програмі Smath Studio.

Навчальний посібник призначений для студентів інженерних спеціальностей, а також буде корисним особам, якы бажають самостійно опанувати методи, вживані для розв'язання різних інженерних завдань.

П 69 Информатика. Практикум : учеб. пособ. / И. А. Гетьман,
 Л. В. Васильева, С. В. Малыгина, Е. А. Клеваник. – Краматорск :
 ДГМА, 2012. – 148 с.
 ISBN 978-966-379-624-6

Учебное пособие разработано в соответствии с программой курса «Информатика» и содержит теоретические сведения и практическую часть по следующим разделам: решение инженерных задач средствами электронных таблиц, компьютерной математики; программирование в системах компьютерной математики; элементы численных методов на базе систем компьютерной математики. Рассмотрены приемы работы в Microsoft Excel и программе Smath Studio.

Учебное пособие предназначено для студентов инженерных специальностей, а также будет полезно лицам, желающим самостоятельно освоить методы, применяемые для решения различных инженерных задач.

УДК 004(075.8) ББК 32.81

ISBN 978-966-379-624-6

© И. А. Гетьман, Л. В. Васильева,
С. В. Малыгина, Е. А. Клеваник, 2013
© ДГМА, 2013

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	.6
1 РЕШЕНИЕ ИНЖЕНЕРНЫХ ЗАДАЧ СРЕДСТВАМИ ЭЛЕКТРОННЫХ	7
ТАБЛИЦ	.7
1.1 Итоговые вычисления	.7
1.1.1 Краткие теоретические сведения	.7
1.1.2 Пример выполнения задания	.8
1.1.3 Вопросы для самоконтроля	14
1.1.4 Индивидуальные задания	14
1.2 Решение нелинейных уравнений	30
1.2.1 Краткие теоретические сведения	30
1.2.2 Пример выполнения задания	31
1.2.3 Вопросы для самоконтроля	34
1.2.4 Индивидуальные задания	35
1.3 Решение систем нелинейных уравнений	36
1.3.1 Краткие теоретические сведения	36
1.3.2 Пример выполнения задания	36
1.3.3 Вопросы для самоконтроля	42
1.3.4 Индивидуальные задания	42
1.4 Решение систем линейных уравнений	43
1.4.1 Краткие теоретические сведения	13
1.4.2 Пример выполнения задания	46
1.4.3 Вопросы для самоконтроля	51
1.4.4 Индивидуальные задания	51
1.5 Аппроксимация функций	53
1.5.1 Краткие теоретические сведения	53
1.5.2 Пример выполнения задания	57
1.5.3 Вопросы для самоконтроля	52
1.5.4 Индивидуальные задания	52
2 РЕШЕНИЕ ИЖЕНЕРНЫХ ЗАДАЧ СРЕДСТВАМИ	
КОМПЬЮТЕРНОЙ МАТЕМАТИКИ	59
2.1 Построение графиков функций одной переменной	59
2.1.1 Краткие теоретические сведения	59
2.1.2 Пример выполнения заданияе	59
2.1.3 Вопросы для самоконтроля	70
2.1.4 Индивидуальные задания	71
2.2 Нахождение значений функций одной переменной	71
2.2.1 Краткие теоретические сведения	71
2.2.2 Пример выполнения задания	72
2.2.3 Вопросы для самоконтроля	73
2.2.4 Индивидуальные задания	73
2.3 Нахождение корней нелинейных уравнений	74
2.3.1 Краткие теоретические сведения	74

2.3.2 Пример выполнения задания	75
2.3.3 Вопросы для самоконтроля	79
2.3.4 Индивидуальные задания	79
2.4 Решение систем нелинейных уравнений	80
2.4.1 Краткие теоретические сведения	80
2.4.2 Пример выполнения задания	81
2.4.3 Вопросы для самоконтроля	83
2.4.4 Индивидуальные задания	83
2.5 Решение систем линейных уравнений	85
2.5.1 Краткие теоретические сведения	85
2.5.2 Пример выполнения задания	85
2.5.3 Вопросы для самоконтроля	86
2.5.4 Индивидуальные задания	86
2.6 Нахождение производных и интегралов	
2.6.1 Краткие теоретические сведения	
2.6.2 Пример выполнения задания	
2.6.3 Вопросы для самоконтроля	90
2.6.4 Индивидуальные задания	90
2.7 Нахождение экстремумов функций	92
2.7.1 Краткие теоретические сведения	92
2.7.2 Пример выполнения задания	92
2.7.3 Вопросы для самоконтроля	93
2.7.4 Индивидуальные задания	93
2.8 Интерполяция функций степенными выражениями	95
2.8.1 Краткие теоретические сведения	95
2.8.2 Пример выполнения задания	96
2.8.3 Вопросы для самоконтроля	97
2.8.4 Индивидуальные задания	97
2.9 Численное решение обыкновенных дифференциальных	
уравнений 2-го порядка	99
2.9.1 Краткие теоретические сведения	99
2.9.2 Пример выполнения задания	99
2.9.3 Вопросы для самоконтроля	101
2.9.4 Индивидуальные задания	102
З ПРОГРАММИРОВАНИЕ В СИСТЕМАХ КОМПЬЮТЕРНОИ	
МАТЕМАТИКИ	103
3.1 Программирование линейного вычислительного процесса	103
3.1.1 Краткие теоретические сведения	
3.1.2 Пример выполнения задания	
3.1.3 Вопросы для самоконтроля	
3.1.4 Индивидуальные задания	105
3.2 Программирование разветвляющегося вычислительного	105
процесса	107
3.2.1 Краткие теоретические сведения	107
3.2.2 Примеры выполнения задания	107

3.2.3 Вопросы для самоконтроля	111
3.2.4 Индивидуальные задания	111
3.3 Программирование циклического вычислительного процесса	113
3.3.1 Краткие теоретические сведения	113
3.3.2 Пример выполнения задания	114
3.3.3 Вопросы для самоконтроля	117
3.3.4 Индивидуальные задания	117
3.4 Программирование табулирования функции	119
3.4.1 Краткие теоретические сведения	119
3.4.2 Пример выполнения задания	119
3.4.3 Вопросы для самоконтроля	121
3.4.4 Индивидуальные задания	121
4 ОСНОВЫ ЧИСЛЕННЫХ МЕТОДОВ НА БАЗЕ СИСТЕМ	
КОМПЬЮТЕРНОЙ МАТЕМАТИКИ	123
4.1 Численные методы решения нелинейных алгебраических	
уравнений	123
4.1.1 Краткие теоретические сведения	123
4.1.2 Пример выполнения задания	125
4.1.3 Вопросы для самоконтроля	129
4.1.4 Индивидуальные задания	129
4.2 Численное интергрирование	130
4.1.1 Краткие теоретические сведения	130
4.2.2 Пример выполнения задания	132
4.2.3 Вопросы для самоконтроля	133
4.2.4 Индивидуальные задания	134
4.2.4 Индивидуальные задания 5 САМОСТОЯТЕЛЬНАЯ РАБОТА	134 135
4.2.4 Индивидуальные задания 5 САМОСТОЯТЕЛЬНАЯ РАБОТА Приложение А. Работа с программой SMath Studio	134 135 136
4.2.4 Индивидуальные задания 5 САМОСТОЯТЕЛЬНАЯ РАБОТА Приложение А. Работа с программой SMath Studio Приложение Б. Понятие алгоритма. Блок-схема	134 135 136 144

введение

Информатика – это техническая наука, систематизирующая приемы создания, хранения, воспроизведения, обработки и передачи данных средствами вычислительной техники, а также принципы функционирования этих средств и методы управления ими.

При решении инженерных и научных задач инженер сталкивается с необходимостью применять математические знания: решать алгебраические уравнения и системы уравнений, находить экстремумы функций, вычислять производные и интегралы, находить решения дифференциальных уравнений и т. д. Развитие компьютерной техники позволило инженеру решать сложные вычислительные задачи, возникающие при моделировании технических устройств и процессов. В настоящее время разработаны математические пакеты, позволяющие решать подобные задачи.

Целями данного учебного пособия являются: формирование устойчивого интереса к изучаемой дисциплине, развитие мировоззрения и творческого потенциала; организация процесса обучения для развития практических навыков в области информационных технологий и программирования при решении различных инженерных и прикладных задач в ходе проведения лабораторных занятий, а также в процессе самостоятельной работы студентов.

В соответствии с поставленными целями материал учебного пособия изложен в 5 разделах.

В первом разделе рассматриваются основные понятия и методы работы в приложениях Microsoft Office: текстовом процессоре Word, табличном процессоре Excel.

Во втором и третьем разделах рассматриваются технические и программные средства реализации информационных процессов, применяемые для решения различных математических задач. Рассмотрены методы решений нелинейных алгебраических уравнений, систем линейных и нелинейных алгебраических уравнений и обыкновенных дифференциальных уравнений, приближенное нахождение производных и интегралов, а также познакомимся с основными понятиями аппроксимации (приближения) функций.

В четвертом разделе рассматриваются основы численных методов на базе систем компьютерной математики. Пятый раздел содержит задания к самостоятельной работе студентов на основании ранее рассмотренных примеров.

Каждая тема, кроме теоретического материала, содержит примеры использования методов для решения конкретных задач, описания основных вычислительных алгоритмов, тексты программ и описание стандартных функций с помощью пакетов компьютерной математики, реализующих изученные вычислительные алгоритмы.

1 РЕШЕНИЕ ИНЖЕНЕРНЫХ ЗАДАЧ СРЕДСТВАМИ ЭЛЕКТРОННЫХ ТАБЛИЦ

1.1 Итоговые вычисления

Цель: приобрести навыки выполнения итоговых вычислений с использованием *Microsoft Excel* и оформления их в виде диаграмм.

1.1.1 Краткие теоретические сведения

Для представления данных в удобном виде используют таблицы. Компьютер позволяет представлять их в электронной форме, что дает возможность не только отображать, но и обрабатывать данные. Для автоматизации процесса обработки данных на компьютере используются специальные программы, которые называются электронными таблицами.

Основным достоинством электронных таблиц является возможность применения формул для описания связей между значениями различных ячеек таблицы. Изменение содержимого какой-либо ячейки таблицы автоматически приводит к пересчету значений всех ячеек, которые связаны с ней формульными отношениями.

Пусть, например, сформирована таблица, где номера столбцов обозначены буквами А, В, С, а номера строк – цифрами 1, 2, 3 (рис. 1.1).

Рисунок 1.1 – Содержимое таблицы при вводе чисел в ячейки A1, A2, B1, B2.

При изменении, например, значения ячейки A1 с 1 на 2 все значения в ячейках, которые прямо или косвенно зависят от измененной, автоматически пересчитываются в соответствии с заданными формулами (рис. 1.2).

Рисунок 1.2 – Содержимое таблицы при изменении значения числа в ячейке А1

Применение электронных таблиц упрощает работу с данными и позволяет получать результаты без проведения расчетов вручную или специального программирования.

Наиболее широкое применение электронные таблицы нашли как в экономических и бухгалтерских расчетах, так и в научно-технических задачах. Электронные таблицы можно эффективно использовать для:

- проведения однотипных расчетов над большими наборами данных;
- автоматизации итоговых вычислений;
- обработки результатов экспериментов;
- построения диаграмм и графиков по имеющимся данным;
- решения уравнений;
- проведения поиска оптимальных значений параметров.

Одним из наиболее распространенных средств работы с документами, имеющими табличную структуру, является *Windows*-приложение *Microsoft Excel.*

1.1.2 Пример выполнения задания

Данные о результатах пяти заездов автомобиля сведены в таблицу 1.1.

Таблица 1.1

Номер заезда	Расстояние, км	Время, мин.	Скорость, км/час
1	14	7	
2	19	9	
3	15	8	
4	18	9	
5	17	8	
Итого:			

Получить итоговые данные об общем расстоянии, времени заездов, скорости каждого заезда и средней скорости. Полученные результаты вывести в виде диаграммы.

Методические рекомендации

	А	В	С	D
1				
	Номер	Dagaroguna Par	Provid Milli	Cropoot raduo
2	заезда	гасстояние, км	время, мин	Скорость, км/час
3	1	14	7	
4	2	19	9	
5	3	15	8	
6	4	18	9	
7	5	17	8	
8	Итого:			
9				

1. Сформируйте таблицу, как показано на рисунке 1.3.

Рисунок 1.3 – Исходные данные

2. Для определения итоговых данных по общему расстоянию выделите ячейки ВЗ:В7 и нажмите значок Автосуммы **Σ** - на панели инстументов (рис. 1.4). Аналогичные вычиления можно произвести, используя *Мастер функций\Математичекие\СУММ()* (рис. 1.5, 1.6).

		~			
	А	В	С	D	
1					
	Номер	D	D	Charles and services	
2	заезда	Расстояние, км	время, мин	Скорость, км/час	
3	1	14	7		
4	2	19	9		
5	3	15	8		
6	4	18	9		
7	5	17	8		
8	Итого:	=CYMM(<mark>B3:B7</mark>)			
9		СУММ(число1; [число	2];)		
10					

Рисунок 1.4 – Расчет итоговых данных

Мастер функций - шаг 1 из 2	<u>? ×</u>
Поиск функции:	
Введите краткое описание действия, которое нужно выполнить, и нажмите кнопку "Найти"	<u>Н</u> айти
Категория: Математические	
Выберите функцию:	
СЛЧИС СТЕПЕНЬ СУММ	
СУММЕСЛИ СУММЕСЛИМН СУММКВ СУММКВРАЗН	-
СУММ(число1;число2;)	_
Суммирует аргументы.	
Справка по этой функции ОК	Отмена

Рисунок 1.5 – Окно Мастера функций

Аргументы функ	ции				? ×
СХММ					
Число1	B3:B7	=	= {14:19:15:	18:17}	
Число2		<u> </u>	число		
-		-	= 83		
Суммирует аргумент	ты.				
	Число1:	число1;число2; от Посические и текст	т 1 до 255 арг овые значени	ументов, которые в игнорируются	суммируются.
		Normediate a reaction		я и порируются.	
Значение: 83					
Справка по этой фу	нкции			ОК	Отмена

Рисунок 1.6 – Аргументы функции СУММ()

3. Аналогично можно рассчитать общее время заездов.

4. Для рассчета скорости в ячейку D3 заносим формулу для рассчета =B3/C3 и нажимае клавишу Enter.

5. Копируем формулу для всех строк.

6. Для нахождения средней скорости добавляем соответсвующую строку. В ячейке D9, используя функцию СРЗНАЧ(), находим значение. В качестве аргумента функции используем диапазон D3:D7.

7. Форматируем таблицу, как показано на рисунке 1.7, используя *Формат ячеек* (контекстное меню).

	A	В	С	D
1				
	Номер	Расстояние им	BDAME MILL	Cropocte ra/use
2	заезда	1 асстоянис, км	время, мин	скороств, км/час
3	1	14	7	2,00
4	2	19	9	2,11
5	3	15	8	1,88
6	4	18	9	2,00
7	5	17	8	2,13
8	Итого:	83	41	
9	Средняя сн	корость		2,02
10				

Рисунок 1.7 – Лист с расчетами

8. Для построения диаграммы используем мастер диаграмм. Выделяем обасть для построения диаграммы D2:D7. Выбираем пункт меню *Вставка.* Из предложенного перечня диаграмм выберем для примера Гисторамму (рис. 1.8).

Рисунок 1.6 – Выбор типа диаграммы

Рисунок 1.8 – Полученная диаграмма

Вызывая контексное меню или используя *Панель инстументов*/*Макет* (для этого предварительно активизируя окно диаграммы), можно форматировать диаграмму (рис. 1.9).

Рисунок 1.9 – Контекстное меню для форматирования диаграммы

9 Для создания листа с формулами используется опция Формулы – Показать формулы (в полноэкранном режиме) или Формулы – Зависимость формул – Показать формулы (в обычном режиме) (рис. 1.10).

Рисунок 1.10 – Создание листа с формулами

10 Для установки печати заголовков строк и столбцов используется опция *Разметка страницы – Печатать заголовки – Лист.* Установить флажки перед соответствующими командами. Здесь же во вкладке *Страница* можно изменить ориентацию страницы (книжная или альбомная) (рис. 1.11).

Параметры страницы			<u>? ×</u>
Страница Поля Колонтитулы	Лист		
Выводить на печать диапазон:			B
Печатать на каждой странице			
сквозные строки:			
сквозные столбцы:			B
Печать			
✓ сетка	примечания:	(нет)	┓
черно-белая	ошибки ячеек как:	на экране	-
чернова <u>я</u>		Ind stepane	
заголовки строк и столбцов			
Последовательность вывода страниц –	_		
С вниз, затем вправо С вправо, затем вниз			
	Печать	Просмотр Свойства	a
		ОК Отм	ена

Рисунок 1.11 – Печать заголовков строк и столбцов

Результат представлен на рисунке 1.12.

	А	В	С	D	
1					
2	Номер заезда	Расстояние, км	Время, мин	Скорость, км/час	
3	1	14	7	=B3/C3	
4	2	19	9	=B4/C4	
5	3	15	8	=B5/C5	
6	4	18	9	=B6/C6	
7	5	17	8	=B7/C7	
8	Итого:	=CYMM(B3:B7)	=СУММ(С3:С7		
9	Средняя скоро			=CP3HA4(D3:D7)	
10					

Рисунок 1.12 – Лист с формулами

1.1.3 Вопросы для самоконтроля

1. Как выделить блок ячеек?

2. Как занести в ячейку формулу?

3. Как заполнить формулой блок ячеек?

4. Как при использовании Мастера диаграмм выбрать форму диаграммы?

5. В каких случаях при выборе данных используют вкладку Диапазон данных, а в каких – Ряд?

6. Как с помощью Мастера диаграмм производится оформление диаграммы?

7. Какие варианты размещения построенной диаграммы предлагает Мастер диаграмм и как ими воспользоваться?

8. Каким образом можно осуществить редактирование готовой диаграммы?

1.1.4 Индивидуальные задания

С помощью Excel for Windows составить электронную таблицу и построить диаграмму. Распечатать таблицу с данными, таблицу с формулами и диаграмму.

Вариант 1

При расчете зависимости сопротивления кремния от температуры известны следующие исходные данные (табл. 1.2).

		TC			
	Концентрация примеси:				
Тампаратура Т		1	$00\bar{E} + 13(cm)$	⁻³)	
Temneparypa 1,		-	,001 + 15(0m	/	
K	$\mathbf{E} \mathbf{a} \mathbf{a} \mathbf{D}$	ni 015 ⁻³	$m = 2 r^2 / D_{12}$	n or -3	rha Orugu
	<u>ь</u> g, эр	III, CM	μ, см / Б с	II, CM	IIIO, OM CM
300	1 1 2	$6.2E \pm 0.0$	$1.3E \pm 0.3$	$1.0E \pm 13$	
300	1,12	0,2L + 0)	$1,5L \pm 0.5$	1,01.713	
320	1,12	2,9E + 10	1,1E + 03	1,0E + 13	
340	1,11	1,2E + 11	9,8E + 02	1,0E + 13	
360	1,11	4,0E + 11	8,6E + 02	1,0E + 13	
380	1,10	1,2E + 12	7,5E + 02	1,0E + 13	
400	1,10	3,3E + 12	6,6E + 02	1,1E + 13	
420	1,09	8,2E + 12	5,9E + 02	1,5E + 13	
440	1,08	1,9E + 13	5,3E + 02	2,4E + 13	
460	1,08	4,1E + 13	4,7E + 02	4,6E +13	
480	1,07	8,2E + 13	4,3E + 02	8,7E + 13	
500	1,07	1,6E + 14	3,9E + 02	1,6E + 14	

Таблица 1.2

Рассчитать $rho = \frac{1}{Q \cdot n \cdot \mu}$, где $Q = 1,6 \cdot 10^{-19}$. Добавить в таблицу 1.2

строку «Среднее значение» и произвести соответствующие расчеты.

Построить график зависимости сопротивления кремния от температуры.

Вариант 2

Составить таблицу для расчета влияния содержания углерода на механические свойства сталей.

Номер образца	Размери до иси	ы образца пытания	Размеры образца после испытания		Относительное сужение ψ, %	Относительное удлинение б,	C, %
стали	Lo, мм	Fo, мм ²	L1, мм	F1, мм ²		%	
1	25	20	36	8			0,1
2	27	22	35	10			0,2
3	28	24	34	12			0,3
4	30	26	33	14			0,4

Таблица 1.3

Дано: размеры образца до испытания: Lo – длина, Fo – площадь поперечного сечения; L1, F1 – размеры образца после испытания. Относительное сужение $\psi = \frac{Fo - F1}{Fo} \cdot 100\%$, относительное удлинение $\delta = \frac{L1 - Lo}{Lo} \cdot 100\%$; C, % - процент углерода, задан.

Построить графики влияния содержания углерода на механические свойства сталей.

Вариант 3

Рассчитать
 β (баллистическую постоянную гальванометра) для 5
 опытов по формуле

$$\beta = \frac{CoUo}{n_o},$$

где Co – емкость эталонного конденсатора, nФ;

Uo – напряжение на обкладках эталонного конденсатора; В,

n_o – начальное значение «зайчика».

Рассчитать значения зарядов на обкладках конденсатора q1 и q2 (кл) для каждого опыта по формуле $q = \beta \cdot n$, где n – отклонение «зайчика».

Расчеты оформить в виде таблицы 1.4.

Номер опыта	Uo, B	Co, nΦ	n _o	U, B	β, кл/дел	n1	q1	n2	q2
1	60	7 500	45	20		22		24	
2	60	7 500	46	40		45		45	
3	60	7 500	44	60		63		54	
4	60	7 500	43	80		84		76	
5	60	7 500	47	100		106		92	

Таблица 1.4

Добавить в таблицу 1.4 строку «Максимальное значение заряда конденсатора» и вычислить соответствующие значения.

Построить график зависимости заряда на обкладках конденсатора от напряжения.

Вариант 4

Дано (табл. 1.5).

Таблица 1.5

Завол	Количес	тво выброс	ОВ, Т	ПДН выбросов, т			
Эшээд	газообразных	жидких	твердых	газообразных	жидких	твердых	
НКМЗ	654 836	254 135	547 812	10 000	20 000	20 000	
КЗТС	36 547	54 782	25 471	10 000	20 000	20 000	
СКМЗ	21 479	62 145	251 448	10 000	20 000	20 000	
ЦШК	962 147	997 125	951 254	10 000	20 000	20 000	
ЭМСС	458 721	36 547	365 478	10 000	20 000	20 000	

Рассчитать количество выбросов, превышающих ПДН (предельно допустимые нормы) для каждого из заводов и в общем. Добавить строку «Максимальное количество выбросов» и вычислить соответствующие значения.

Построить гистограмму количества выбросов заводов.

Вариант 5

Известны данные о выбросах автомобильных газов в различных странах (табл. 1.6).

Допустимое коли-Среднее Количество машин, Количество чество значение соответствующих Страна машин. выбросов выбросов с санитарным одной машины одной машины млн шт. нормам, % за год, т за год, т Россия 59 86 54 63 Украина 54 46 61 71 Германия 71 87 43 58 Голландия 45 89 35 45 США 127 74 48 60

Таблица 1.6

Рассчитать допустимое количество выбросов на территории страны (количество машин, соответствующих санитарным нормам * допустимое количество выбросов одной машины за год); реальное количество выбросов одной машины за год); реальное количество выбросов одной машины за год + количество машин, не соответствующих санитарным нормам * среднее количество выбросов одной машины за год - количество выбросов одной машины за год).

Определить самую загрязненную территорию (наибольшая разность между реальным и допустимым количеством выбросов).

Построить гистограмму количества выбросов для заданных стран. Примечание. * – знак умножения.

Вариант б

Составить электронную таблицу расчета уровня радиации при ядерном взрыве.

Дано (табл. 1.7).

Таблица 1.7

Мощность взрыва, кт	400
Расстояние до района сосредоточения, км	70
в, град	5

Рассчитать уровень радиации Р(О) по формуле

$$P(O) = \frac{10 \cdot \text{мощность взрыва} \cdot (tg(45 - 2 \cdot B))^4}{\left(\frac{paccm - e \quad \partial o \quad p - \text{на сосредоточения}}{22}\right)^{1.5} e^{\sqrt{\frac{paccm - e \quad \partial o \quad p - \text{на сосредоточения}}{c \kappa opocm b \quad cped here o \quad gempa}}}$$

Расчет оформить в виде таблицы при скорости среднего ветра, равной 10, 15, 20, 25, 30, 35, 40, 45, 50 км/ч. Построить график зависимости уровня радиации от скорости среднего ветра.

Вариант 7

Составить электронную таблицу параметров работы гидравлического водопровода (табл. 1.8).

Таблица 1.8

Участок	<i>L</i> , м	N	Р	qc, л/с	d, мм	V,	i	$1+k_l$	ΔH, м
				J1/ U		IVI/ C			IVI
1 - 2	1,4	1	0,0078	0,20	15			1,3	
2-3	1,2	2	0,0078	0,20	15			1,3	
3-4	2,8	3	0,0078	0,23	20			1,3	
4-5	2,8	6	0,0078	0,27	20			1,3	
5-6	5,8	9	0,0078	0,31	20			1,3	
6-7	3,6	18	0,0078	0,39	20			1,3	
7 - 8	8,4	27	0,0078	0,45	25			1,3	
8-9	3,6	36	0,0078	0,51	25			1,3	
9 - 10	19,7	81	0,0078	0,76	32			1,3	
Суммарные потери напора =									

Обозначения: L – длина трубы, м; N – число водоразборных приборов; P - вероятность совместного действия приборов; qc - расчетный расход, л/c; d – внутренний диаметр трубы, мм; $V = 1000 \cdot qc/(\frac{\pi d^2}{4})$ – скорость в трубе, м/c; $i = 1,735 \cdot 0,001 \cdot \frac{(qc/1000)^2}{(d/1000)^{5,3}}$ – гидравлический уклон для стальных труб, $1+k_i$ – учет местных потерь, $\Delta H = i \cdot L \cdot (L+k_i)$ – потери напора, м.

Построить гистограмму для расчетных значений.

Вариант 8

При свободном падении тела с интервалом $\Delta t = 1/60c$ замерялся пройденный телом путь *x* (табл. 1.9).

Таблица 1.9

t, c	х, см
0	0
0,0167	1,55
0,0333	3,25
0,0500	5,30
0,0667	7,55
0,0833	10,20
0,1000	13,05
0,1167	16,15
0,1333	19,50
0,1500	23,15
0,1667	27,05
0,1833	31,30
0,2000	35,75
0,2167	40,55
0,2333	45,55
0,2500	50,80

Рассчитать скорость падения в момент времени t по формуле $v_t = \frac{x_{t+\Delta t} - x_t}{\Delta t}$ см/с и ускорение по формуле $a_t = \frac{x_{t+\Delta t} - 2 \cdot x_t + x_{t-\Delta t}}{(\Delta t)^2}$ см/с².

Построить графики зависимости скорости и ускорения от времени.

Вариант 9

Было проведено 3 опыта для определения сопротивления проводника длиной L = 42,5 см и сечением S = 7,065 см². В результате получена следующая таблица 1.10.

Номер опыта	Напряжение U, В	Сила тока I, А
1	1,6	0,5
2	1,2	0,4
3	2,2	0,7

Таблица 1.10

Рассчитать сопротивление проводника по формуле $R = \frac{U}{I}$, удельное сопротивление по формуле $\rho = \frac{R \cdot S}{L}$. Определить среднее значение сопротивления и среднее значение удельного сопротивления. Оформить результаты расчетов в виде таблицы.

Построить графики зависимостей сопротивления от напряжения и силы тока.

Вариант 10

Для уравнения Ван-дер-Ваальса известны: a = 3,59 $\pi^2 a \text{тм./моль}^2$; b = 0,0427 $\pi/\text{моль}$.

По следующим данным (табл. 1.11) рассчитать давление $P = \frac{8,3143/101,3 \cdot T}{v-b} - \frac{a}{v^2}$ атм.

Таблица 1.11

Т, К	V, л/моль
264	0,10
264	0,15
264	0,20
264	0,25
264	0,30
264	0,35
264	0,40
304	0,10
304	0,15
304	0,20
304	0,25
304	0,30
304	0,35
304	0,40
344	0,10
344	0,15
344	0,20
344	0,25
344	0,30
344	0,35
344	0,40

Построить точечные графики (точки, соединенные сглаживающими линиями) зависимостей P(v) для трех различных значений T.

Вариант 11

При исследовании влияния различных факторов на силы резания были получены следующие эмпирические зависимости составляющих силы резания от элементов режима резания:

$$Pz = 4230 \cdot v^{-0,28} \cdot s^{0,56} \cdot t^{0,64},$$

$$Py = 2121 \cdot v^{-0,25} \cdot s^{0,59} \cdot t^{0,61},$$

$$Px = 561 \cdot v^{-0,03} \cdot s^{0,36} \cdot t^{0,82}.$$

Рассчитать значения составляющих силы резания при следующих заданных значениях элементов режима резания (табл. 1.12).

v, м/мин.	s, мм/об.	t, мм
18,8	0,07	0,5
37,6	0,26	0,5
37,6	0,07	1,5
37,6	0,07	0,5
18,8	0,26	1,5
18,8	0,26	0,5
18,8	0,07	1,5
37,6	0,26	1,5

Таблица 1.12

Построить гистограмму значений составляющих силы резания.

Вариант 12

Составить электронную таблицу определения влияния содержания углерода на механические свойства отожженных сталей.

	,						
Номер образца	С, %	d ₀ , мм	р _т , Н	р _в , Н	Fо, мм ²	Предел текучести, мПа	Предел прочности, мПа
1	0,1	5	8400	14200			
2	0,2	5	9000	14800			
3	0,3	5	9600	15400			
4	0,4	5	10200	16000			
5	0,5	5	10800	16600			
6	0,6	5	11400	17200			

Таблица 1.13

Здесь С – содержание углерода, %; d₀ – диаметр образца до испытания, мм; p_T – нагрузка, соответствующая площадке текучести, H; p_B – наибольшая нагрузка, предшествующая разрушению образца, H; $F_0 = \frac{\pi \cdot d_o^2}{4}$ – первоначальная площадь поперечного сечения образца, мм²; предел текучести = p_T/Fo мПа; предел прочности = p_B/Fo мПа.

Построить графики зависимости показателей механических свойств от содержания в стали углерода.

Вариант 13

Составить электронную таблицу определения емкости неизвестных конденсаторов и емкости при их последовательном и параллельном соединениях.

Номер	β, пкл/дел	n1	С1, пф	n2	С2, пф	n _{np}	С _{пр} , пф	$n_{\pi c}$	С _{пс} , пф
1	10	65		55		125		30	
2	9,78	63		59		126		29	
3	10,23	66		62		128		32	
4	10,47	64		60		120		34	
5	9,57	62		57		127		33	

Таблица 1.14

В таблице 1.14: β – баллистическая постоянная гальванометра; n1, n2 – максимальное отклонение «зайчика»; n_{пр}, n_{пс} – максимальное отклонение «зайчика» при параллельном и последовательном соединениях; C1, C2, C_{пр}, C_{пс} – емкости конденсаторов; Uo = 60 В – начальное напряжение:

$$C1 = \frac{\beta \cdot n1}{U_o}; \ C2 = \frac{\beta \cdot n2}{U_o}; \ C_{np} = C1 + C2; \ C_{IIC} = \frac{C1 \cdot C2}{C1 + C2}$$

Построить гистограммы емкости конденсаторов.

Вариант 14

Траектория снаряда, вылетающего из орудия под углом α с начальной скоростью V_{a} , описывается уравнениями:

$$x(t) = v_o t \cos \alpha,$$

$$y(t) = v_o t \sin \alpha - \frac{gt^2}{2}.$$

Расчет траектории оформить в виде таблицы 1.15, где $y(x) = xtg\alpha - \frac{gx^2}{2v_o^2 \cos^2 \alpha}, \quad g = 9.8 \, \text{м/c}^2.$

Таблица 1.15	
Х	y(x)
0	
2	
4	
6	

Расчет прервать, когда снаряд «уйдет под землю», т. е. y(x) будет равно или меньше нуля.

Исходные данные:

1. $\alpha = \pi / 3$; $v_{\rho} = 35 \text{ км} / \text{ мин}$;

2. $\alpha = \pi / 4$; $v_o = 30 \text{ км} / \text{ мин.}$

Обратите внимание на соответствие единиц измерения (лучше все перевести в километры и минуты).

Построить траектории полета снаряда (точечные диаграммы, соединенные сглаживающими линиями).

Вариант 15

При проведении опытов – исследовании зависимости температуры резания от элементов режима резания методом естественной термопары при точении заготовки из стали 45 диаметром 50 мм резцом, оснащенным твердым сплавом T5K10 – была получена обобщенная зависимость для температуры резания $\Theta = 70 \cdot v^{0.84} \cdot s^{0.36} \cdot t^{0.17}$.

Рассчитать значения температуры резания для следующих заданных элементов режима резания (табл. 1.16).

v, м/мин.	s, мм/об	t, мм
31,4	0,26	1,0
62,8	0,26	1,0
94,2	0,26	1,0
62,8	0,13	1,0
62,8	0,39	1,0
62,8	0,26	0,5
62,8	0,26	1,5

Таблица 1.16

Построить три графика зависимости температуры от скорости v, подачи s, глубины резания t.

Вариант 16

Рассчитать расстояние до звезды, зная ее абсолютную и видимую звездную величину, по формуле:

Оформить расчеты в виде таблицы 1.17.

Таблица 1.17

Видимая звездная величина	Абсолютная звездная величина	-5	-3	-1	1	3	5
	-5						
	-3						
	-1						
	1						
	3						
	5						

Построить линейные графики зависимости расстояния от видимой звездной величины.

Вариант 17

Составить электронную таблицу расчета количества теплоты, необходимого для нагревания газа при постоянном давлении, и работы расширения газа (табл. 1.18).

Таблица 1.18

Номер	Масса газа т.	Температура газа, К		
опыта	КГ	начальная Т ₁	конечная Т2	
1	140	300	330	
2	150	310	340	
3	155	320	350	
4	160	330	355	
5	170	340	360	

Молярная масса газа $M = 32 \times 10^{-3}$ кг/моль. Молярная теплоемкость газа при постоянном давлении:

Количество теплоты, необходимое для нагревания газа при постоянном давлении, вычисляется по формуле $Q = \frac{m}{M} Cp (T_2 - T_1)$ Дж.

Работа расширения газа вычисляется по формуле $A = \frac{m}{M} R (T_2 - T_1) Дж.$

Построить круговые диаграммы количества теплоты и работы по результатам опытов.

Вариант 18

Рассчитать теплопроводность кремния по формуле $K = \frac{Ko}{T - To}$ для следующих значений Т.

Т, К	К, Вт/(см·К)
200	
250	
300	
350	
400	
450	
500	
550	
600	
650	
700	

Таблица 1.19

При следующих заданных значениях Ko = 350, To = 68. Значения K_0 и T_0 записать в отдельные ячейки (т. е. при расчетах необходимо использовать абсолютные адреса ячеек). Добавить в таблицу строку «Среднее значение» и произвести соответствующие расчеты.

Построить график зависимости теплопроводности кремния от температуры.

Вариант 19

Составить электронную таблицу для определения давления и молярной массы смеси газов.

Номер	Объем сосуда	Macc	са газа, кг	Температура
опыта	V, м ³	гелия m ₁	водорода m ₂	газа Т, К
1	2	4	2	300
2	2,5	3,5	2,5	350
3	3	3	3	250
4	3,5	4,5	1,5	400
5	4	5	1	450
6	4,5	6	2	550
7	5	8	3	500

T	аблица	1.	20

Молярная масса гелия $M_1 = 4 \times 10^{-3}$ кг/моль, водорода – $M_2 = 2 \times 10^{-3}$ г/моль.

Молярная газовая постоянная R = 8,31 Дж/(моль·К).

Давление смеси газов рассчитывается по формуле

$$p = \left(\frac{m_1}{M_1} + \frac{m_2}{M_2}\right) \frac{RT}{V} \quad \text{Ina.}$$

Молярная масса смеси газов рассчитывается по формуле

$$M = rac{m_1 + m_2}{m_1/M_1 + m_2/M_2}$$
 кг/моль.

Составить гистограммы изменения давления и молярной смеси газов по результатам опытов.

Вариант 20

Составить электронную таблицу 1.21 расчета средних кинетических энергий поступательного и вращательного движений молекул водорода.

Номер опыта	Масса водорода т,кг	Температура водорода Т, К
1	1	400
2	1,5	410
3	2	425
4	2,5	430
5	3	440
6	3.5	450

Τ	аблица	1	.21	
	,			

Молярная масса гелия водорода $M = 2 \times 10^{-3}$ кг/моль.

Молярная газовая постоянная R = 8,31 Дж/(моль·К).

Средняя кинетическая энергия поступательного и вращательного движения молекул рассчитывается по формулам:

$$E_{nocm} = \frac{3m}{2M} RT$$
 Дж, $E_{sp.} = \frac{m}{M} RT$ Дж.

Построить графики изменений кинетических энергий поступательного и вращательного движения молекул по результатам опытов.

Вариант 21

Составить электронную таблицу 1.22 расчета объемной плотности энергии поля конденсатора и силы притяжения пластин. Зазор между пластинами заполнен слюдой.

Площадь пластин S, м ²	W, Дж/м	F, H
0,01		
0,015		
0,02		
0,025		
0,03		
0,035		

Таблица 1.22

Заряд конденсатора $Q = 10^{-6}$ Кл.

Диэлектрическая проницаемость слюды $\varepsilon = 6$.

Электрическая постоянная $\varepsilon_0 = 8,85 \times 10^{-12} \text{ Ф/м.}$

Объемная плотность энергии поля конденсатора вычисляется по формуле $W = \frac{Q^2}{2\epsilon_0 S^2}$ Дж/м.

Сила притяжения пластин вычисляется по формуле $F = \frac{Q^2}{2 \varepsilon_0 S}$ H.

Построить графики зависимости объемной плотности энергии и силы притяжения пластин конденсатора от площади пластин.

Вариант 22

Составить электронную таблицу 1.23 определения коэффициента диффузии и внутреннего трения азота.

Таблица 1.23

Номер опыта	Температура азота Т, К	Давление азота р, Па
1	200	99 800
2	245	99 900
3	280	99 995
4	300	100 000
5	325	100 010

Молярная масса азота $M = 28 \times 10^{-3}$ кг/моль.

Плотность азота при нормальных условиях $\rho_0 = 1,25 \text{ кг/м}^3$.

Давление азота при нормальных условиях $p_0 = 1,01 \times 10^5$ Па.

Температура азота при нормальных условиях T₀ = 273 К.

Эффективный диаметр молекулы азота $d = 3,1 \times 10^{-10}$ м.

Постоянная Больцмана $K = 1,38 \times 10^{-23}$ Дж/К.

Коэффициент диффузии вычисляется по формуле $2KT \sqrt{RT} \sqrt{2/2}$

 $D = \frac{2KT}{3\pi d^2 p} \sqrt{\frac{RT}{\pi M}} \,\mathrm{m}^2/\mathrm{c}.$

Коэффициент внутреннего трения вычисляется по формуле

$$\eta = \frac{D\rho_0 pT_0}{p_0 T} \text{ KG/(M \cdot c)}.$$

Построить гистограммы изменения коэффициентом диффузии и внутреннего трения азота по результатам опытов.

Вариант 23

Составить электронную таблицу 1.24 расчета амплитуды гармонических колебаний материальной точки массой m = 10 г.

Период колебания Т, с	А, м
1	
1,5	
2	
2,5	
3	
3,5	
4	
4,5	
5	

Таблица 1.24

Полная энергия точки Е = 0,02 Дж.

Амплитуда колебаний вычисляется по формуле: $A = \frac{1}{w} \sqrt{\frac{2E}{m}}$ м, где $\omega = \frac{2\pi}{T} \frac{1}{c} - циклическая частота.$

Построить график зависимости амплитуды от периода колебания.

Вариант 24

Составить электронную таблицу 1.25 определения объема баллона, содержащего кислород и аргон.

Номер	Macca, г		Тампаратира Т. И
опыта	кислорода m ₁	аргона m ₂	температура 1, к
1	75	300	285
2	80	310	290
3	85	320	300
4	90	295	305
5	95	290	310
6	100	280	320

Таблица 1.25

Молярная масса кислорода М1 = 32×10 –3 кг/моль, аргона – M2 = 40×10 –3 кг/моль.

Молярная газовая постоянная $R = 8,31 \text{ Дж/(моль·K)}, p = 1,01 \times 10^5 \text{ Па.}$ Объем баллона рассчитывается по формуле

$$V = \left(\frac{m_1}{M_1} + \frac{m_2}{M_2}\right) \frac{RT}{p} = \frac{1}{M_1^3}$$

Рассчитать средние значения m1, m2, T, V.

Построить график изменения объема баллона по результатам опытов.

Вариант 25

Составить электронную таблицу 1.26 определения индуктивности и энергии магнитного поля соленоида.

Таблица 1.26

Номер	Количество витков	Сила тока I,	Магнитный поток Ф,
опыта	соленоида N	Α	Вб
1	1100	4	0,000006
2	1115	3	0,000007
3	1120	2	0,00008
4	1125	3	0,0000065
5	1130	5	0,000007
6	1135	4	0,0000075
7	1140	3	0,000008

Индуктивность соленоида рассчитывается по формуле $L = \frac{N\Phi}{I}$ Гн.

Энергия магнитного поля соленоида рассчитывается по формуле $W = \frac{1}{2} L I^2 \ Дж.$

Построить графики изменения индуктивности и энергии магнитного поля по результатам опытов.

1.2 Решение нелинейных уравнений

Цель: изучить основные возможности приложения *Microsoft Excel* для решения нелинейных уравнений.

1.2.1 Краткие теоретические сведения

Нахождение корней уравнения вида f(x) = 0 даже в случае алгебраических уравнений выше третей степени представляет сложную задачу. Трансцендентные же уравнения чаще вообще не имеют аналитического решения. В этих случаях единственным путем является получение приближенных решений, выбором неизвестных значений параметров так, чтобы они давали минимум ошибки некоторой целевой функции (как правило квадратичной).

Для нахождения корней нелинейного уравнения с заданной погрешностью используют различные численные методы.

Численные методы основаны на последовательном уточнении значения корня от какого-то начального значения $x^{(0)}$ до достижения требуемой точности. Каждое повторное уточнение корня называется *итерацией* $x^{(j+1)} = \varphi(x^{(j)})$ (j = 0,1,2,...). Количество итераций, которое необходимо сделать, заранее не известно и зависит от удачного выбора начального значения корня, вида функции y = f(x), требуемой точности вычисления корня и, наконец, от выбранного численного метода.

Для нахождения начального значения корня проще всего построить график функции y = f(x) в окрестности предполагаемого корня и найти точку пересечения функции с осью *x*. Полученное таким образом начальное значение искомого корня используется в дальнейшем при уточнении корня численным методом до получения требуемой точности.

Для нахождения самого корня в MS Excel используется инструмент *Подбор параметра*. Он реализует алгоритм численного решения уравнения, зависящего от одной переменной.

Процесс решений с помощью процедуры *Подбор параметра* распадается на два этапа:

1. Задание на рабочем листе ячейки, содержащей переменную решаемого уравнения (так называемой влияющей ячейки), и ячейки, содержащей формулу уравнения (зависящей или целевой ячейки).

2. Ввод адресов влияющей и целевой ячеек в диалоговом окне *Подбор параметров* и получение ответа (или сообщение о его отсутствии или невозможности нахождения, поскольку уравнение может не иметь решений или алгоритм решений (оптимизации) может оказаться расходящимся в конкретных условиях).

1.2.2 Пример выполнения задания

Найти все действительные корни нелинейного уравнения

$$y = f(x) = x^{3} - 3x^{2} + x + 1 = 0$$
(1.1)

с относительной погрешностью $\varepsilon = 10^{-5}$.

Методические рекомендации

1. Как показано на рисунках 1.13, 1.14, занесите в ячейки A1 и B1 начальное и конечное значения аргумента x соответственно. В ячейке C1 рассчитайте величину изменения шага для 10 точек.

2. Постройте график функции $y = f(x) = x^3 - 3x^2 + x + 1$ как показано на рисунке 1.13.

Рисунок 1.13 - Результаты табулирования и построения графика функции y = f(x)

	А	В	С	D 🗖
1	-0,5	2,5	=(B1-A1)/10	
2	х	Y		
3	=A1	=A3^3-3*A3^2+A3+1		
4	=A3+\$C\$1	=A4^3-3*A4^2+A4+1		
5	=A4+\$C\$1	=A5^3-3*A5^2+A5+1		
6	=A5+\$C\$1	=A6^3-3*A6^2+A6+1		=
7	=A6+\$C\$1	=A7^3-3*A7^2+A7+1		
8	=A7+\$C\$1	=A8^3-3*A8^2+A8+1		
9	=A8+\$C\$1	=A9^3-3*A9^2+A9+1		
10	=A9+\$C\$1	=A10^3-3*A10^2+A10+1		
11	=A10+\$C\$1	=A11^3-3*A11^2+A11+1		
12	=A11+\$C\$1	=A12^3-3*A12^2+A12+1		
13	=A12+\$C\$1	=A13^3-3*A13^2+A13+1		
14				
1.5				•

Рисунок 1.14 – Лист с формулами табулирования функции y = f(x)

3. Пользуясь графиком, определите точки, в которых значения функции равны нулю: $x_1 \approx -0, 5; x_2 \approx 1, 0; x_3 \approx 2, 5$ – это и есть начальные значения корней уравнения (1.1).

4. Уточните значения корней с заданной относительной погрешностью $\varepsilon = 10^{-5}$. Для этого откройте новый лист и назовите его, например, *Корни уравнения*. Вычисленные значения корней будут находиться в ячейке **A1**, а уравнение – в ячейке **B1**. 5. Занесите в ячейку А1 приближенное значение первого корня: -0,5.

6. В ячейку **B1** занесите левую часть уравнения (1.1), используя в качестве независимой переменной *x* адрес ячейки **A1**.

7. В меню Файл\Параметры\Формулы\Параметры вычислений установите флажок Включить итеративные вычисления, в поле Предельное число итераций укажите значение 100, а в поле Относительная погрешность: укажите заданное значение относительной погрешности 1е-5 (рис. 1.15).

Параметры Excel	?	×		
Общие	Изменение параметров, связанных с вычислением формул, быстродействием и обработкой ошибок.			
Формулы				
Правописание	Параметры вычислений			
Сохранение	Вычисления в книге () Г Включить итеративные вычисления автоматически Предельное число итераций: 100			
Дополнительно	автоматически, <u>кр</u> оме таблиц данных Относительная по <u>г</u> решность: 0,0000			
Настройка ленты Панель быстрого доступа	Работа с формулами			
Надстройки Центр управления безопасностью	 □ Стиль ссылок R<u>1</u>C1 ○ ☑ Авто<u>з</u>авершение формул ○ ☑ <u>И</u>спользовать имена таблиц в формулах ☑ Использовать <u>ф</u>ункции GetPivotData для ссылок в сводной таблице 			
	Контроль ошибок			
	☑ Вкдючить фоновый поиск ошибок Цвет индикаторов ошибок: Сброс пропущенных ошибок			
	Правила контроля ошибок			
	Ячейки, которые содержат формулы, приводящие к ошибкам			
	✓ Несогласованная формула в вычисляемом столбце таблицы — В таблицы — В таблицы			
	Ячейки, которые содержат годы, представленные <u>2</u> 0 на в таблицу введены педотустивые данные цифрами			
	✓ Числа, отформатированные как текст или с предшествующим апострофом			
	✓ Формулы, несогласованные с остальными формулами в области			
	ОК Отмена	,		

Рисунок 1.15 – Окно процедуры Параметры

8. Выполните команду Данные Анализ «что если» Подбор параметра....

9. В открывшемся диалоговом окне Подбор параметра в поле Установить в ячейке укажите адрес ячейки, в которую занесена левая часть уравнения (B1), в поле Значение задайте значение правой части уравнения (0), а в поле Изменяя значение ячейки укажите адрес ячейки, в которую занесен аргумент (A1) (рис. 1.16).

10. Щелкните на кнопке *OK* и проанализируйте результат, отображаемый в диалоговом окне *Результат подбора параметра*.

Подбор параметра	? ×)				
Установить в <u>я</u> чейке:	\$B\$1				
Зна <u>ч</u> ение:	0				
<u>И</u> зменяя значение ячейки:	\$A\$1 📧				
ОК Отмена					

Рисунок 1.16 – Окно процедуры Подбор параметра

Щелкните на кнопке *OK*, чтобы сохранить полученные значения ячеек, участвовавших в операции.

11. Повторите расчет, задавая в ячейке **A1** приближенные значения корней **1,0** и **2,5**. Полученные результаты занесите в таблицу, как показано на рисунке 1.17.

	А	В	С	D	E	F	G	H
1	2,41422	6,29E-06		x1	-0,41421			
2				x2	1			
3				x3	2,41422			
4								
5								-
14 4	и • ► № Лист1 Лист2 Корни уравнения 1 • Ш ► Г							

Рисунок 1.17 – Результаты вычисления корней нелинейного уравнения (1.1)

1.2.3 Вопросы для самоконтроля

1. Как определить начальные значения корней нелинейного уравнения?

2. Сколько ячеек используется при уточнении корня нелинейного уравнения и какую информацию необходимо в них задавать?

3. Какие значения необходимо устанавливать в диалоговом окне *Подбор параметра*?

4. Каким образом устанавливается заданное значение относительной погрешности вычисления корня є?

5. Почему при решении нелинейных уравнений для различных значений начальных приближений могут получаться разные результаты?

1.2.4 Индивидуальные задания

Найти все действительные корни нелинейных уравнений с относительной погрешностью є (табл. 1.27).

Номер	Уравнение	Количество корней	3
1	$0.5x^3 - x + 0.2502 = 0$	3	10 ⁻⁴
2	$1,7x^2 + 6,9x - 4,6 = 0$	2	10 ⁻⁵
4	$x - \frac{1}{3 - 3.6x^2} = 0$	2	10 ⁻⁴
3	$0,1x^2 + (x - 0,5)e^x = 0$	2	10^{-5}
5	$\sqrt{x-5} + \sqrt{10-x} = 3$	2	10^{-5}
6	$\sqrt{4-x} + \sqrt{5+x} = 3$	2	10 ⁻⁵
7	$\sqrt{1 + x\sqrt{x^2 + 24}} = x + 1$	2	10^{-4}
8	$(x^2 - 3x)^2 + 3(x^2 - 3x) - 28 = 0$	2	10^{-5}
9	$\frac{24}{x^2 + 2x - 8} - \frac{15}{x^2 + 2x - 3} = 2$	4	10^{-5}
10	$\log_{x}(3x^{\log_{5}x} + 4) = 2\log_{5}x$	2	10 ⁻⁴
11	$x^2 + \frac{4}{x^2} = x - \frac{2}{x} + 4$	4	10 ⁻⁵
12	$x^2 - \ln x = 1.8$	2	10^{-5}
13	$2,3x^2 - 0,6 \times 3^x = 3$	3	10^{-5}
14	$x^2 - \frac{1}{x} = 2$	3	10 ⁻⁵
15	$\sqrt{x+5} + \sqrt{20-x} = 7$	2	10^{-5}
16	$0,5x^3 - x + 0,2502 = 0$	3	10^{-4}
17	$1,7x^2 + 6,9x - 4,6 = 0$	2	10^{-5}
18	$x - \frac{1}{3 - 3.6x^2} = 0$	2	10 ⁻⁴
19	$0,1x^2 + (x - 0,5)e^x = 0$	2	10^{-5}
20	$\sqrt{x-5} + \sqrt{10-x} = 3$	2	10^{-5}
21	$\sqrt{4-x} + \sqrt{5+x} = 3$	2	10^{-5}
22	$\sqrt{1 + x\sqrt{x^2 + 24}} = x + 1$	2	10 ⁻⁴
23	$(x^2 - 3x)^2 + 3(x^2 - 3x) - 28 = 0$	2	10^{-5}
24	$\frac{24}{x^2 + 2x - 8} - \frac{15}{x^2 + 2x - 3} = 2$	4	10 ⁻⁵
25	$\log_{x}(3x^{\log_{5}x} + 4) = 2\log_{5}x$	2	10 ⁻⁴

Таблица 1.27 – Варианты индивидуальных заданий

1.3 Решение систем нелинейных уравнений

Цель: изучить основные возможности приложения *Microsoft Excel* для решения систем нелинейных уравнений.

1.3.1 Краткие теоретические сведения

Системы уравнений с двумя неизвестными могут быть приближенно решены графически. Их решением являются координаты точки пересечения линий, соответствующих уравнениям системы. При этом точность решения будет определяться величиной шага дискретизации (чем шаг меньше, тем точность выше).

1.3.2 Пример выполнения задания

Найти решение системы нелинейных уравнений

$$\begin{cases} x^2 - y = 1; \\ y + x = 2 \end{cases}$$
(1.2)

с относительной погрешностью $\varepsilon = 10^{-3}$.

Методические рекомендации

1. Преобразуйте систему уравнений (1.2) к виду

$$\begin{cases} y = x^{2} - 1; \\ y = 2 - x. \end{cases}$$
(1.3)

2. Постройте графики функций $y = x^2 - 1$ и y = 2 - x, как показано на рисунке 1.18. Как показано на рисунках 1.18, 1.19, занесите в ячейки **A1** и **B1** начальное и конечное значения аргумента *x* соответственно. В ячейке **C1** рассчитайте величину изменения шага для 10 точек (для более четкого графика количество точек может быть увеличено).

Рисунок 1.18 – Результаты табулирования и построения графиков функций $y = x^2 - 1$ и y = 2 - x

	А	В	С	D 🗖
1	-3	3	=(B1-A1)/10	
2	х	Y=x ² -1	Y=2-x	
3	=A1	=A3^2-1	=2-A3	
4	=A3+\$C\$1	=A4^2-1	=2-A4	
5	=A4+\$C\$1	=A5^2-1	=2-A5	
6	=A5+\$C\$1	=A6^2-1	=2-A6	=
7	=A6+\$C\$1	=A7^2-1	=2-A7	
8	=A7+\$C\$1	=A8^2-1	=2-A8	
9	=A8+\$C\$1	=A9^2-1	=2-A9	
10	=A9+\$C\$1	=A10^2-1	=2-A10	
11	=A10+\$C\$1	=A11^2-1	=2-A11	
12	=A11+\$C\$1	=A12^2-1	=2-A12	
13	=A12+\$C\$1	=A13^2-1	=2-A13	
14				
15				
14 4	▶ № Лист1	Лист2 Лист3 / 🖓 /] 4	▶ []

Рисунок 1.19 – Лист с формулами

3. На рисунке 1.18 видно, что графики функций пересекаются в двух точках, следовательно, система уравнений (1.2) имеет два решения.

4. Пользуясь графиком, определите приблизительные значения координат x_i для точек, в которых функции пересекаются. Для этого необходимо навести указатель мыши на точку пересечения. Появляется надпись с указанием точки, ближайшей к точке пересечения: $x_1 \approx -2$; $x_2 \approx 1,5$ это и есть начальное приближение корней x_i системы уравнений 1.2 (рис. 1.20, 1.21).

Рисунок 1.20 – Приближенное значение первого корня

Рисунок 1.21 – Приближенное значение второго корня

5. Уточните значение корней с заданной относительной погрешностью $\varepsilon = 10^{-3}$. Для этого откройте новый лист и назовите его, например, *Корни системы уравнений*.

6. Как показано на рисунке 1.23, занесите в ячейку A2 приближенное значение первого корня: -2,4. В ячейки B2 и B3 занесите обе функции, которые в качестве аргумента x ссылаются на ячейку A2. Для организации процесса вычислений в ячейку C2 введите целевую функцию, которая вычисляет среднее отклонение значений функций друг от друга *Мастер функций* (*Статистические*) *СРОТКЛ* (рис. 1.22, 1.23). Очевидно, если эти функции пересекаются (т. е. имеется решение), значение в ячейке C2 должно быть равно нулю.

Мастер функций - шаг 1 из 2	? ×
Поиск функции:	
Введите краткое описание действия, которое нужно выполнить, и нажмите кнопку "Найти"	<u>Н</u> айти
Категория: Статистические	
Выберите функцию:	
СРЗНАЧЕСЛИМН СРОТКЛ СТАНДОТКЛОН.В СТАНДОТКЛОН.Г СТАНДОТКЛОНА СТАНДОТКЛОНПА СТОШҮХ	
СРОТКЛ(число1;число2;) Возвращает среднее абсолютных значений отклонений точек д среднего. Аргументами могут являться числа, имена, массивы и числовые значения.	анных от или ссылки на
Справка по этой функции ОК	Отмена

Рисункок 1.22 – Обращение к функции

	А	В	С	
1	Xi	Yi	Отклонение	
2	-2,4	=A2^2-1	=СРОТКЛ(В2;В3)	
3		=2-A2		
4				_
-	▶ № Лист1	Лист 2 Кор	ни р 🛛 🖣 💷	▶ [

Рисункок 1.23 – Лист с формулами

7. В меню Файл\Параметры\Формулы\Параметры вычислений установите флажок Включить итеративные вычисления, в поле Предельное число итераций укажите значение 100, а в поле Относительная погрешность укажите заданное значение относительной погрешности 1е-3 (рис. 1.24).

Параметры Excel	?
Общие Формулы	Изменение параметров, связанных с вычислением формул, быстродействием и обработкой ошибок.
Правописание	Параметры вычислений
Сохранение Язык Дополнительно Настройка ленты	Вычисления в книге ①
Панель быстрого доступа	Работа с формулами
Надстройки Центр управления безопасностью	 Стиль ссылок R1C1 ① Автозавершение формул ③ Использовать имена таблиц в формулах Использовать функции GetPivotData для ссылок в сводной таблице Контроль ошибок Вкдючить фоновый поиск ошибок Цвет индикаторов <u>о</u>шибок:
	Правила контроля ошибок
	 Ячейки, которые содержат формулы, приводящие к ошибкам Несогласованная формула в вычисляемом столбце таблицы Ячейки, которые содержат годы, представленные 2 цифрами Числа, отформатированные как текст или с предшествующим апострофом Формулы, не охватывающие смежные ячейки Формулы, не охватывающие смежные ячейки Незаблокированные ячейки Формулы, которые ссылаются на пустые ячейки В таблицу введены недопу⊆тимые данные Числа, отформатированные как текст или с предшествующим апострофом Формулы, не согласованные с остальными формулами в
	ОК Отмена

Рисунок 1.24 – Окно процедуры Параметры

8. Выполните команду Данные\Анализ «что если»\Подбор параметра....

9. Для уточнения корня в открывшемся диалоговом окне Подбор параметра в поле Установить в ячейке укажите адрес ячейки, в которую занесено значение отклонений (C2), в поле Значение задайте значение правой части уравнения (0), а в поле Изменяя значение ячейки укажите адрес ячейки, в которую занесен аргумент (A2) (рис. 1.25).

Подбор параметра	?×
Установить в <u>я</u> чейке:	\$C\$2 📧
Зна <u>ч</u> ение:	0
<u>И</u> зменяя значение ячейки:	\$A\$2 📧
ОК	Отмена

Рисунок 1.25 – Окно процедуры Подбор параметра

10. На рисунках 1.26, 1.27 приведены начальный и конечный виды расчетов, если задать начальное значение корня $x_1 = -2, 4$.

	А	В	С	D	
1	X _i	Yi	Отклонение		
2	-2,4	4,76	0,18		
3		4,4			
4					-
-	▶ № Лис	г1 / Лист2	Kori 4		1

Рисунок 1.26 – Начальный вид вычисления корней x_1 , y_1 системы (1.2)

	А	В	С	D 🔺
1	Xi	Yi	Отклонение	
2	-2,303	4,303	0	
3		4,303		
4				•
14 4	▶ Ы Лист	т1 / Лист2	Kol 4	▶ [

Рисунок 1.27 – Конечный вид вычисления корней x_1 , y_1 системы (1.2)

11. Получите второе решение системы (1.2), для чего повторите расчет, задавая начальное значение корня $x_2 = 1,2$. Результаты расчетов для этого варианта показаны на рисунке 1.28.

	А	В	С	D 🛓
1	Xi	Yi	Отклонение	
2	1,303	0,967	0	
3		0,697		
4				
I 4	▶ Ы Лис	т1 / Лист2		▶ [

Рисунок 1.28 – Результаты вычисления корней x_2 , y_2 системы (1.2)

Необходимо иметь в виду, что результат вычислений существенно зависит от заданного начального приближения. Таким образом, найдены два решения системы (1.2) с относительной погрешностью $\varepsilon = 10^{-3}$; $x_1 \approx -2,303$; $y_1 \approx 4,303$; $_{\rm H} x_2 \approx 1,303$; $y_2 \approx 0,697$.

1.3.3 Вопросы для самоконтроля

1. Как определить приближенные значения корней системы нелинейных уравнений?

2. Почему при решении системы нелинейных уравнений для различных значений начальных приближений могут получаться разные результаты?

3. Сколько ячеек используется при уточнении корня системы нелинейных уравнений, и какую информацию необходимо в них задавать?

4. Какие значения необходимо устанавливать в диалоговом окне *Подбор параметров?*

1.3.4 Индивидуальные задания

Найти решение системы нелинейных уравнений с относительной погрешностью $\epsilon = 10^{-4}$:

Номер варианта	Система	Номер варианта	Система
1	$\begin{cases} x + 2y = 13,5; \\ xy = 15,5. \end{cases}$	13	$\begin{cases} 14,7x^2 - 3,8y = 12,9; \\ 2,4x^2 + 1,3x + 5,7y = 0. \end{cases}$
2	$\begin{cases} x^2 + 2y = 10,5; \\ x - y = -1,5. \end{cases}$	14	$\begin{cases} 5y - x^2 = 1,2; \\ x - y = -3,5. \end{cases}$
3	$\begin{cases} x^2 + y = 4,1; \\ x + y = 2,6. \end{cases}$	15	$\begin{cases} 1,3y-6,5x^2 = 2,4x-7,8; \\ xy+3,6y = 13,2x+5,9. \end{cases}$
4	$\begin{cases} 2x^2 - y = -2,3; \\ 3x + y = 1,7. \end{cases}$	16	$\begin{cases} x^2 - 2y - 13,8 = 0; \\ xy - 4,2y = 15,3. \end{cases}$
5	$\begin{cases} y + 2x^2 = 3,1; \\ x + y = 2,8. \end{cases}$	17	$\begin{cases} 1,4y+2x^2 = 3,6; \\ y-1,6x^2-2,3x+1,9 = 0. \end{cases}$
6	$\begin{cases} x^2 - y = 1,9; \\ x^2 - 2x + y = -1,8. \end{cases}$	18	$\begin{cases} 3,1x^2 + 2y = 13,4; \\ 2,7x^2 - y = -1,5. \end{cases}$

Таблица 1.28 – Варианты индивидуальных заданий

7	$\begin{cases} 2x - 3y = -18,4; \\ xy = -12,3. \end{cases}$	19	$\begin{cases} 2x^2 - 3, 2y = 12, 3; \\ 3, 5x + 1, 7y = 6, 4. \end{cases}$
8	$\begin{cases} 3x + 45, 6 = -2y; \\ xy = 44, 9. \end{cases}$	20	$\begin{cases} 3x + 45, 6 = -2y; \\ xy = 44, 9. \end{cases}$
9	$\begin{cases} 2x^2 - 3, 2y = 12, 3; \\ 3, 5x + 1, 7y = 6, 4. \end{cases}$	21	$\begin{cases} 2x - 3y = -18,4; \\ xy = -12,3. \end{cases}$
10	$\begin{cases} 3,1x^2 + 2y = 13,4; \\ 2,7x^2 - y = -1,5. \end{cases}$	22	$\begin{cases} x^2 - y = 1,9; \\ x^2 - 2x + y = -1,8. \end{cases}$
11	$\begin{cases} 1,4y+2x^2 = 3,6; \\ y-1,6x^2-2,3x+1,9 = 0. \end{cases}$	23	$\begin{cases} y + 2x^2 = 3,1; \\ x + y = 2,8. \end{cases}$
12	$\begin{cases} 14,7x^2 - 3,8y = 12,9; \\ 2,4x^2 + 1,3x + 5,7y = 0. \end{cases}$	24	$\begin{cases} 2x^2 - y = -2,3; \\ 3x + y = 1,7. \end{cases}$
25	$\begin{cases} x^2 - \\ xy - \end{cases}$	2y - 13, 4,2y = 1	8 = 0; 15,3.

Продолжение таблицы 1.28

1.4 Решение систем линейных уравнений

Цель: изучить основные возможности приложения *Microsoft Excel* для решения систем линейных уравнений.

1.4.1 Краткие теоретические сведения

Методы решения систем линейных уравнений делятся на *прямые* и *итерационные*. Итерационные методы позволяют получать решение с заданной точностью на основе рекуррентных алгоритмов. Эффективность итерационных алгоритмов существенно зависит от удачного выбора начального приближения и быстроты сходимости итерационного процесса.

Прямые методы позволяют получить в принципе точное решение за конечное количество арифметических операций. Один из прямых методов, который достаточно просто реализуется средствами *Microsoft Excel*, использует вычисление обратной матрицы.

Пусть дана линейная система *n* уравнений с *n* неизвестными, где $a_{ig}, b_i (i = 1, 2, ..., n; g = 1, 2, ..., n)$ – произвольные числа, называемые соответственно, коэффициентами при переменных и свободными членами уравнений:

 $\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{in} + x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n. \end{cases}$

Такая запись называется системой линейных уравнений в нормальной форме. Решением системы называется такая совокупность n чисел $(x_1 = k_1, x_2 = k_2, ..., x_n = k_n)$, при подстановке которых каждое уравнение системы обращается в верное равенство.

Система уравнений совместна, если она имеет хотя бы одно решение и несовместна, если она не имеет решений.

Если совместная система уравнений имеет единственное решение, она называется определенной; напротив, система уравнений называется неопределенной, если она имеет более одного решения.

Две системы уравнений являются равносильными или эквивалентными, если они одно и тоже множество решений. Система, равносильная данной, может быть получена с помощью элементарных преобразований системы.

Систему можно также записать в виде матричного уравнения

$$A = \begin{pmatrix} a_{11}; a_{12}; \dots; a_{in} \\ a_{21}; a_{22}; \dots; a_{2n} \\ \dots \\ a_{n1}; a_{n2}; \dots; a_{nn} \end{pmatrix};$$

Х – матрица-столбец (вектор) неизвестных:

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix};$$

В – матрица-столбец (вектор) сводных членов:

$$\hat{A} = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{pmatrix}.$$

В развернутом виде систему можно представить следующим образом:

$$\begin{pmatrix} a_{11}; a_{12}; \dots; a_{1n} \\ a_{21}; a_{22}; \dots; a_{2n} \\ \dots \\ a_{n1}; a_{n2}; \dots; a_{nn} \end{pmatrix} * \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{pmatrix}.$$

Существует ряд методов решения системы, ориентированных на вычисление вручную: методы Крамера, Гаусса и т. д. Предлагая использование компьютера для проведения вычислений, наиболее целесообразно рассмотреть решение системы в общем виде (методом обратной матрицы). Будем считать, что квадратная матрица системы A_{nn} является вырожденной, то есть ее определитель $|A| \neq 0$. В этом случаи существует обратная матрица A^{-1} .

Умножая слева обе части матричного равенства на обратную матрицу A^{-1} , получим:

$$A^{-1} \times A \times X = A^{-1} \times B, E \times X = A^{-1} \times B;$$

 $E \times X = X,$

Отсюда решаем системы методом обратной матрицы – будет матрица столбец:

$$X = A^{-1} \times B.$$

Таким образом, для решения системы (нахождения вектора X) необходимо найти обратную матрицу коефициентов и умножить ее справа на вектор свободных членов.

1.4.2 Пример выполнения задания

Найти решение системы линейных уравнений:

$$\begin{cases} 2x_1 - x_2 + x_3 = 3; \\ x_1 + 3x_2 - 2x_3 = 1; \\ x_2 + 2x_3 = 8. \end{cases}$$
(1.4)

Методические рекомендации

1. Для решения системы (1.4) с помощью обратной матрицы сформируем массивы коэффициентов, как показано на рисунке 1.29.

	А	В	С	D	E	F	G
1	Матрица коэффициентов			Правая часть			
2	2	-1	1		3		
3	1	3	-2		1		=
4	0	1	2		8		
5							
6	Обратная матрица			Корни			
7							
8							
9							
10							
11							-
14 4	▶ № Пря	мой метод	Лист2	Лис	т3 🛛 🖣 👘	1	► []

Рисунок 1.29 – Лист с расчетами при использовании прямого метода

2. Для формирования обратной матрицы занесите в ячейку **А7** функцию **МОБР (Мастер функции\Математические\Мобр...)**, аргументом которой является диапазон ячеек **А2:С4** с матрицей коэффициентов системы (1.4), как показано на рисунке 1.30.

					*		
	А	В	С	D	E	F	G
1	Матрица коэффициентов			Правая часть			
2	2	-1	1		3		
3	1	3	-2		1		=
4	0	1	2		8		
5							
6	Обратная матрица			Корни			
7	0,421053	Į					
8							
9							
10							
11							-

Рисунок 1.30 – Использование функции МОБР для формирования обратной матрицы

3. Выделите диапазон ячеек **A7:C9** в котором будут находиться коэффициенты обратной матрицы, нажмите клавишу **F2**, а затем комбинацию клавиш **Ctrl+Shift+Enter** (правые). Полученная обратная матрица должна выглядеть так, как показано на рисунке 1.31.

	А	В	С	D	E	F	G	
1	Матриц	а коэффиі	циентов		Правая часть			
2	2	-1	1		3			
3	1	3	-2		1			\equiv
4	0	1	2		8			
5								
6	Обр	атная матр	рица		Корни			
7	0,421053	0,157895	-0,05263					
8	-0,10526	0,210526	0,263158					
9	0,052632	-0,10526	0,368421					
10								
11				-	-2.54			
14 4	Р Р Пря	мои метод	Длист2 Д	1IN			- P	<u> </u>

Рисунок 1.31 – Формирование обратной матрицы

4. В ячейках диапазона E7:E9 сформируйте выражения для вычисления корней. Для этого в ячейке E7 запишите выражение для умножения обратной матрицы на правую часть используя функцию *МУМНОЖ (Мастер функции\Математические\МУМНОЖ...)*, аргументом которой является диапазон ячеек A7:C9 и E2:E4как показано на рисунке 1.32.

								_
	А	В	С	D	E	F	G	
1	Матриц	а коэффиі	циентов		Правая часть			
2	2	-1	1		3			
3	1	3	-2		1			≡
4	0	1	2		8			
5								
6	Обр	атная мат	рица		Корни			
7	0,421053	0,157895	-0,05263		1			
8	-0,10526	0,210526	0,263158					
9	0,052632	-0,10526	0,368421					
10								
11 4 4	▶ № Пря	мой метод	Лист2	Лис	т 3 Д 🖣			•

Рисунок 1.32 – Использование функции МУМНОЖ

5. Выделите диапазон ячеек **E7:E9**, в котором будут находиться корни системы, нажмите клавишу **F2**, а затем комбинацию клавиш **Ctrl+Shift+Enter** (правые). Полученный вектор должен выглядеть так, как показано на рисунке 1.33. На рисунке 1.34 представлен лист с формулами для расчетов прямым методом.

	А	В	С	D	E	F	G 🛓
1	Матриц	а коэффиі	циентов		Правая часть		
2	2	-1	1		3		
3	1	3	-2		1		
4	0	1	2		8		
5							
6	Обратная матрица				Корин		
0	000	атная мат	рица		корни		
7	0,421053	агная мат 0,157895	-0,05263		1		
7	0,421053 -0,10526	0,157895 0,210526	-0,05263 0,263158		<u>1</u> 2		
7 8 9	0,421053 -0,10526 0,052632	0,157895 0,210526 -0,10526	-0,05263 0,263158 0,368421		1 2 3		
7 8 9 10	0,421053 -0,10526 0,052632	0,157895 0,210526 -0,10526	-0,05263 0,263158 0,368421		<u>1</u> 2 3		

Рисунок 1.33 – Решение системы уравнений прямым методом

	А	В	С	D	E		
1	Матр	оица коэффицие	ентов		Правая часть	[٦
2	2	-1	1		3		
3	1	3	-2		1		≡
4	0	1	2		8		
5							
6	0	братная матриц	цa –		Корни		
7	=МОБР(А2:С4)	=МОБР(А2:С4)	=МОБР(А2:С4)		=МУМНОЖ(А7:С9;Е2:Е4)		
8	=МОБР(А2:С4)	=МОБР(А2:С4)	=МОБР(А2:С4)		=МУМНОЖ(А7:С9;Е2:Е4)		
9	=МОБР(А2:С4)	=МОБР(А2:С4)	=МОБР(А2:С4)		=МУМНОЖ(А7:С9;Е2:Е4)		
10							
11							Ŧ
14	Прямой ме	тод Лист2 Л	ист3 / 🖓 🛛	•			

Рисунок 1.34 – Лист с формулами решения системы уравнений прямым методом

6. Решите систему (1.4) итерационным методом. Для этого создайте таблицу, как показано на рисунке 1.35. Матрицу коэффициентов занесите в ячейки диапазона A2:C4, а свободные члены – в ячейки столбца G. В столбец E занесите формулы вычисления левой части каждого уравнения системы, где в качестве искомых корней x_1 , x_2 , x_3 используются ячейки A7, B7, C7 соответственно.

	А	В	С	D	E	F	G	H 🛓
1	Матрица	атрица коэффициентов Левая часть			Правая часть			
2	2	2 -1 1			=A2*\$A\$7+B2*\$B\$7+C2*\$C\$7		3	_
3	1 3 -2			=A3*\$A\$7+B3*\$B\$7+C3*\$C\$7		1	=	
4	0	0 1 2			=A4*\$A\$7+B4*\$B\$7+C4*\$C\$7		8	
5								
6	б Корни							
7								
8								
9								-
H I	I 🕨 🛛 🛛	терационн	ный метод	1	Лист2 Лист3 😨 🗍 🗐			

Рисунок 1.35 – Лист с фомулами для расчета итерационным методом

4. Выполните команду Данные\Поиск решения....

5 В открывшемся диалоговом окне **Параметры поиска решения...** введите необходимые параметры процесса вычисления как показано на рисунке 1.36.

эметры поиска решения			
Оптимизировать целевую функцию:	\$E\$2		E
До: С Максимум С Минимум	Эначения:	3	
Изменяя ячейки переменных:			
\$A\$7:\$C\$7			Ē
В соответствии с ограничениями:			
\$E\$2:\$E\$4 = \$G\$2:\$G\$4		<u> </u>	<u>До</u> бавить
			Измени <u>т</u> ь
			<u>У</u> далить
			Сбросить
		_	<u>З</u> агрузить/сохранить
Сделать переменные без ограниче	ний неотрицателы	ными	
Выберите метод решения: Поиск решения нел	инейных задач ме	годом ОПГ 🛛 💌	Параметры
Метод решения			
Для гладких нелинейных задач испо для линейных задач - поиск решения задач - эволюционный поиск решени	льзуйте поиск реш и линейных задач с я.	ения нелинейных имплекс-методом,	задач методом ОПГ, а для негладких
Справка		Найти решение	Закрыть

Рисунок 1.36 – Панель установки необходимых параметров процесса вычисления

6 В поле Оптимизировать целевую ячейку укажите адрес ячейки, в которую занесена целевая функция – левая часть любого уравнения системы (\$E\$2, \$E\$3 или \$E\$4), установите переключатель Равной в положение (значению:), а в поле ввода занесите соответствующее значение свободного члена (3, 1 или 8). В поле Изменяя ячейки укажите диапазон ячеек, в которых будет находится искомое решение (\$A\$7:\$C\$7). В поле Ограничения укажите \$E\$2:\$E\$4=\$G\$2:\$G\$4.

7 После установки всех параметров, необходимых для решения системы уравнений, нажать кнопку *Найти решение*. Полученные результаты оформить так, как показано на рисунке 1.37.

		1		_					-
	А	В	С	D	E		G	Н	
1	Матриц	а коэффи	циентов		Левая часть		Правая часть		
2	2	2 -1 1			3		3		≡
3	1	3	-2		1		1		
4	0	1	2		8		8		
5									
6		Корни							
7	1	2	3						
0 4 4	▶ № Ите	рационный	і метод 🕖	Лист	2 / Лист3 / 🗍 🕯				•

Рисунок 1.37 – Результаты вычисления корней системы линейных уравнений итерационным методом

8 Сравните результаты вычисления корней системы прямым и итерационным методами. Сделайте выводы.

1.4.3 Вопросы для самоконтроля

1. Как получить решение системы уравнений с использованием обратной матрицы?

2. Какие массивы необходимо сформировать для решения системы уравнений с использованием обратной матрицы?

3. Каким образом формируется обратная матрица?

4. Какие параметры вводятся в диалоговом окне при решении системы уравнений итерационным методом?

5. Какие массивы необходимо сформировать для решения системы уравнений итерационным методом?

1.4.4 Индивидуальные задания

Найти решение систем линейных уравнений двумя методами. Результаты сравнить.

Номер варианта	Система	Номер варианта	Система	
1	$\begin{cases} x + 2y + 3z = 8; \\ 3x + y + z = 6; \\ 2x + y + 2z = 6. \end{cases}$	13	$\begin{cases} 2,5x - 3y + 4,6z = -1,05; \\ -3,5x + 2,6y + 1,5z = -14,46; \\ -6,5x - 3,5y + 7,3y = -18. \end{cases}$	
2	$\begin{cases} 2x + y + z = 7; \\ x + 2y + z = 8; \\ x + y + 2z = 9. \end{cases}$	14	$\begin{cases} 2,1x - 4,5y - 2z = 19,07; \\ 3x + 2,5y + 4,3z = 3,21; \\ -6x + 3,5y + 2,5z = -18. \end{cases}$	
3	$\begin{cases} 3x - 4y + 5z = 18; \\ 2x + 4y - 3z = 26; \\ x - 6y + 8z = 0. \end{cases}$	15	$\begin{cases} 1,5x - 0,2y + 0,1z = 0,4; \\ -0,1x + 1,5y - 0,1z = 0,8; \\ -0,3x + 0,2y - 0,5z = 0. \end{cases}$	
4	$\begin{cases} 10x - 9z = 19; \\ 8x - y = 10; \\ y - 12z = 10. \end{cases}$	16	$\begin{cases} 0,15x + 2,11y + 30,75z = -2\\ 0,64x + 1,21y + 2,05z = 1,0\\ 3,21x + 1,53y + 1,04z = 5. \end{cases}$	26,38; 1;
5	$\begin{cases} x + 2y + z + 7 = 0; \\ 2x + y - z - 1 = 0; \\ 3x - y + 2z - 2 = 0. \end{cases}$	17	$\begin{cases} 1,15x + 0,42y + 100,71z = \\ 1,19x + 0,55y + 0,32z = 2, \\ x + 0,35y + 3z = -1. \end{cases}$	-198,7; 29;
6	$\begin{cases} 3,2x - 1,5y + 0,5z = 0,9; \\ 1,6x + 2,5y - z = 1,55; \\ x + 4,1y - 1,5z = 2,08. \end{cases}$	18	$\begin{cases} 2x + 6y - z = -12; \\ 5x - y + 2z = 29; \\ -3x - 4y + z = 5. \end{cases}$	
7	$\begin{cases} 1,5x - 0,2y + 0,1z = 0,4; \\ -0,1x + 1,5y - 0,1z = 0,8; \\ -0,3x + 0,2y - 0,5z = 0. \end{cases}$	19	$\begin{cases} 3,2x + y + z = 4; \\ x + 3,7y + z = 4,5; \\ x + y + 4,2z = 5. \end{cases}$	
8	$\begin{cases} 2,1x - 4,5y - 2z = 19,07; \\ 3x + 2,5y + 4,3z = 3,21; \\ -6x + 3,5y + 2,5z = -18. \end{cases}$	20	$\begin{cases} 3,1x+1,5y+z = 10,83; \\ 1,5x+2,5y+0,5z = 9,2; \\ x+0,5y+4,2z = 17,1. \end{cases}$	

Таблица 1.29 – Варианты индивидуальных заданий

Продолжение таблицы 1.29

			•
9	$\begin{cases} 0,15x + 2,11y + 30,75z = -26,38; \\ 0,64x + 1,21y + 2,05z = 1,01; \\ 3,21x + 1,53y + 1,04z = 5. \end{cases}$	21	$\begin{cases} x + 2y + z + 7 = 0; \\ 2x + y - z - 1 = 0; \\ 3x - y + 2z - 2 = 0. \end{cases}$
10	$\begin{cases} 1,15x + 0,42y + 100,71z = -198\\ 1,19x + 0,55y + 0,32z = 2,29;\\ x + 0,35y + 3z = -1. \end{cases}$,7; 22	$\begin{cases} 2,1x - 4,5y - 2z = 19,07; \\ 3x + 2,5y + 4,3z = 3,21; \\ -6x + 3,5y + 2,5z = -18. \end{cases}$
11	$\begin{cases} 2x + 6y - z = -12; \\ 5x - y + 2z = 29; \\ -3x - 4y + z = 5. \end{cases}$	23	$\begin{cases} 3,2x-1,5y+0,5z = 0,9; \\ 1,6x+2,5y-z = 1,55; \\ x+4,1y-1,5z = 2,08. \end{cases}$
12	$\begin{cases} 2,1x-4,5y-2z = 19,07; \\ 3x+2,5y+4,3z = 3,21; \\ -6x+3,5y+2,5z = -18. \end{cases}$	24	$\begin{cases} 10x - 9z = 19; \\ 8x - y = 10; \\ y - 12z = 10. \end{cases}$
25	$\begin{cases} 3,2x+y\\x+3,7y\\x+y+z \end{cases}$	y + z = $y + z =$ $4,2z =$	= 4; = 4,5; = 5.

1.5 Аппроксимация функций

Цель: изучить основные возможности приложения *Microsoft Excel* для аппроксимации экспериментальных данных.

1.5.1 Краткие теоретические сведения

В инженерной практике часто приходиться иметь дело с таблицей численных значений экспериментальных данных, отражающих некоторую функциональную зависимость $y_i = f(x_i)$. С численными значениями такой зависимости в большинстве случаев работать неудобно, поэтому с помощью различных методов пытаются подобрать такую эмпирическую формулу $y = \varphi(x)$, график которой наиболее точно отражает зависимость $y_i = f(x_i)$. Такая замена табличной функции $y_i = f(x_i)$ аналитической функцией $y = \varphi(x)$ называется аппроксимацией, а функция $\varphi(x) - аппроксимирующей функцией.$

Обычно решение задачи аппроксимации состоит из двух частей. Сначала устанавливают вид зависимости y = f(x) и, соответственно, вид эмпирической формулы, то есть решают, является ли она линейной, квадратичной, логарифмической или какой-либо другой. После этого определяются численные значения неизвестных параметров выбранной эмпирической формулы, для которых приближение к заданной функции оказывается наилучшим. Если нет каких-либо теоретических соображений для подбора вида формулы, обычно выбирают функциональную зависимость из числа наиболее простых, сравнивая их графики с графиком заданной функции.

После выбора вида формулы определяют ее параметры. Для наилучшего выбора параметров задают меру близости аппроксимации экспериментальных данных. Во многих случаях, в особенности если функция f(x) задана графиком или таблицей (на дискретном множестве точек), для оценки степени приближения рассматривают разности $f(x_i) - \varphi(x_i)$ для точек $x_0, x_1, ..., x_n$. Существуют различные меры близости и, соответственно, способы решения этой задачи. Некоторые из них очень просты, быстро приводят к результату, но результат этот является очень приближенным. Другие более точные, но и боле сложные. Обычно определение параметров при известном виде зависимости осуществляют по методу наименьших квадратов. При этом функция $\varphi(x)$ считается наилучшим приближением f(x), если для нее сумма квадратов невязок δ_i или отклонений «теоретических» значений $\varphi(x_i)$, найденных по эмпирической формуле, от соответствующих опытных значений y_i ,

$$Z = \sum_{i=0}^{n} \left[f(x_i) - \varphi(x_i) \right]^2 \longrightarrow \min$$

имеет наименьшее значение по сравнению с другими функциями, из числа которых выбирается искомое приближение.

В простейшем случае задача аппроксимации экспериментальных данных выглядит следующим образом.

Пусть есть какие-то данные, полученные практическим путем (в ходе эксперимента или наблюдения), которые можно представить парами чисел (x, y). Зависимость между ними отображает таблица 1.30.

Таблица 1.30

x	<i>x</i> ₁	<i>x</i> ₂₁		X _n
У	<i>y</i> ₁	<i>Y</i> ₂	•••	${\mathcal{Y}}_n$

На основе этих данных требуется подобрать функцию y = f(x), которая наилучшим образом сглаживала бы экспериментальную зависимость между переменными и по возможности точно отображала общую тенденцию зависимости между x и y, исключая погрешности измерений и случайные отклонения. Это значит, что отклонения $y_i - y_i(x_i)$ в какомто смысле были бы наименьшими.

Выяснить вид функции можно либо из теоретических соображений, либо анализируя расположение точек (x_n, y_n) на координатной плоскости.

Например, пусть точки расположены, как показано на рисунке 1.38.

Учитывая то, что практические данные получены с некоторой погрешностью, обусловленной неточностью измерений, необходимостью округления результатов и т. п., естественно предположить, что здесь имеет место линейная зависимость y = ax + b.

Рисунок 1.38 – Возможный вариант расположения экспериментальных точек

Чтобы функция приняла конкретный вид, необходимо каким-то образом вычислить *a* и *b*. Расположение экспериментальных точек в виде кривой на рисунке 1.39 наводит на мысль, что зависимость обратно пропорциональна и функцию $\varphi(x)$ нужно подбирать в виде y = a + b/x. Здесь также необходимо вычислить параметры *a* и *b*.

Рисунок 1.39 – Другой вариант расположения экспериментальных точек

Таким образом, расположение экспериментальных точек может иметь самый различный вид, и каждому соответствует конкретный тип функции.

Построение эмпирической функции сводится к вычислению входящих в нее параметров, так чтобы из всех функций такого вида выбрать ту, которая лучше других описывает зависимость между изучаемыми величинами. То есть сумма квадратов равности между табличными значениями функции в некоторых точках и значениями, вычисленными по полученной формуле, должна быть минимальна.

В MS Excel аппроксимация экспериментальных данных составляется путем построения из графика (х – отвлечение величины) или точечного графика (х – имеет конкретное значение) с последующим подбором подходящей аппроксимирующей функций:

На практике чаще всего в качестве простейших аппроксимирующих функций используют следующие функции:

1 Линейную $y = \varphi(x) = ax + b$, где *a* и *b* – константы. Обычно применяется в простейших случаях, когда экспериментальные данные возрастают или убывают с постоянной скоростью.

2 Степенную $y = \varphi(x) = ax^b$, где *a* и *b* – константы. Используется для экспериментальных данных с постоянно увеличивающейся (или убывающей скоростью роста). Данные не должны иметь нулевых или отрицательных значений.

3 Логарифмическую $y = \varphi(x) = a \ln(x) + b$; где *a* и *b* – константы, ln – функция натурального логарифма. Функция применяется для описания экспериментальных данных, которые вначале быстро растут или убывают, а затем постепенно стабилизируются.

4 Экспоненциальную $y = \varphi(x) = ae^{bx}$, где *a* и *b* – константы, *e* – основание натурального алгоритма. Применяется для описания экспериментальных данных которые быстро растут или убывают, а затем постепенно стабилизируются. Часто ее использование вытекает из теоретических соображений.

5 Полиномиальную $y = \varphi(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$. Все предыдущие функции содержат по два коэффициента аппроксимации: *a* и *b*. Если эти функции не обеспечивают необходимой точности аппроксимации, количество коэффициентов необходимо увеличить и использовать более сложные функции. В большинстве случаев переходят к полиномиальной аппроксимации, которая позволяет путем увеличения степени полинома и, соответственно, количества коэффициентов обеспечить необходимую точность аппроксимации. Полиномиальная, где до шестого порядка включительно ($n \le 6$), a_i - константы. Используется для описания экспериментальных данных, переменно возрастающих или убывающих. Степень полинома определяется количеством экстремумов (максимумов или минимумов) кривой. Полином второй степени может описать только один максимум или минимум, полином третьей степени может иметь один или два экстремума, четвертой степени не более трех экстремумов и т. д.

Степень близости аппроксимации экспериментальных данных выбранной функцией оценивается коэффициентом детерминации (R^2). Таким образом, если есть несколько подходящих вариантов типа аппроксимирующих функций, можно выбрать функцию с большим коэффициентом детерминации (стремящимся к 1).

Для осуществления аппроксимации на диаграмме экспериментальных данных необходимо щелчком правой кнопки мыши вызвать выплывающее контекстное меню и выбрать пункт **Добавить линию тренда**. В появившемся диалоговом окне линия тренда на вкладке **Тип** выбирается вид аппроксимирующей функции, а на вкладке **Параметры** задаются дополнительные параметры, влияющие на отображение аппроксимирующей кривой.

1.5.2 Пример выполнения задания

Аппроксимировать экспериментальную зависимость y = f(x), представленную таблицей 1.31.

		,		1							
x_i	1	3	4	5	6	8	10	11	12	13	14
<i>y</i> _i	11	21	30	45	55	68	78	83	86	89	92

Таблица 1.31 – Экспериментальные данные

Оценить полученную точность аппроксимации. Сделать выводы.

Методические рекомендации

1. Занесите в строку 2 значения x_i из таблицы 1.31, а в строку 3 – значения y_i .

2. Пользуясь этими данными, постройте график. При построении графика укажите тип диаграммы *Точечная*. Получен график экспериментальных данных (рис. 1.40).

Рисунок 1.40 – График экспериментальных данных

3. Наведите курсор мыши на любую точку построенного графика, дождитесь появления всплывающей подсказки с параметрами этой точки и нажмите правую клавишу мыши. В появившемся меню укажите пункт Добавить линию тренда... и нажмите левую клавишу мыши (рис 1.41).

Рисунок 1.41 – Построение линии тренда

В появившемся диалоговом окне **Формат линии тренда** (рис. 1.42) во вкладке **Параметры линии тренда** установите переключатели **линей**ная, показывать уравнение на диаграмме и поместить на диаграмму величину достоверности аппроксимации (R^2) в положение включено и нажмите на кнопку Закрыть.

Формат линии тренда	×
Формат линии тренда Параметры линии тренда Цвет линии Параметры линии тренда (аппроксимация и сглаживание) Тип линии О Экспоненциальная Тень О динейная Свечение и сглаживание О Полиномиальная О О осдифиическая О Степенная О О линейная фильтрация (очки: О Фризонание Название аппроксимирующей (сглаженной) кривой Ф другое: Поогноз Прогноз Поогнодов Поогнодов	×
 пересечение кривой с осью Y в точке: 0,0 ✓ показывать уравнение на диаграмме ✓ поместить на диаграмму величину достоверности аппроксимации (R^2) 	
Закрыть	

Рисунок 1.42 – Диалоговое окно Формат линии тренда

4. Переместите уравнение на свободное место диаграммы, подберите размер шрифта. Сформируйте заголовок диаграммы Линейная зависимость, так как показано на рисунке 1.43.

Рисунок 1.43 – Аппроксимация линейной зависимостью

5. Выполните пункты 4, 5 и постройте графики с экспоненциальной (рис. 1.44), логарифмической (рис. 1.45), степенной (рис. 1.46) и полиномиальной (рис. 1.47) аппроксимациями.

Рисунок 1.44 – Аппроксимация экспоненциальной зависимостью

Рисунок 1.45 – Аппроксимация логарифмической зависимостью

Рисунок 1.46 – Аппроксимация степенной зависимостью

Рисунок 1.47 – Аппроксимация полиномиальной зависимостью

Анализ результатов, представленных на рисунках 1.43...1.47 показывает, что наибольшая точность в случае использования аппроксимирующих функций с двумя коэффициентами достигается у полиномиальной аппроксимации ($R^2 = 0.9883$).

1.5.3 Вопросы для самоконтроля

1. Определение коэффициента достоверности аппроксимации?

2. Свойства коэффициента достоверности аппроксимации?

3. Какие действия необходимо выполнить на диаграмме для построения линии аппроксимации?

4. Каким образом задается тип аппроксимации?

5. Что необходимо сделать, чтобы вывести уравнение и величину достоверности аппроксимации?

1.5.4 Индивидуальные задания

Вариант 1

Аппроксимировать представленную в таблице 1.32 экспериментальную зависимость механического к.п.д. трансмиссии K_i от степени загрузки двигателя H_i .

Таблица 1.32

H_i	0,01	0,1	0,2	0,3	0,4	0,6	0,85
K_i	0,01	0,45	0,70	0,80	0,85	0,88	0,9

Вариант 2

Аппроксимировать представленную в таблице 1.33 экспериментальную зависимость коэффициента сцепления колес с почвой F_i от удельного давления на почву P_i .

10											
P_i	5	10	15	20	25	30	40	50			
F_i	3,5	2,3	1,8	1,6	1,4	1,3	1,1	1,0			

Таблица 1.33

Аппроксимировать представленную в таблице 1.34 экспериментальную зависимость крюковой мощности трактора N_i от тягового сопротивления P_i .

Таблица 1.34

P_i	35	40	45	50	55	60
N_i	50	55	63	68	67	60

Вариант 4

Аппроксимировать представленную в таблице 1.35 экспериментальную зависимость буксования гусеничного трактора D_i от тягового сопротивления P_i .

Таблица 1.35

P_i	60	80	90	95	100	105	110
D_i	2,0	2,9	4,0	4,2	5,0	6,1	8,0

Вариант 5

Аппроксимировать представленную в таблице 1.36 экспериментальную зависимость к.п.д. буксования H_i колесного трактора от тягового сопротивления P_i .

Таблица 1.36

P_i	0,01	1	2	3	4	5
H_i	1,0	0,98	0,96	0,95	0,90	0,80

Вариант 6

Аппроксимировать представленную в таблице 1.37 экспериментальную зависимость усилия резания F_i от поперечной подачи S_i при шлифовании.

Таблица 1.37

S_i	0,03	0,04	0,05	0,06	0,07	0,08	0,09	0,10
F_i	60	75	86	95	98	103	107	110

Аппроксимировать представленную в таблице 1.38 экспериментальную зависимость схода непросеянной почвы с пруткового элеватора картофелеуборочного комбайна Q_i от амплитуды колебаний встряхивающего элеватора A_i .

Таблица 1.38

A_i	0,1	12	24	36	48	60
Q_i	256	197	154	89	87	85

Вариант 8

Аппроксимировать представленную в таблице 1.39 экспериментальную зависимость коэффициента сепарации почвы K_i на сепараторе картофелеуборочного комбайна от скорости соударения V_i почвы с сепаратором.

Таблица 1.39

V_i	1,4	1,5	1,6	1,75	1,9	2,0	2,1
K_i	45,2	46,1	48,9	51,7	56,9	63,5	72,4

Вариант 9

Аппроксимировать представленную в таблице 1.40 экспериментальную зависимость коэффициента просеивания почвы K_i на сепараторе картофелеуборочного комбайна от скорости соударения V_i почвы с сепаратором при четырех соударениях.

Таблица 1.40

V_i	1,4	1,5	1,6	1,75	1,9	2,0	2,1
K_i	58,8	61,4	63,0	66,1	69,8	78,6	91,3

Вариант 10

Аппроксимировать представленную в таблице 1.41 экспериментальную зависимость повреждений клубней P_i на прутковом элеваторе картофелеуборочного комбайна от амплитуды колебаний встряхивающего элеватора A_i .

Таблица 1.41

A_i	0,1	12	24	36	48	60
P_i	1,44	1,62	1,97	2,34	3,95	4,58

Аппроксимировать представленную в таблице 1.42 экспериментальную зависимость величины коррозии металла G_i от срока хранения T_i на открытом воздухе.

Tab	блица 1.42						
T_i	0,1	2	4	6	8	10	12
G_i	1,0	25	55	70	90	98	105

Вариант 12

Аппроксимировать представленную в таблице 1.43 экспериментальную зависимость КПД ременной передачи H_i от коэффициента предварительного натяжения ремня K_i .

Таблица 1.43

K_i	0,1	0,2	0,3	0,4	0,5	0,6
H_i	0,65	0,80	0,90	0,93	0,92	0,75

Вариант 13

Аппроксимировать представленную в таблице 1.44 экспериментальную зависимость максимальной передаваемой мощности ременной передачи P_i от частоты вращения ведущего шкива N_i .

Τ	anna	1 11	
1	аолица	1.44	

N_i	1 000	1 500	2 000	2 500	3 000	3 500	4 000	4 500
P_i	2,0	2,8	3,5	4,0	4,2	4,3	4,0	3,4

Вариант 14

Аппроксимировать представленную в таблице 1.45 экспериментальную зависимость годового надоя на фуражную корову M_i от расхода кормов K_i .

10	0.1111.4	U						
K_i	24,5	25,8	27,2	28,8	30,3	32,0	33,8	35,1
M_i	29,7	35,7	38,9	42,1	45,8	46,9	48,0	49,4

Таблица 1.45

Аппроксимировать представленную в таблице 1.46 экспериментальную зависимость коэффициента сепарации почвы K_i на сепараторе картофелеуборочного комбайна от линейной скорости полотна элеватора V_i .

- ••	onnyn 11							
V_i	1,54	1,67	1,80	1,93	2,06	2,19	2,32	2,45
K_i	66,9	69,5	72,2	73,9	72,9	71,4	70,3	68,1

Таблица 1.46

Вариант 16

Аппроксимировать представленную в таблице 1.47 экспериментальную зависимость механического к.п.д. трансмиссии K_i от степени загрузки двигателя H_i .

Таблица 1.47

H_i	0,01	0,1	0,2	0,3	0,4	0,6	0,85
K_i	0,01	0,45	0,70	0,80	0,85	0,88	0,9

Вариант 17

Аппроксимировать представленную в таблице 1.48 экспериментальную зависимость коэффициента сцепления колес с почвой F_i от удельного давления на почву P_i .

Таблица 1.48

P_i	5	10	15	20	25	30	40	50
F_i	3,5	2,3	1,8	1,6	1,4	1,3	1,1	1,0

Вариант 18

Аппроксимировать представленную в таблице 1.49 экспериментальную зависимость крюковой мощности трактора N_i от тягового сопротивления P_i .

Табл	ица 1.49					
P_i	35	40	45	50	55	60
N_i	50	55	63	68	67	60

Аппроксимировать представленную в таблице 1.50 экспериментальную зависимость буксования гусеничного трактора D_i от тягового сопротивления P_i .

		-					
P_i	60	80	90	95	100	105	110
D_i	2,0	2,9	4,0	4,2	5,0	6,1	8,0

Таблица 1.50

Вариант 20

Аппроксимировать представленную в таблице 1.51 экспериментальную зависимость к.п.д. буксования H_i колесного трактора от тягового сопротивления P_i .

Таблица 1.51

P_i	0,01	1	2	3	4	5
H_i	1,0	0,98	0,96	0,95	0,90	0,80

Вариант 21

Аппроксимировать представленную в таблице 1.52 экспериментальную зависимость усилия резания F_i от поперечной подачи S_i при шлифовании.

7	аблииа	1.	.52
-			

S_i	0,03	0,04	0,05	0,06	0,07	0,08	0,09	0,10
F_i	60	75	86	95	98	103	107	110

Вариант 22

Аппроксимировать представленную в таблице 1.53 экспериментальную зависимость схода непросеянной почвы с пруткового элеватора картофелеуборочного комбайна Q_i от амплитуды колебаний встряхивающего элеватора A_i .

Таблица 1.53

A_i	0,1	12	24	36	48	60
Q_i	256	197	154	89	87	85

Аппроксимировать представленную в таблице 1.54 экспериментальную зависимость коэффициента сепарации почвы K_i на сепараторе картофелеуборочного комбайна от скорости соударения V_i почвы с сепаратором.

140	<i>Miliya</i> 1.5 i						
V_i	1,4	1,5	1,6	1,75	1,9	2,0	2,1
K_i	45,2	46,1	48,9	51,7	56,9	63,5	72,4

Таблица 1.54

Вариант 24

Аппроксимировать представленную в таблице 1.55 экспериментальную зависимость коэффициента просеивания почвы K_i на сепараторе картофелеуборочного комбайна от скорости соударения V_i почвы с сепаратором при четырех соударениях.

Таблица 1.55

V_i	1,4	1,5	1,6	1,75	1,9	2,0	2,1
K_i	58,8	61,4	63,0	66,1	69,8	78,6	91,3

Вариант 25

Аппроксимировать представленную в таблице 1.56 экспериментальную зависимость повреждений клубней P_i на прутковом элеваторе картофелеуборочного комбайна от амплитуды колебаний встряхивающего элеватора A_i .

Таблица	1 56	
гаолица	1.50	

A_i	0,1	12	24	36	48	60
P_i	1,44	1,62	1,97	2,34	3,95	4,58

2 РЕШЕНИЕ ИЖЕНЕРНЫХ ЗАДАЧ СРЕДСТВАМИ КОМПЬЮТЕРНОЙ МАТЕМАТИКИ

2.1 Построение графиков функций одной переменной

Цель: изучить основные возможности программы *SMath Studio* для построения графиков функций одной переменной.

2.1.1 Краткие теоретические сведения

Общие сведения об используемой программе даны в Приложении А.

2.1.2 Пример выполнения задания

Построить график функции $y = \cos(x)$ на произвольном отрезке.

Методические рекомендации

1. Запишите функцию в виде $y(x) := \cos(x)$. Обратите внимание, что после имени функции обязательно нужно указать имя переменной. Стандартную функцию $\cos()$ можно набрать на клавиатуре, а можно выбрать шаблон на панели инструментов Φ_{YHKUUU} .

2. В меню Вставка выбираем График – Двумерный (2D). Появится шаблон (рис. 2.1).

Рисунок 2.1

В нижнем левом углу в «квадратик» впишите имя функции y(x) или саму формулу $\cos(x)$ и щелкните мышкой вне области графика. Получим график (рис. 2.2).

Рисунок 2.2

Размеры окна графика можно изменять так же, как размеры любого окна Windows. Размеры и масштаб самого графика можно менять с помощью панели инструментов *График* или, удерживая клавишу Ctrl / Shift, прокручивать колесико мышки. Результат работы изображен на рисунке 2.3.

Рисунок 2.3

2.1.3 Вопросы для самоконтроля

- 1. Как записывается выражение для функции одной переменной?
- 2. Можно ли построить график без предварительной записи функции?
- 3. Как изменить масштаб построения графика?

2.1.4 Индивидуальные задания

Построить график функции (табл. 2.1) на произвольном отрезке.

Номер варианта	Функция	Номер варианта	Функция
1	$y = 4 - \cos x^2$	14	$y = \ln(4 - \cos x)$
2	$y = e^{\sin(x+2)}$	15	$y = 3 + \cos(x^2)$
3	$y = e^{\cos 2x}$	16	$y = 2\sin x + \cos^2 x$
4	$y = 2 + \ln(4 + \sin x)$	17	$y = e^{\cos(2+x)}$
5	$y = 4 + \sin(2 + x^2)$	18	$y = 2 - \sin(x/2)$
6	$y = \ln(4 - \cos x)$	19	$y = e^{(1+\sin(x/2))}$
7	$y = e^{\sin 2x}$	20	$y = \ln(3 + \sin(x/2))$
8	$y = \ln(4 + \sin 2x)$	21	$y = e^{\sin(x/2)}$
9	$y = 2 + \cos x$	22	$y = \ln(3 - \cos x^2)$
10	$y = 3\sin(e^x)$	23	$y = 2 - \sin(x^2/2)$
11	$y = 2 + \cos(e^x)$	24	$y = \sin 3x + \cos(x+5)$
12	$y = 2 + \sin(x^2)$	25	$y = 3 + \sin x$
13	$y = 4 + \ln(2 + \sin x)$	—	-

Таблица 2.1

2.2 Нахождение значений функций одной переменной

Цель: изучить основные возможности программы *SMath Studio* для нахождения значений функций.

2.2.1 Краткие теоретические сведения

Общие сведения об используемой программе даны в Приложении А.

Найти значения функции $y = \cos(x)$ в точках x = 2 и $x = \pi$, протабулировать (получить таблицу значений этой функции на отрезке [0; π] с шагом 0,5).

Методические рекомендации

1. Запишите функцию в виде $y(x) := \cos(x)$.

- 2. Присвойте переменной x значение 2 следующим образом: x := 2.
- 3. Запишите имя функции и поставьте знак «=»: y(x) = .
- 4. После знака равенства появится ответ: y(x) = -0,4161.

5. Второе значение функции в точке $x = \pi$ можно найти таким же образом, а можно после имени функции сразу указать значение переменной. Получим $y(\pi) = -1$.

6. Прежде, чем табулировать функцию, нужно посчитать количество значений переменной x на заданном отрезке $[0; \pi]$ с шагом 0,5:

 $\left[\frac{\pi-0}{0,5}\right]+1=7.$

7. Запишите полученное количество в виде диапазона: j := 1..7. Цифры 1 и 7 необходимо вписать в шаблон. Для этого после j := пишем *range* и в появившейся всплывающей подсказке выбираем *range*(2). Затем запишите диапазон изменения переменной x, используя *range*(3): $x := 0, 0, 5...\pi$.

8. На панели инструментов Программирование выбираем шаблон for:

for **_**|∈∎

9. В шаблон вписываем переменные (рис. 2.4).

Рисунок 2.4

Чтобы переменная k записалась как нижний индекс, *y_k* набирают так: y[k.

10. Ниже набираем x = и получаем столбец значений переменной x, затем набираем y = и получаем столбец значений переменной y.
11. Конечный вид документа SMathStudio:

2.2.3 Вопросы для самоконтроля

- 1. Правила записи функций в SMathStudio.
- 2. Как рассчитать знацение функции в точке?
- 3. Чем отличаются шаблоны range(2) и range(3)?
- 4. Как записать нижний индекс?

2.2.4 Индивидуальные задания

Найти значения функции (табл. 2.1 предудущего задания) в произвольных точках, протабулировать (получить таблицу значений) этой функции на отрезке $[0; \pi]$, шаг изменения переменной произвольный.

2.3 Нахождение корней нелинейных уравнений

Цель: изучить основные возможности приложения *SMathStudio* для решения нелинейных уравнений.

2.3.1 Краткие теоретические сведения

Приближенно корни уравнения f(x)=0 (если $f(x)\neq 0$, то надо все переменные перенести в левую часть) можно получить графически, построив график функции y = f(x). Корни уравнения соответствуют абсциссам точек пересечения графика с осью ОХ.

Точные значения корней можно вычислить, используя процедуру:

Solve(<ypaвнение>;<nepemenhaя>)

Уравнение в данной функции может быть описано следующими спо-собами:

1. Как имя функции, которое заранее задано, например:

 $f(x) \coloneqq \exp(x) + 2 \cdot \sin(x);$

solve(f(x); x).

2. Непосредственно уравнение без правой части:

 $solve(\exp(x) + 2 \cdot \sin(x); x).$

3. Уравнение с правой частью, где вместо знака обычного равно ставится так называемое булево (или «жирное») равно с ПИ «Булева»:

 $solve(\exp(x) + 2 \cdot \sin(x) = 0; x).$

Если функция f(x) в уравнении f(x) = 0 представляет собой полином степени *n*, т. е. $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x^1 + a_0$, то для решения стоит использовать встроенную функцию *polyroots(v)*, где *v* – вектор коэффициентов полинома, в котором все компоненты располагаются в порядке возрастания степени:

$$v \coloneqq \begin{pmatrix} a_0 \\ a_1 \\ \dots \\ a_{n-1} \\ a_n \end{pmatrix}$$

Число корней уравнения будет соответствовать степени полинома.

Найти корень уравнения cos(x) = x численно и, если это возможно, аналитически. Результаты сравнить. Выполнить проверку.

Методические рекомендации

Первый способ.

1. Запишите функцию (предварительно приведя уравнение к виду f(x)=0): $f(x):=\cos(x)-x$)).

2. Постройте график функции. График пересекает ось абсцисс в одной точке, значит, уравнение имеет один корень.

3. Запишите стандартную команду:

solve(f(x); x) =.

Справа от знака равенства увидим результат: 0,7391.

4. Выполните проверку, найдя значение функции в полученной точке: $f(0,7391) = -2,4881 \cdot 10^{-5}$.

Если бы решение было точным, то при проверке получили бы 0. Значение $-2,4881 \cdot 10^{-5}$ означает, что результат получен с точностью до 4-го знака.

5. Конечный вид документа SMathStudio:

Рисунок 2.6

Второй способ.

- 1. Запишите функцию в виде: $\cos(x) x$.
- 2. Выделите курсором переменную х.
- 3. В меню выбрать *Вычисление* → *Найти корни*.
- 4. Выполните проверку.
- 5. Конечный вид документа SMathStudio:

Рисунок 2.7

Третий способ.

1. Запишите функцию: $f(x) := \cos(x) - x$.

2. Для получения аналитического решения запишите стандартную команду:

solve(f(x); x), после которой на ПИ «Арифметика» выберите \rightarrow .

3. Выполните проверку, найдя значение функции в полученной точке.

4. Конечный вид документа SMathStudio (рис. 2.8).

Рисунок 2.8

Если бы решение было точным, то при проверке получили бы 0. Значение $5,5379 \times 10^{-7}$ означает, что результат получен с точностью до 4-го знака. Делаем вывод, что *SMathStudio* не может найти точные корни данного уравнения.

Примечание 1.

Если уравнение имеет несколько корней (как, например, уравнение $f(x) := \cos(x)$), то применение стандартной процедуры решения даст ответ в виде вектора:

Рисунок 2.9

Корни выдаются в диапазоне «по умолчанию» [- 20; 20]. Изменить диапазон можно в меню *Сервис – Опции – Вычисление*.

Можно использовать второй вариант этой процедуры для выбора решения на заданном промежутке. Для этого при наборе *solve* во всплывающей подсказке выбираем solve(4) и в шаблон вписываем:

Solve(<уравнение>; <имя переменной>; левая граница интервала; правая граница интервала). Получим:

Примечание 2.

Если функция f(x) в уравнении f(x) = 0 представляет собой полином степени n, то процедура *solve* может выдать только один корень. Чтобы получить все корни полинома (их количество совпадает со степенью полинома), стоит использовать встроенную функцию *polyroots(v)*. Например, найдем численно корни полинома $x^3+2x-1 = 0$.

1. задаем функцию (левую часть уравнения f(x) = 0).

2. задаем вектор коэффициентов (кнопка на ПИ «Матрица»), в появившемся диалоговом окне указываем количествово строк (равно стпени полинома +1) и столбцов (количество уравнений).

3. записываем функцию polyroots(v) =.

4. делаем проверку, подставив найденные значения в функцию. Конечный вид документа *SMathStudio*:

Рисунок 2.11

2.3.3 Вопросы для самоконтроля

1. Что является корнем уравнения?

2. Правило записи функции для использования команды solve.

3. В чем разница между численным и аналитическим нахождением корней уравнения?

4. Чем отличаются команды solve(2) и solve(4)?

5. Для чего используется функция polyroots?

6. Правило записи вектора коэффициентов для polyroots.

2.3.4 Индивидуальные задания

1. Найти корень уравнения (табл. 2.2.) численно и, если это возможно, аналитически. Результаты сравнить. Выполнить проверку.

2. Найти численно корни полинома (табл. 2.3). Выполнить проверку.

Номер варианта	Уравнение	Номер варианта	Уравнение
1	$x - \sin x = 0.25$	14	$tg(0.55x + 0.1) = x^2$
2	$3x - \cos x - 1 = 0$	15	$e^x \sin x - 1 = 0$
3	$x + \ln x = 0.25$	16	$\arcsin x - 2x - 0.1 = 0$
4	$x^2 + 4\sin x = 0$	17	$x^2 - 2\cos x = 0$
5	$3x + \cos x + 1 = 0$	18	$x^2 - 20\sin x = 0$
6	$3x - e^x = 0$	19	$ctgx - \frac{x}{4} = 0$
7	$x^2 = \sin x$	20	$x^3 + 4x - 6 = 0$
8	$x^3 - 3x^2 - 24x - 3 = 0$	21	$e^{x}(2-x)-0.5=0$
9	$2 - x = \ln x$	22	$(x-2)^2 \cdot 2^x = 1$
10	$x^3 + 4x - 6 = 0$	23	$x^4 \cdot 3^x = 2$
11	$x + \cos x = 1$	24	$2e^x = 5x + 2$
12	$x^3 = \sin x$	25	$x^3 + 2x - 4 = 0$
13	$2x^3 - 3x^2 - 12x + 8 = 0$	_	_

Таблица 2.2

Таблица 2.3

Номер	Π	Номер	Π
варианта	ПОЛИНОМ	варианта	ПОЛИНОМ
1	$x^2-12x-4=0$	14	$x^{3}-3x^{2}-4x+1=0$
2	$x^{3}-24x+11=0$	15	$x^{3}-34x^{2}+4x+1=0$
3	$x^{3}+2x-7=0$	16	$x^{3}-27x-17=0$
4	$x^{3}-21x+7=0$	17	$x^{4}-2x^{3}+2x^{2}-2x+1=0$
5	$x^{3}-5x+1=0$	18	$x^4-3x^3+3x^2-3x+2=0$
6	$x^{3}-12x+5=0$	19	$x^4-3x^3+5x^2-3x+8=0$
7	$x^{3}+3x^{2}-4x-1=0$	20	$x^{4}-4x^{3}+8x^{2}-4x+16=0$
8	$x^{3}-9x^{2}+20x-11=0$	21	$x^{4}-4x^{3}+4x^{2}-4x+3=0$
0	x^{3} 12x+5=0	22	$x^{4}-4x^{3}+12x^{2}-$
7	X = 12X + 3 = 0		4x+27=0
10	$x^{3}+6x^{2}+6x$ 7=0	23	$x^4-6x^3+18x^2-$
10	$\mathbf{X} + 0\mathbf{X} + 0\mathbf{X}^{-} 7 = 0$	23	6x+81=0
11	$x^{3}-3x^{2}-x+2=0$	24	$x^{4}-5x^{3}+10x^{2}-$
11	$\mathbf{X} = \mathbf{J}\mathbf{X} = \mathbf{X} + \mathbf{Z} = 0$	24	5x+24=0
12	$x^{3}-10x^{2}+4x+9=0$	25	$x^{4}-5x^{3}+15x^{2}-$
12		25	5x+54=0
13	$x^4+x-1=0$	_	-
1	1		

2.4 Решение систем нелинейных уравнений

Цель: изучить основные возможности приложения *SMathStudio* для решения систем нелинейных уравнений.

2.4.1 Краткие теоретические сведения

Решением системы нелинейных уравнений называется группа чисел, которые, будучи подставлены на место неизвестных, обращают каждое уравнение системы в тождество.

Для решения используют функцию *roots(<ypaвнения>;<nepemenhue>)*.

Как уравнения, так и переменные задаются с помощью вектора (ПИ «Матрицы»).

Уравнения можно задать непосредственно в первоначальном виде, где используют булево (жирное) равно. Можно также предварительно привести уравнения к виду f(x) = 0.

Функция roots находит только действительные решения.

2.4.2 Пример выполнения задания

Решить систему уравнений $\begin{cases} x^2 - \cos(x) = 1 \\ x^2 + y^2 = 9 \end{cases}$ численно и, если это воз-

можно, аналитически. Результаты сравнить. Выполнить проверку.

Методические рекомендации

1. Записываем функцию *roots(<ypaвнения>;<nepemenhue>)*.

2. Для получения численного решения ставим знак «=». Получим результат с заданным количеством знаков после запятой.

3. Выполняем проверку, подставив полученные значения в исходную систему уравнений. В данном примере 1-ое уравнение решено точно, 2-ое – с точностью до 3-го знака.

4. Вид документа *SMathStudio* (рис. 2.12).

Рисунок 2.12

Можно каждое уравнение системы привести к виду f(x) = 0. Тогда запись решения будет выглядеть следующим образом (рис. 2.13).

Рисунок 2.13

Если нужно получить одно из нескольких возможных решений, можно задать начальное приближение (координаты ближайшей известной к ответу точки) для переменных следующим образом (рис. 2.14).

$$\operatorname{roots}\left(\left(\begin{array}{c} x^{2} - \cos(x) - 1 \\ x^{2} + y^{2} - 9 \end{array} \right); \begin{pmatrix} x \\ y \end{pmatrix}; \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1, 1765 \\ 2, 7597 \end{pmatrix} \right)$$

Рисунок 2.14

Для получения аналитического решения системы, после функции *roots* вместо знака « = » на ПИ «Арифметика» выбираем знак \rightarrow . Приведенный ниже расчет и проверка показывают, что найденное решение – точное (рис. 2.15).

Рисунок 2.15

2.4.3 Вопросы для самоконтроля

1. Что является решением системы уравнений?

2. Правило записи уравнений для использования команды roots.

3. В чем разница между численным и аналитическим решениями системы уравнений?

4. Чем отличаются команды roots (2) и roots (3)?

2.4.4 Индивидуальные задания

Найти численное решение системы (табл. 2.4). Выполнить проверку.

Номер варианта	Система уравнений	Начальная точка
1	$\begin{cases} x = e^x \cos y - 1\\ y = e^x \sin y + 1 \end{cases}$	(- 0,9; 1,4)
2	$\begin{cases} x = 0.25(x^2 - y^2) - x^2 y^2 + 0.5 \\ y = xy(x^2 - y^2) + 0.5 \end{cases}$	(1; 1)
3	$\begin{cases} x = x/(x^2 - y^2) + 0.4 \\ y = -y(x^2 - y^2) + 1.4 \end{cases}$	(1; 1)
4	$\begin{cases} x = x^2 + 0.8y^2 + 0.1\\ y = 2xy + 0.1 \end{cases}$	(0; 0)
5	$\begin{cases} x = x^{2} - y^{2} + 0.1 \\ y = 2xy + 0.1 \end{cases}$	(0; 0)
6	$\begin{cases} x = x^{2} - y^{2} - 0.1 \\ y = 2xy + 0.1 \end{cases}$	(0; 0)
7	$\begin{cases} x = x^{2} + y^{2} + 0.1 \\ y = 2xy - 0.1 \end{cases}$	(0; 0)
8	$\begin{cases} x = 1 - e^x \cos y \\ y = e^{-x} \sin y + 1 \end{cases}$	(0,9; 1,4)
9	$\begin{cases} x = x^{2} + y^{2} - 0.1 \\ y = 2xy - 0.1 \end{cases}$	(0; 0)

Таблица 2.4

Продолжение таблицы 2.4

Номер варианта	Система уравнений	Начальная точка
10	$\begin{cases} x = x/(x^{2} + y^{2}) + 0.4 \\ y = (1 - y)/(x^{2} + y^{2}) + 1 \end{cases}$	(1; 1)
11	$\begin{cases} x = x^2 y^2 - 0.25(x^2 - y^2)^2 - 0.5 \\ y = xy(y^2 - x^2) + 0.5 \end{cases}$	(- 0,5; 0,5)
12	$\begin{cases} x = x/(x^{2} + y^{2}) - 0.4 \\ y = 1.4 - y/(x^{2} + y^{2}) \end{cases}$	(-1;1)
13	$\begin{cases} x = -x^2 - 0.8y^2 - 0.1\\ y = y^2 - x^2 - 0.1 \end{cases}$	(0; 0)
14	$\begin{cases} x = -x^{2} + y^{2} - 0.1 \\ y = -2xy + 0.1 \end{cases}$	(0; 0)
15	$\begin{cases} x = -x^{2} + y^{2} + 0.1 \\ y = 0.1 - 2xy \end{cases}$	(0; 0)
16	$\begin{cases} x = -x^2 - y^2 - 0.1 \\ y = -2xy - 0.1 \end{cases}$	(0; 0)
17	$\begin{cases} x = -x^2 - y^2 + 0.1 \\ y = -2xy - 0.1 \end{cases}$	(0; 0)
18	$\begin{cases} x = x/(x^{2} + y^{2}) - 0.4 \\ y = e^{x} \sin y - 1 \end{cases}$	(-1; 1)
19	$\begin{cases} x = -1 + e^x \cos y \\ y = e^x \sin y - 1 \end{cases}$	(-0,9; - 1,4)
20	$\begin{cases} xy^2 - 1 = 0\\ y + e^x = 0 \end{cases}$	(0,5; - 1,5)
21	$\begin{cases} xy^2 - 1 = 0\\ y - e^x = 0 \end{cases}$	(0,5; 1,5)
22	$\begin{cases} 1-x^2+e^y=0\\ xy-1=0 \end{cases}$	(2; 2)
23	$\begin{cases} x^2 y - 1 = 0\\ x - e^y = 0 \end{cases}$	(1,5; 0,5)
24	$\begin{cases} 1 - y^2 + e^x = 0\\ xy + 1 = 0 \end{cases}$	(-2;2)
25	$\begin{cases} 1 - y^2 + e^{-x} = 0\\ y - tgx = 0 \end{cases}$	(0; 1)

2.5 Решение систем линейных уравнений

Цель: изучить основные возможности приложения *SMathStudio* для нахождения решения систем линейных уравнений.

2.5.1 Краткие теоретические сведения

Для решения системы линейных уравнений используются операторы ПИ «Матрицы». Основные приемы работы с матрицами смотрите в Приложении А.

2.5.2 Пример выполнения задания

Записать систему линейных алгебраических уравнений

$$\begin{cases} 5x + 2y = 8\\ 3x + 7y = 10 \end{cases}$$

в матричном виде $A \cdot X = B$. Найти определитель матрицы системы Δ =detA и сделать вывод о существовании решения. Решить систему в матричной форме: $X = A^{-1} \cdot B$.Выполнить проверку правильности решения.

Методические рекомендации

1. Записать матрицу A:=. Шаблон для ввода 🗰 находится на панели инструментов «Матрицы», в появившемся диалоговом окне укажем количество столбцов (= количеству переменных) и строк (=количеству уравнений) и заполним ячейки матрицы числами, также введем данные вектора В, указав количество столбцов равным 1.

2. Найдем определитель матрицы А, для этого на панели инструментов «Матрицы» выберем шаблон . Если определитель отличен от нуля, то решение существует.

3. Найдем обратную матрицу. Для этого введем A^{-1} =

4. Запишем расчет корней системы с помощью матричного выражения $X := A^{-1} \cdot D$ и ниже нажмем X = и получим решение системы уравнений.

5. Сделаем проверку полученного результата, для этого введем $A \cdot X =$. Если решение найдено верно, то результат совпадет свектором **В** (рис. 2.16).

Вид документа *SMathStudio*:

Рисунок 2.16

2.5.3 Вопросы для самоконтроля

- 1. Что называется системой линейных уравнений?
- 2. Что является решением системы линейных уравнений?
- 3. Матричная запись системы линейных уравнений?
- 4. Для чего нужно находить определитель матрицы коэффициентов?

2.5.4 Индивидуальные задания

1. Записать систему линейных алгебраических уравнений (табл. 2.5) в матричном виде $A \cdot X = B$.

2. Найти определитель матрицы системы $\Delta = \det A$ и сделать вывод о существовании решения.

- 3. Решить систему в матричной форме: $X = A^{-1} \cdot B$.
- 4. Выполнить проверку правильности решения.

Таблица 2.5

Номер	Система уравнений	Номер	Система уравнений
1	2	3	4
	$4x_1 + x_2 + 4x_3 = 138,$		$\int 3x_1 + 4x_2 + 2x_3 = 162,$
1	$\begin{cases} 2x_1 + 4x_2 + 6x_3 = 225, \\ x + 2x_1 + x_2 = 80 \end{cases}$	2	$\begin{cases} x_1 + 5x_2 + 3x_3 = 200, \\ x_1 + 2x_2 = 110 \end{cases}$
	$(x_1 + 2x_2 + x_3 - 60)$		$(x_2 + 2x_3 - 110)$
	$\begin{cases} 2x_1 + 6x_2 + x_3 = 470, \\ 2x_2 + x_3 = 470, \\ 2x_1 + x_2 + x_3 = 470, \\$	_	$\begin{cases} 2x_1 + 2x_2 + 5x_3 = 345, \\ 2x_1 + 2x_2 + 5x_3 = 345, \\ 3x_1 + 2x_2 + 5x_3 = 345, \\ 3x_2 + 5x_3 = 345, \\ 3x_1 + 2x_2 + 5x_3 = 345, \\ 3x_2 + 5x_3 = 345, \\ 3x_1 + 2x_2 + 5x_3 = 345, \\ 3x_2 + 5x_3 = 345, \\ 3x_1 + 2x_2 + 5x_3 = 345, \\ 3x_2 + 5x_3 = 345, \\ 3x_1 + 2x_2 + 5x_3 = 345, \\ 3x_2 + 5x_3 = 345, \\ 3x_1 + 2x_2 + 5x_3 = 345, \\ 3x_2 + 5x_3 = 345, \\ 3x_1 + 2x_2 + 5x_3 = 345, \\ 3x_2 + 5x_3 = 345, \\ 3x_1 + 5x_2 + 5x_3 = 345, \\ 3x_1 + 5x_2 + 5x_3 = 345, \\ 3x_2 + 5x_3 = 345, \\ 3x_1 + 5x_2 + 5x_3 = 345, \\ 3x_2 + 5x_3 = 345, \\ 3x_1 + 5x_2 + 5x_3 = 345, \\ 3x_2 + 5x_3 = 345, \\ 3x_1 + 5x_2 + 5x_3 = 345, \\ 3x_1 + 5x_2 + 5x_3 = 345, \\ 3x_2 + 5x_3 = 345, \\ 3x_1 + 5x_2 + 5x_3 = 345, \\ 3x_2 + 5x_3 = 345, \\ 3x_1 + 5x_2 + 5x_3 = 345, \\ 3x_2 + 5x_3 = 345, \\ 3x_1 + 5x_2 + 5x_3 = 345, \\ 3x_1 + 5x_2 + 5x_3 = 345, \\ 3x_2 + 5x_3 = 345, \\ 3x_1 + 5x_2 + 5x_3 = 345, \\ 3x_2 + 5x_3 = 345, \\ 3x_1 + 5x_2 + 5x_3 = 345, \\ 3x_1 + 5x_2 + 5x_3 = 345, \\ 3x_2 + 5x_3 = 345, \\ 3x_1 + 5x_2 + 5x_3 = 345, \\ 3x_2 + 5x_3 = 35, \\ 3x_2 + 5x_3 = 345, \\ 3x_1 + 5x_2 + 5x_3 = 345, \\ 3x_2 + 5x_3 = 35, \\ 3x_1 + 5x_2 + 5x_3 = 35, \\ 3x_1 + 5x_2 + 5x_3 = 35, \\ 3x_2 + 5x_3 = 35, \\ 3x_1 + 5x_2 + 5x_3 = 35, \\ 3x_2 + 5x_3 = 35, \\ 3x_1 + 5x_2 + 5x_3 = 35, \\ 3x_2 + 5x_3 = 35, \\ 3x_2 + 5x_3 = 35, \\ 3x_2 + 5x_3 = 35, \\ 3x_1 + 5x_2 = 35, \\ 3x_2 + 5x_3 = 35, \\ 3x_3 $
3	$\begin{cases} x_1 + 3x_2 + 2x_3 = 305, \\ x_2 + x_2 = 109 \end{cases}$	4	$\begin{cases} 3x_1 + 3x_2 + 6x_3 = 520, \\ 4x_1 + 3x_2 + 4x_2 = 455 \end{cases}$
	$(2x_1 + x_2 + 3x_3 = 110)$		$(2x_1 + 3x_2 + 4x_3 = 655)$
5	$\begin{cases} 2x_1 + x_2 + 5x_3 & 110, \\ 8x_1 + 7x_2 + 6x_2 &= 315 \end{cases}$	6	$\begin{cases} 2x_1 + 5x_2 + 1x_3 & 000, \\ 3x_1 + x_2 + 4x_3 & 000, \end{cases}$
5	$\begin{bmatrix} 3x_1 + 4x_2 + 2x_3 = 115 \\ 3x_1 + 4x_2 + 2x_3 = 115 \end{bmatrix}$	0	$\begin{bmatrix} 2x_1 + 2x_2 + 2x_3 & -280, \\ x_1 + 2x_2 + 2x_3 & -360 \end{bmatrix}$
	$\int 2x_1 + 6x_2 + x_3 = 225,$		$\int 3x_1 + 4x_2 = 180,$
7	$\begin{cases} x_1 + 3x_2 + 2x_3 = 225, \end{cases}$	8	$\begin{cases} 4x_1 + 5x_2 + x_3 = 255, \end{cases}$
	$x_2 + x_3 = 120$		$2x_1 + 3x_2 + 3x_3 = 200$
	$\int x_1 + 2x_2 + x_3 = 200,$		$\int 2x_1 + 2x_2 = 125,$
9	$\begin{cases} x_1 + 2x_2 + 4x_3 = 315, \end{cases}$	10	$\begin{cases} 5x_1 + 4x_2 + x_3 = 305, \end{cases}$
	$\int 3x_1 + 5x_2 + 3x_3 = 544$		$x_1 + x_2 + 2x_3 = 120$
	$\int 3x_1 + 5x_2 + 5x_3 = 185,$		$\int x_2 + 2x_3 = 140,$
11	$\begin{cases} 7x_1 + x_2 + 2x_3 = 185, \end{cases}$	12	$\begin{cases} 2x_1 + x_2 + x_3 = 175, \end{cases}$
	$\left(x_1 + 6x_2 = 80 \right)$		$\int 3x_1 + 7x_2 + x_3 = 290$
	$3x_1 + x_3 = 115,$		$3x_1 + 3x_2 + x_3 = 135,$
13	$\begin{cases} 2x_2 + 7x_3 = 150, \end{cases}$	14	$\begin{cases} 6x_2 + 2x_3 = 155, \\ 0 & 0$
	$(x_1 + 3x_2 + 2x_3 = 143)$		$\left(x_1 + 9x_2 + 2x_3 = 230\right)$
	$3x_1 + 5x_2 + 6x_3 = 640,$		$2x_1 + 2x_2 + x_3 = 50,$
15	$\begin{cases} 2x_1 + 4x_2 + 3x_3 = 380, \\ 2x_1 + 4x_2 + 3x_3 = 380, \\ 3x_1 + 3x_2 + 3x_3 = 380, \\ 3x_2 + 3x_3 + 3x_3 = 380, \\ 3x_1 + 3x_2 + 3x_3 = 380, \\ 3x_2 + 3x_3 + 3x_3 = 380, \\ 3x_1 + 3x_2 + 3x_3 = 380, \\ 3x_2 + 3x_3 + 3x_3 = 380, \\ 3x_1 + 3x_2 + 3x_3 = 380, \\ 3x_2 + 3x_3 + 3x_3 = 380, \\ 3x_1 + 3x_2 + 3x_3 = 380, \\ 3x_2 + 3x_3 + 3x_3 = 380, \\ 3x_1 + 3x_2 + 3x_3 = 380, \\ 3x_2 + 3x_3 + 3x_3 = 380, \\ 3x_1 + 3x_2 + 3x_3 = 380, \\ 3x_2 + 3x_3 + 3x_3 = 380, \\ 3x_2 + 3x_3 + 3x_3 + 3x_3 = 380, \\ 3x_1 + 3x_2 + 3x_3 $	16	$\begin{cases} 3x_1 + 5x_2 + 3x_3 = 140, \\ 2 & 7 \\ 3 & 125 \end{cases}$
	$(3x_1 + x_2 + x_3 = 1/5)$		$(2x_1 + 7x_2 + x_3 = 125)$
	$\int 2x_1 + x_2 = 60,$		$3x_1 + x_2 + x_3 = 145,$
17	$\begin{cases} x_1 + 3x_3 = 100, \end{cases}$	18	$3x_1 + 5x_2 + 6x_3 = 330,$
	$\int 5x_2 + x_3 = 95$		$(x_1 + 4x_2 + 2x_3 = 170)$
	$\int x_2 + x_3 = 95,$		$\int x_1 + 4x_2 + 4x_3 = 165,$
19	$\begin{cases} 2x_1 + 5x_2 = 225, \end{cases}$	20	$\begin{cases} x_1 + 3x_2 + 2x_3 = 100, \end{cases}$
	$x_1 + x_2 + 2x_3 = 183$		$4x_1 + x_2 + 2x_3 = 100$
	$\int x_1 + 7x_2 + x_3 = 130,$		$\int x_1 + 2x_2 + x_3 = 200,$
21	$\begin{cases} 2x_2 + 6x_3 = 295, \end{cases}$	22	$\begin{cases} x_1 + 2x_2 + 4x_3 = 315, \end{cases}$
	$2x_1 + x_2 + x_3 = 85$		$3x_1 + 5x_2 + 3x_3 = 544$

Продолжение таблицы 2.5

1	2	3	4
23	$\begin{cases} 4x_1 + 3x_2 + 2x_3 = 500, \\ 4x_1 + 5x_3 = 590, \\ 3x_1 + 2x_2 + 3x_3 = 505 \end{cases}$	24	$\begin{cases} 2x_1 + x_2 + 2x_3 = 120, \\ 3x_1 + 5x_2 + 4x_3 = 305, \\ x_1 + 2x_2 + x_3 = 110 \end{cases}$
25	$\begin{cases} 2x_1 + 4x_2 + 9x_3 = 455, \\ 7x_1 + 3x_2 + 6x_3 = 395, \\ 7x_1 + 9x_2 + 9x_3 = 635 \end{cases}$	_	_

2.6 Нахождение производных и интегралов

Цель: изучить основные возможности приложения *SMathStudio* для нахождения производных и интегралов.

2.6.1 Краткие теоретические сведения

SMathStudio позволяет вычислять производные первого и высших порядков, их численные (в заданной точке) и аналитические значения.

В SMathStudio можно вычислить только определенные интегралы.

2.6.2 Пример выполнения задания

1) найти значение первой производной функции $y = \cos^2 x$ в точке x = 6;

2) найти аналитическое выражение для производной порядка n = 3 этой функции;

3) найти определённый интеграл функции $f(x) = \frac{2^{x+1} - 5^{x-1}}{10^x}$ на отрезке [2, 5].

Методические рекомендации

1) Записываем заданную функцию по правилам *SMathStudio:* $y(x) := \cos(x)^2$. Задаем значение x: = 6. На ПИ «Функция» выбираем шаблон $\boxed{\frac{d}{d}}$ или набираем с клавиатуры *diff* и во всплывающей подсказке выбираем *diff(2)*. В нижний квадратик введем переменную x, а в верхний f(x), затем набираем знак $(x) = \infty$.

Вид документа SMathStudio (рис. 2.17).

Рисунок 2.17

2) Чтобы найти производную третьего порядка, задаем n:=3, набираем с клавиатуры *diff*, выбираем *diff* (3), в шаблон $\frac{d}{d}$ вводим данные и

получим $\frac{d^n}{dx} f(x)$, на панели инструментов «Арифметика» выбираем

кнопку \rightarrow и получим производную в символьном виде (рис. 2.18).

Рисунок 2.18

3) Чтобы вычислить определенный интеграл, на панели инструментов «Функции» нажмем на кнопку *и* получим шаблон Вносим в него данные так, как показано ниже и набираем знак « = » для вывода результата.

Рисунок 2.19

2.6.3 Вопросы для самоконтроля

1. На какой ПИ находятся шаблоны для нахождения производной и определенного интеграла?

2. Стандартные функции для нахождения производной и определенного интеграла?

2.6.4 Индивидуальные задания

1. Найти значение первой производной функции f(x) (табл.2.6) в точке x.

2. Найти аналитическое выражение для производной порядка *n* этой функции.

3. Найти определённый интеграл функции f(x) на отрезке [a,b] (табл. 2.7).

Номер варианта	f(x)	Х	n	Номер варианта	f(x)	Х	n
1	e^{-x^2}	2	3	14	$\frac{x}{x^2-1}$	2	2
2	Sin2x	5	2	15	xe^{5x}	1	3
3	e^{3x}	8	4	16	Ln3x	3	2
4	\sqrt{x}	4	2	17	$\sqrt{2x+3}$	4	3
5	$\frac{x^2}{x-1}$	7	3	18	$\frac{2x+3}{4x+7}$	5	3
6	$x^2 \sin 2x$	3	2	19	$\sin^2 x$	6	3
7	$x^3\cos 5x$	1	3	20	$\cos^2 x$	7	3
8	$\frac{x-1}{x+1}$	9	3	21	$\cos^3 x$	8	3
9	e^{3x}	8	3	22	$\ln(2x)$	3	3
10	xe^{5x}	1	3	23	e^{2x}	2	2
11	$\frac{x^2}{x-1}$	7	3	24	$\sqrt{2x+3}$	2	2
12	e^{-x^2}	2	3	25	$\frac{2x+3}{4x+7}$	3	2
13	xe^{5x}	1	3	_	_	_	_

Таблица 2.6

Таблица 2.7

Номер варианта	f(x)	a	b	Номер варианта	f(x)	а	b
1	$\frac{x+1}{\sqrt{x}}$	1	6	14	$\sqrt{1+\sin 2x}$	0	4
2	$(x^4 + 1)x^3$	2	5	15	$(2x-3)^{10}$	2	6
3	$\frac{x^2}{1-x^2}$	2	5	16	$\frac{1}{\sqrt{2-5x}}$	1	3
4	tg^2x	-1	1	17	$\frac{1}{2+3x^2}$	-1	1
5	$\frac{2x+3}{3x+2}$	0	4	18	$\frac{1}{\sqrt{3x^2-2}}$	2	3
6	$\sqrt{1-\sin 2x}$	4	6	19	$\frac{1}{\sin^2(2x+\frac{\pi}{4})}$	1,5	2,7
7	$(3-x^2)^3$	2	3	20	$\frac{1}{1 + \cos x}$	1	3
8	$(1-\frac{1}{x^2})\sqrt{x\sqrt{x}}$	1	5	21	$\frac{1}{1+\sin x}$	1	3
9	$\frac{\sqrt{x^4 + x^{-4} + 2}}{x^3}$	2	3	22	$\frac{1}{\sqrt{1+x^2}}$	2	4
10	$\frac{x^2+3}{x^2-1}$	2	3	23	$\frac{x^3}{x^8 - 2}$	7	8
11	$\frac{2^{x+1}-5^{x-1}}{10^x}$	-2	-1	24	$\frac{1}{x\sqrt{x^2+1}}$	4	5
12	$\frac{\sqrt{1+x^2}+\sqrt{1-x}}{\sqrt{1-x^4}}$	-3	-1	25	$\frac{1}{x\sqrt{x^2-1}}$	2	3
13	$(2^{x}+3^{x})^{2}$	1	2	_	_	_	_

2.7 Нахождение экстремумов функций

Цель: изучить основные возможности приложения *SMathStudio* для нахождения максимумов/ минимумов функции одной переменной.

2.7.1 Краткие теоретические сведения

Экстремум – *максимальное* или *минимальное* значение функции на заданном множестве. Точка, в которой достигается экстремум, называется *точкой экстремума*. Соответственно, если достигается минимум – точка экстремума называется *точкой минимума*, а если максимум – *точкой максимума*.

Функция y = f(x) в точке x_0 имеет *максимум*, если значение функции в этой точке больше, чем ее значения во всех точках некоторого интервала, содержащего точку x_0 , т. е. если существует такая окрестность точки x_0 , что для всех $x \neq x_0$, принадлежащих этой окрестности, имеет место неравенство $f(x) < f(x_0)$.

Функция y = f(x) имеет *минимум* в точке x_0 , если существует такая окрестность точки x_0 , что для всех $x \neq x_0$, принадлежащих этой окрестности, имеет место неравенство $f(x) > f(x_0)$.

Необходимое условие существования экстремума: если дифференцируемая функция y = f(x) имеет в точке $x = x_0$ экстремум, то ее производная в этой точке обращается в нуль.

Достаточное условие существования экстремума: если x_0 есть стационарная точка функции f(x) и f''(x) < 0, то в точке x_0 функция имеет максимума; если f''(x) > 0, то функция имеет в точке x_0 минимум.

2.7.2 Пример выполнения задания

Найти экстремумы и значения функции $y = (x - 2)^2$ в точках экстремума. Проверить значение производной в точках экстремума. Построить график функции на отрезке, содержащем экстремумы.

Методические рекомендации

Чтобы найти экстремумы функции, нужно найти координаты точек, в которых первая производная обращается в ноль. Затем по знаку 2-ой производной определить миниму это или максимум.

Вид документа SMathStudio (рис. 2.20).

Рисунок 2.20

2.7.3 Вопросы для самоконтроля

1. Что называется экстремумом функции?

2. Последовательность действий в *SMathStudio* для определения экстремумов функции.

2.7.4 Индивидуальные задания

Найти экстремумы и значения функции в точках экстремума. Проверить значение производной в точках экстремума. Построить график функции на отрезке, содержащем экстремумы (табл. 2.8).

Таблица 2.8	3	
Номер варианта	Функция	Промежуток
1	$\sin^3 2x$	[-1;0,4]
2	$x^{3}(x-5)^{2}$	[0;6]
3	$2\sin(\sqrt{x^3}) - x$	[2;5]
4	$x^3 + 6x^2 + 9x$	[-4;0]
5	$5x^2\sin^3x^3$	[1;3]
6	$\frac{6(x-1)}{x^2+3}$	[-3;5]
7	$x^3\cos^2(x^5+2x)$	[0;1]
8	$\ln(\sin 4x + 1)^2$	[2;3]
9	$\sin\left(\sqrt{x^5 + 2x}\right)$	[2,2;2,8]
10	$(x-1)^{3}+\cos 2x^{3}$	[0;2,3]
11	$\sqrt[3]{x^2(x-2)^2}$	[0,1;3]
12	$5^{x+1}\sin(x^3+1)$	[1;2]
13	$2x^3 + 3x^2 - 36x + 10$	[-5;3]
14	$\sin x^{2x} + \cos\left(x^2 + 2\right)$	[1;1,7]
15	$\sqrt{x^3 - 1} + \sin x^2$	[1;2,8]
16	$2\sin(x-e^{-x})$	[1;6]
17	$x^{3} + \frac{x^{4}}{4}$	[-5;3]
18	$\sin x^2 + x^{0,25}$	[2;3]
19	$\sqrt[3]{\sin^2 x + \cos^4 x}$	[1;3]
20	$\sin^3 x^4$	[1;1,5]

Продолжение таблицы 2.8

1	2	3
21	$x^3 + 2x^2 - x - 2$	[-3;3]
22	$\sin\left(\sqrt[3]{x^5 + x^2}\right)$	[0;3]
23	$(x+1)^2 \cos x^3$	[1;2]
24	$\sin^2\left(x^3 + \sqrt{x}\right)$	[1;1,6]
25	$\cos\left(\frac{x+1}{x-1}\right)$	[1,2;1,5]

2.8 Интерполяция функций степенными выражениями

Цель: изучить основные возможности приложения *SMathStudio* для аппроксимации функций интерполяционными полиномами.

2.8.1 Краткие теоретические сведения

Аппроксимация функции степенным выражением – это замена функции приближенной, точно совпадающей с ней в заданных точках (узлах интерполяции).

Часто для решения этой задачи на (n+1) точках строится алгебраический многочлен степени n: $P_n(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n$. Он называется интерполяционным. Точки x_i (i = 0...n) называются узлами интерполяции. Аппроксимация функции f по формуле $F(x) \approx P_n(x)$ называется интерполяцией функции. Используя $P_n(x)$, можно получать прогнозы – находить значение у в тех точках x, которых нет в таблице исходных данных.

В SMath есть 3 функции для интерполяции:

linterp('X - vector','Y - vector','x') – возвращает линейно интерполированное значение в x для вектора данных X и Y – вектор того же размера;

cinterp('X - vector', 'Y - vector', 'x') — возвращает интерполированное кубическим сплайном значение в х для вектора данных X и Y — вектор того же размера;

ainterp('X - vector', 'Y - vector', 'x') – возвращает Akima-spline. – проходит только через заданные точки. Позволяет построить кривые только через 6 смежных точек. При резком изгибе кривизны не создается непрерывная кривая. Главная область применения – это проход через точки, полученные от измерительных машин или аналогичных устройств.

Узлы интерполяции (x_i, y_i) должны быть заданы двумя соответствующими друг другу векторами X,Y. Причем элементы вектора X должны располагаться по возрастанию.

2.8.2 Пример выполнения задания

Выполнить линейную и кубическую интерполяцию по приведенной ниже таблице данных, построить графики, найти значения функций в промежуточной точке x = 1,5.

Таблица 2.9

x	1	2	3	4	5
У	2,8	3,5	2,1	4,1	4,8

Методические рекомендации

Предварительно необходимо проверить, что значения переменной x расположены в порядке возрастания. Данные вводим в виде двух векторов: Х и Ү. Записываем стандартные функции для линейной интерполяции в виде f1(x) := l int erp(X; Y; x) и кубической в виде f1(x) := c int erp(X; Y; x). Строим графики полученных функций и находим их значения в заданной точке.

Вид документа SMathStudio (рис. 2.21).

Рисунок 2.21

Обратите внимание, что за пределами заданного отрезка данных [1; 5] значения интерполяций сильно отличаются от исходных данных. Имена функций f1(x) и f2(x) взяты произвольно.

2.8.3 Вопросы для самоконтроля

- 1. Что называют аппроксимацией функции степенными выражениеми?
- 2. Какой полином называется интерполяционным?
- 3. Что такое узлы интерполяции?
- 4. Какие стандартные функции SMathStudio для интерполяции?

2.8.4 Индивидуальные задания

Выполнить линейную и кубическую интерполяцию по таблицам данных (табл. 2.10) построить графики.

Номер варианта	Координаты точек						
1	2						
1	X	$-\pi/2$	$\pi/2$	$3\pi/2$	$5\pi/2$	$7\pi/2$	
1	Y	-1	1	-1	1	-1	
	•			•	•	•	
2	X	$-\pi/2$	$\pi/2$	$3\pi/2$	$5\pi/2$	$7\pi/2$	
Δ	Y	-2	2	-2	2	-2	
2	X	$-\pi/2$	$\pi/2$	$3\pi/2$	$5\pi/2$	$7\pi/2$	
5	Y	-3	3	-3	3	-3	
Λ	X	$-\pi/2$	$\pi/2$	$3\pi/2$	$5\pi/2$	$7\pi/2$	
4	Y	-4	4	-4	4	-4	
5	X	$-\pi/2$	$\pi/2$	$3\pi/2$	$5\pi/2$	$7\pi/2$	
5	Y	-5	5	-5	5	-5	
6	X	$-\pi/2$	$\pi/2$	$3\pi/2$	$5\pi/2$	$7\pi/2$	
0	Y	-6	6	-6	6	-6	
7	X	-1,57	1,57	4,71	7,85	11	
1	Y	-2	2	-2	2	-2	
8	X	-3,14	0	3,14	6,28	9,42	
0	Y	-1	1	-1	1	-1	

Таблица 2.10

Продолжение таблицы 2.10

1	2					
	X	-3.14	0	3.14	6.28	9.42
9	V	-2	2	-2	2	-?
	-	<i>L</i>	2	-	2	2
	V	3 1/	0	3 1/	6.28	0.42
10		-5,14	0	3,14	0,20	3,42
	1	-3	5	-3	5	-3
	V	2.1.4	0	2.14	6.29	0.42
11		-3,14	0	3,14	0,28	9,42
	Y	-4	4	-4	4	-4
12	X	-3,14	0	3,14	6,28	9,42
	Y	-5	5	-5	5	-5
			-			
13	X	-3,14	0	3,14	6,28	9,42
	Y	-6	6	-6	6	-6
	r	1	1	1	1	T
14	X	-3,14	0	3,14	6,28	9,42
17	Y	-1,63	1	-0,37	2,26	0,88
				•		
15	Χ	-3,14	0	3,14	6,28	9,42
15	Y	-2,57	1	0,57	4,14	3,71
	•	•	•		•	•
16	Χ	-6,28	-3,14	0	3,14	6,28
16	Y	-1.09	-2.05	1	0	3.09
	_	_,	_,	_		-,-,
	X	-6.28	-3.14	0	3.14	6.28
17	V	-2 14	-2 57	1	0.57	4 14
	1	2,17	2,57	1	0,57	7,17
	v	6.28	2 1 /	0	2.14	6.78
18		-0,28	-3,14	0	3,14	0,28
	I	-4,20	-3,14	2	1,14	0,20
	V	2.1.4	0	2.14	()	0.42
19	X	-3,14	0	3,14	6,28	9,42
	Y	-5,14	2	1,14	8,28	7,42
		<u></u>			<u> </u>	10.75
20	X	0	3,14	6,28	9,42	12,57
_	Y	2	1,14	8,28	7,42	14,57
				<u> </u>		
21	X	-6,28	-3,14	0	3,14	6,28
	Y	-3,28	-6,14	3	0,14	9,28
	r	1	1	1	1	
22	X	-6,28	-3,14	0	3,14	6,28
	Y	0,72	-10,14	7	-3,86	13,28
23	Χ	-6,28	-3,14	0	3,14	6,28
	Y	2,72	-12,14	9	-5,86	15,28
24	X	-6,28	-3,14	0	3,14	6,28
	Y	4.72	-14.14	11	-7.86	17.28
		-,	,		.,	.,20
	X	0	3.14	6.28	9.42	12.57
25	V	9	-5.86	15 28	0.42	21 57
	A	,	5,00	10,20	0,12	-1,51

2.9 Численное решение обыкновенных дифференциальных уравнений 2-го порядка

Цель: изучить основные возможности приложения *SMathStudio* для решения обыкновенных дифференциальных уравнений 2-го порядка.

2.9.1 Краткие теоретические сведения

Обыкновенное дифференциальное уравнение – дифференциальное уравнение, в котором неизвестным является функция одной переменной.

Итогом решения дифференциального уравнения является функция, которая в зависимости от способа решения может иметь вид таблицы (как в случае использования метода Рунге-Кутта) или формулы.

Как известно из курса дифференциальных уравнений, лишь небольшое число типов уравнений первого порядка допускают сведение решения к обычной операции интегрирования. Еще реже удается получить решение в элементарных функциях. Поэтому большое значение имеют численные методы решения дифференциальных уравнений, позволяющие получить таблицу значений функции в требуемых точках.

Численные методы используются также в тех случаях, когда аналитическое решение не нужно для дальнейших расчетов.

Рассмотрим один из численных методов, который позволяет находить приближенное решение ОДУ, метод Рунге-Кутта 4-го порядка.

Для решения этим методом в SMath существует функция

rkfixed(y,xn,xk,n,D),

где у – вектор начальных значений искомых решений;

xn – значение точки начала отрезка интегрирования;

xk – значение точки конца отрезка интегрирования;

n – число шагов интегрирования;

D-функция – вектор правых частей.

Результат – таблица (1-й столбец – значение x, 2-й – значение решения y(x), 3-й – первая производная y'(x)).

2.9.2 Пример выполнения задания

Решить заданное дифференциальное уравнение

y'' + y = 0, y(0) = -2, y'(0) = 0

на отрезке [2, 7]. Построить графики решений.

Методические рекомендации

Предварительно перепишем уравнение так, чтобы слева оставалась только старшая производная y'' = -y.

Рассмотрим аргументы функции rkfixed:

В общем виде вектор начальных условий

$$y = \begin{bmatrix} y(0) \\ y'(0) \end{bmatrix}$$
. В нашем примере $y = \begin{bmatrix} -2 \\ 0 \end{bmatrix}$.

Отрезок интегрирования задан: xn = 2; xk = 7.

Число шагов интегрирования n задаем сами по двум критериям: чтобы найти решение в нужных точках; чтобы обеспечить требуемую точность вычисления h $(h = \frac{xk - xn}{n})$. Например, если надо найти решение с точностью 10⁻², то $n = \frac{xk - xn}{h} = \frac{7 - 2}{0.01} + 1 = 501.$

При этом решение будет найдено в точках x = 2; 2,01; 2,02...7. Для примера возьмем шаг h = 0.5 (задаем n = 10).

Уравнение y'' = -y можно представить в виде системы $\begin{cases} y' = y' \\ y'' = -y \end{cases}$.

В общем виде вектор правых частей $D = \begin{vmatrix} y' \\ y'' \end{vmatrix}$.

В нашем случае $D = \begin{bmatrix} y' \\ -y \end{bmatrix}$.

Обозначим $y' = y_2$; $y = y_1$. Получим $D = \begin{vmatrix} y_2 \\ -y_1 \end{vmatrix}$.

Вид документа SMathStudio (рис. 2.22, 2.23, 2.24).

НачУсл:= stack (-2;0)	Начало = 2	Конец≔ 7	КолвоШагов = 10
Система (х ; у):=			
Решение≔rkfixed(НачУ	сл; Начало;	Конец ; Колво	оШагов ; Система (t ; y))
Х≔соl (Решение ; 1)	¥1≔col(P	ешение ; 2)	Ү2≔со1(Решение;3)
Pem1≔augment(X;Y1)	Pem2 ≔ au	gment(X; Y2)	Pem≔augment(Y1;Y2)

Рисунок 2.22

Рисунок 2.23

Рисунок 2.24

Примечание: для работы функции rkfixed в папке plugins должна быть библиотека ODESolvers.dll.

2.9.3 Вопросы для самоконтроля

- 1. Какое уравнение называется дифференциальным?
- 2. Что является решением дифференциального уравнения?
- 3. Что называется численным решением дифференциального уравнения?
- 4. Перечислите аргументы функции *rkfixed*.

2.9.4 Индивидуальные задания

Решить заданное в таблице 2.11 дифференциальное уравнение на отрезке $[x_n, x_k]$. Построить графики решений.

Номер	X7	Начальны	Интервал		
варианта	уравнение	y(0)	y'(0)	X _n	X _k
1	$y'' + \pi y = 0$	1	0	1	6
2	y''+6y'+8y=0	-1	0	-1	3
3	$y'' + \frac{y}{4} = 0$	0	1	0	3
4	<i>y</i> ''+3 <i>y</i> '=0	0	-1	0	5
5	y''+9y=0	0	3	0	5
6	y''-3y'+2y=0	0	-3	0	2
7	y''+4y=0	3	0	3	10
8	y'' + 9y = 0	-3	0	-3	3
9	y''+3y'+2y=0	2	0	-2	2
10	y''-6y'+8y=0	-2	0	-2	-1
11	<i>y</i> ''- <i>y</i> '=0	0	2	3	6
12	y''+4y=0	0	-2	0	9
13	y''-9y'+18y=0	4	0	4	5
14	y''+4y=0	-4	0	-4	4
15	y''+6y=0	0	4	0	5
16	$y'' + \pi^2 y = 0$	1	0	1	6
17	y''-3y'+2y=0	-1	0	2	3
18	y''+y'=0	0	1	0	5
19	y''+5y=0	0	-1	0	1
20	y''+16y=0	0	3	0	6
21	y''+y=0	0	-3	0	7
22	<i>y</i> ''-3 <i>y</i> '=0	3	0	0	1
23	y''-6y'+8y=0	-3	0	0.5	1,5
24	y''-3y'+2y=0	2	0	3	4
25	y'' + y = 0	-2	0	2	7

Таблица 2.11

З ПРОГРАММИРОВАНИЕ В СИСТЕМАХ КОМПЬЮТЕРНОЙ МАТЕМАТИКИ

3.1 Программирование линейного вычислительного процесса

Цель: изучить основные возможности приложения *SMathStudio* для программирования линейного вычислительного процесса.

3.1.1 Краткие теоретические сведения

Линейным называется вычислительный процесс, в котором операторы выполняются последовательно, один за другим. Понятие алгоритма и правила записи алгоритма в виде блок-схемы даны в Приложении Б.

3.1.2 Пример выполнения задания

Составить программу для вычисления функций:

$$b = \frac{x + y(x^2 + \cos y)}{y(x - z) + \ln|xz|}$$

где $z = 2\sin(3x+1); x = 3,25; y = 4,12.$

Методические рекомендации

В данном случае запись всех операторов выполняется по правилам, рассмотренным в предыдущем разделе. Последовательность выполнения задания соответствует блок-схеме (рис. 3.1).

Рисунок 3.1 – Блок схема линейного вычислительного процесса

Вид документа SMathStudio (рис. 3.2).

Рисунок 3.2

Таким образом, выполняется расчет, в котором исходные данные не изменяются. Если же необходимо неоднократно выполнить один и тот же расчет, но для различных исходных данных, рациональнее средствами программирования *SMathStudio* записать вычисления в виде функции, заданной пользователем. Вид документа *SMathStudio* (рис. 3.3).

Рисунок 3.3

Здесь имя функции rez() выбирается пользователем, в скобках указываются имена вводимых переменных, после знака := на ПИ «Программирование» выбирают команду *line*. Появится линия и два «квадратика» для ввода операторов. Чтобы таких «квадратиков» стало 3, как в рассматриваемом примере, нужно мышью потянуть окно шаблона вниз за правый нижний угол. В 1-й и 2-й строке записываем операторы для вычисления *z* и *b*. Для организации вывода четырех переменных (рис. 3.3) в 3-й строке с помощью ПИ «Матрица» записываем вектор.

Теперь, записав имя функции и значения *x* и *y*, можно получить результат для любого набора исходных данных.

3.1.3 Вопросы для самоконтроля

- 1. Какой вычислительный процесс называется линейным?
- 2. Как записать функцию пользователя в SMathStudio?
- 3. Какая команда используется для ввода нескольких операторов?

3.1.4 Индивидуальные задания

Составить программу для вычисления функций b = f(x,y,z), где z = w(x,y) при постоянных значениях *x* и *y*. Значения *x* и *y* функций заданы в таблице 3.1.

Вариант	f(x,y,z)	w(x,y)	x	у
1	2	3	4	5
1	$e^{-2x}(tg(z)+2y)$	$\sqrt{\sin^2 \mathbf{x} + \mathbf{y}}$	-4,52	0,75
2	$\frac{\sqrt{x}\sin(2y)}{z+e^z y}$	$\frac{2xy}{x + \cos(y)}$	2,87	0,84
3	$\frac{y-z/(y-x)}{\cos(x)+(y-x)^2}$	$\frac{\sqrt{15y}}{y + ctg(x)}$	1,82	18,25
4	$\mathbf{y}^{\mathbf{X}} + \sqrt[3]{ \mathbf{x} + \mathbf{y} }e^{\mathbf{Z}}$	$\frac{\sqrt{ 20x }}{x^2 + y^3}$	-0,85	1,25
5	$\ln(\sqrt{x} - \sqrt{y} + 2)z^3$	$\frac{\sin(x/y)}{2x^2}$	25,34	33,85
6	$y + \frac{xarctg(z)}{y + x^2}$	$\sqrt{x}\sin(y)$	0,12	-8,75
7	$\frac{z^3}{x+y^3/x+z^2}$	$\frac{15}{x+e^{y}}$	1,54	3,26
8	$\frac{z^2}{y+x^3} + \sin(y/5)$	$\frac{3x}{\cos^2(y)+3}$	1,58	3,42
9	$\left \cos(x) + \sin(y)\right - 2tg^{2}(z)$	$\frac{\sqrt{x}\sin^2(y)}{x+e^y}$	0,42	-0,87

Таблица 3.1

Продолжение таблицы 3.1

1	2	3	4	5
10	$\ln y^{\sqrt{ x }} (z^2 - \frac{y}{\sin(x)})$	$\sqrt{3+2y}$	-15,24	4,67
11	$\frac{z^2}{y+x^3} + \sin(\frac{y}{5})$	$\frac{\sqrt{xarctg(2y)}}{e^{y+x}}$	6,55	-2,78
12	$\cos^2(z) + \left x + y \right ^3$	$\frac{12}{x+e^{y}}$	-2,75	-1,42
13	$\mathbf{x}^{\mathbf{y}/\mathbf{x}} + \sqrt[3]{ \mathbf{y}^z } e^x$	$\ln(\sqrt{e^{x-y}}+z^2)$	1,82	18,23
14	$\frac{e^{z-1}}{2y+x^3} + \sin(y^2)$	$\cos^2(y) + \sin^3(x^2)$	0,84	0,65
15	$\sqrt{ y e^{-(y+x)}} - \cos(z^3)$	$\frac{x+6y}{\sin(x)+\ln(y)}$	1,12	0,87
16	$\frac{4y^2e^{3x}}{8z^3+\ln x }$	$\frac{x + y\sqrt{x}}{x + 10}$	0,27	4,38
17	$\frac{\sqrt{y\ln(x)} - zx^2}{1 + tg^2(x^2)}$	$\frac{e^x\sqrt{x^3+y}}{x-1}$	6,35	7,32
18	$\frac{\ln(y+\sqrt{y+x^2})}{(z+x^2)e^{x/2}}$	$\frac{2x\sqrt{y}}{\sin(x^2)}$	0,42	1,23
19	$\frac{x^3 + y}{\sin^2(z) + x/5}$	$\frac{\cos^2(3(2+x))}{4 - y^2\sqrt{x}}$	43,32	-0,54
20	$\frac{x + y(x^2 + \cos(y))}{y(x - z) + \ln xz }$	$2\sin(3x+y)$	3,25	4,12
21	$\frac{1+\cos^2(x+z)}{\left x^3-2\ln\sqrt{y}\right }$	$\frac{x^2 + y^2}{e^{x+y}}$	0,83	2,38
22	$\frac{\ln x }{\sqrt[3]{ x + y }+tg(z)}$	$\sqrt{x^2 - \sin(y)}$	-0,93	-0,25
23	$\frac{z^3}{x+y^3/(x+z^2)}$	$\frac{\left y+8x\right }{\sin(x)+tg(y)}$	-0,72	-1,42
24	$2^{-x}\sqrt{y+\sqrt[4]{ z }}$	$\frac{xy}{x^2+5} + \cos^2(y)$	3,98	1,63
25	$\sqrt{e^{x-1}\sqrt{ y }}$	$\frac{3y}{3+e^{x-y}}$	3,91	-0,51

3.2 Программирование разветвляющегося вычислительного процесса

Цель: изучить основные возможности приложения *SMathStudio* для программирования разветвляющегося вычислительного процесса.

3.2.1 Краткие теоретические сведения

Разветвления в программе возникают при необходимости выбора одного из нескольких возможных путей в решении задачи.

Для организации разветвлений в программах используется оператор перехода.

Оператор условного перехода if выбирается на ПИ «Программирование» и позволяет изменить порядок выполнения операторов в программе в зависимости от определенных условий. Общий вид оператора:

Если условие, заданное в операторе *if*, истинно, то выполняется оператор (простой или составной), стоящий во второй строке. В противном случае выполняется оператор, стоящий после *else*. После выполнения одной из ветвей, работа программы продолжается с оператора, следующего за *if*.

Если в какой-то ветви требуется выполнить более одного оператора, из них необходимо образовать составной оператор, т. е. заключить эти операторы в операторные скобки – оператор *line* на ПИ «Программирование».

3.2.2 Примеры выполнения задания

1. Вычислить значение функции

$$Y = \begin{cases} (2x+1)/x^5 & \text{если } x < 0, \\ e^{x+1} + \cos(x), & \text{если } x \ge 0. \end{cases}$$

Значение *х* запрашивать в диалоге.

2. Вычислить значение функции

$$Y = \begin{cases} (2x+1)/x^5 & \text{если } x < 0, \\ e^{x+1} + \cos(x), & \text{если } 0 \le x < 1, \\ \sin(x) + x^2, & \text{если } x \ge 1. \end{cases}$$

Значение *х* запрашивать в диалоге.

Методические рекомендации

1. Составим блок-схему процесса (рис. 3.4).

Рисунок 3.4 – Блок схема разветвляющегося вычислительного процесса

Теперь запишем этот алгоритм в SMathStudio.

Записываем произвольное значение x, например x := 3. На ПИ «Программирование» выбираем оператор *if*. После оператора указываем условие x < 0, во второй строке – значение y при x < 0, после *else* – значение y при $x \ge 0$. Выводим значение y =.
Вид документа *SMathStudio* (рис. 3.5).

Рисунок 3.5

2. Составим блок-схему процесса (рис. 3.6):

$$f1(x) = (2x+1)/x^5$$
, $f2(x) = e^{x+1} + \cos(x)$, $f3(x) = \sin(x) + x^2$

Рисунок 3.6 - Блок схема разветвляющегося вычислительного процесса

Теперь запишем этот алгоритм в SMathStudio.

Записываем произвольное значение x, например x := 0,5. На ПИ «Программирование» выбираем оператор *if*. После оператора указываем условие x < 0, во второй строке – значение y при x < 0, после *else* – ПИ «Программирование» выбираем оператор *line*:

и снова записываем оператор *if*. Выводим значение y =. Вид документа *SMathStudio* (рис. 3.7).

Рисунок 3.7

Для более рациональной организации вычислений и возможности запрашивать значение x в диалоге, рекомендуется записывать расчет в виде функции пользователя. Вид документа *SMathStudio* для задания A (рис. 3.8).

Рисунок 3.8

Вид документа *SMathStudio* для задания Б (рис. 3.9).

Рисунок 3.9

3.2.3 Вопросы для самоконтроля

1 Когда в програмне необходимо использовать оператор условного перехода?

2 Как записать оператор условного перехода если одна из ветвей содержит более одного оператора?

3 Какому блоку в блок-семе соответсвует условный оператор?

3.2.4 Индивидуальные задания

Вычислить значение функции

$$Y = \begin{cases} f l(x), & \text{если } x < 0, \\ f 2(x), & \text{если } 0 \le x \le 1, \\ f 3(x), & \text{если } x > 1. \end{cases}$$

Виды функций f1(x), f2(x), f3(x) заданы в табл. 3.2. Значение x следует запрашивать в диалоге.

Таблица 3.2

Вариант	fl(x)	f2(x)	f3(x)
1	tg(2x)	sin(3x)	$\cos(x-2)$
2	4x + 2	$\frac{5}{(x+0,4)}$	$0.5/2\sin(4x)$
3	$\sqrt[3]{x}-1$	x4/7	$\sin^3(2x)$
4	$\sqrt[3]{\sin^2(x) + \cos^4(x)}$	ctg(x+0,4)	$\ln(2x+0,5)$
5	$x^3 - \ln(\mathbf{x})$	$\ln^3(x+4)$	$x^4 - x^{2-x}$
6	$sin(x^2)$	$e^{-X} + \sqrt[4]{x}$	$\ln(x^3 + x^2)$
7	$3x - 1/x^{5}$	$\ln^2(\left \sqrt{x+5}\right)$	$\sqrt{1+x^2}$
8	$x\cos(x)$	$\frac{1}{(tg(2x)+1)}$	$x^2 e^{-x}$
9	$x^{1,2}\sin(3x)$	$\cos(x)x^2$	$\sin(x^2) + x^{0,25}$
10	x^{2x+1}	$sin(x^2)$	$\ln^2(x) + \sqrt{x}$
11	$\sin^2(x^3)$	sin(2x)	$2\sin(x-e^{-x})$
12	$2xe^{-x}$	$\cos(2x)$	$x^{x} - \cos(x)$
13	$\ln(2x+5)$	$\sin(e^x)$	$\frac{1}{x}tg(x)$
14	$\sin(2x+1)$	$(x+1)^2\cos(x^3)$	$\sqrt{x^3 - 1} + \sin(x^2)$
15	$\cos(x)$	$\sqrt{x^3}\sin(x)$	$x^2 + \sin(5x)$
16	$x(\sin(x)+2)$	$\ln(4x+1)^2$	$\ln \sqrt[5]{x+x^2}$
17	$x^4 + 2x^3 - x$	sin(2x)	$x^{x+1}\sin(x)$
18	$x^5 ctg(2x^3)$	$\ln(x+1)$	$e^{-2X} - \sqrt[3]{x}$
19	$\sin(4x)$	$\sqrt[5]{6x-x^2+1}$	$\sin(x^{2x}) - \cos(x)$
20	$ctg(3x-1)^2$	$2 + xe^{-x}$	$\sin^3(x^2)$
21	$x\sin(x-1)$	$(x-1)^3 + \cos(2x^3)$	$2\sqrt{x^3}\sin(x^3)$
22	$(2x+1)/x^5$	$e^{x+1} + \cos(x)$	$3\ln \sqrt[5]{\sin x + x^2}$
23	$3x^5 - ctg(x^3)$	$\ln(\sin(4x)+1)^2$	$\ln(\sqrt[3]{2x+x^3})$
24	$1,3\sqrt{4+x^2}$	3 ^{<i>x</i>+3}	$5^{x+1}\sin(2x)$
25	e^{-3x}	$\sin^3(x^4)$	$e^{-x} + \sqrt[3]{3x}$

3.3 Программирование циклического вычислительного процесса

Цель: изучить основные возможности приложения *SMathStudio* для программирования циклического вычислительного процесса.

3.3.1 Краткие теоретические сведения

Циклическим называется вычислительный процесс, содержащий многократные вычисления по одним и тем же математическим зависимостям, но для различных значений входящих в него переменных. Количество повторений может задаваться заранее или зависеть от выполнения определенного условия, как в операторе *if*.

В SMathStudio используют 3 оператора цикла: while, for(3) и for(4).

С помощью оператора *while* можно реализовать циклический процесс, состоящий из ряда операторов, который выполняется до тех пор, пока выполняется определенное условие:

while (условие)

onepamop

Если в цикле необходимо выполнить более одного оператора, то их следует заключить в операторные скобки (*line*), т.е. образовать из них составной оператор:

while (условие)

onepamop 1 .

onepamop 1

До тех пор, пока соблюдается условие, последовательно выполняется тело цикла. Если условие не соблюдается, то выполнение программы продолжается, начиная с оператора, следующего за циклом.

for(4) – это цикл со счетчиком, для которого нужно задать количество повторений:

for $k := 1; k \le n; k := k + h$

onepamop

где k – переменная-счетчик, n – количество повторений, h – шаг изменения переменной k.

for(3) – это цикл, аналогиченый for(4), но в нем счетчик цикла x меняется сам, и принадлежит некоторому заданному диапазону. Пример использования этого цикла показан в п. 2.2 (рис. 3.10).

Рисунок 3.10

Найти сумму ряда $y = \sum \frac{\ln^3 x - 4}{\sin(x)^2}$, где $0,9 \le x \le 3,9$, *x* меняется с шагом *h*=1: а) используя цикл WHILE; б) используя цикл FOR(4).

Методические рекомендации

1. Составим блок-схему (рис. 3.11).

Рисунок 3.11 – Блок-схема циклической структуры с использованием цикла WHILE

Вид документа *SMathStudio* (рис. 3.12).

Рисунок 3.12

2. Для определения числа повторений используют формулу

$$n = \left[\frac{X_k - X_n}{h}\right] + 1 ,$$

где x_k, x_n – конечное и начальное значения аргумента; h – шаг изменения аргумента; знак "[]" означает, что берется целая часть от деления.

Перед первым выполнением цикла необходимо задать начальное значение аргумента. При каждом новом выполнении цикла необходимо изменять аргумент на величину шага.

В *SMathStudio* для нахождения целой части используют стандартную функцию *round*(*< число* 1*>*; *< число* 1*>*) – округление *<*числа 1*>* до заданного *<*числа 2*>*.

Составим блок-схему (рис. 3.13).

Рисунок 3.13 – Блок-схема циклической структуры с использованием цикла FOR(4)

Вид документа *SMathStudio* (рис. 3.14).

n – количество повторений, *s* – искомая сумма

Рисунок 3.14

Результаты, полученные с использованием двух видов циклов, совпадают.

3.3.3 Вопросы для самоконтроля

- 1. Что называется алгоритмом циклической структуры?
- 2. Из каких элементов состоят циклы?
- 3. Какие виды циклов использутся в SMathStudio?
- 4. Чем отличаются циклы *for*(3) и *for*(3)?
- 5. Какому блоку соответствует цикл for()?
- 6. Какому блоку соответствует цикл while?

3.3.4 Индивидуальные задания

Найти сумму $Y = \sum \frac{F1(x)}{F2(x)}$, где $a \le x \le b$, х меняется с шагом h = c.

Варианты заданий, а также значения F1(x), F2(x), *a*, *b*, *c* приведены в таблице 3.3.

Задачу решить, используя циклы: a) WHILE; б) FOR(4).

Таблица 3.3

Вариант	F1(x)	F2(x)	a	b	С
1	$2\sqrt{x^3}\sin(x^3)$	$x^4 + 2x^3 - x$	0,3	3,12	0,15
2	$3\ln \sqrt[5]{\sin(x) + x^2}$	$(2x+1)/x^5$	2,12	7,45	0,34
3	$\ln \sqrt[3]{2x+x^3}$	$3x^5 - ctg(x^3)$	0,35	3,5	0,5
4	$5^{x+1}\sin(2x)$	$1,3\sqrt{4+x^3}$	-1	12	2
5	$e^{-x} + \sqrt[3]{3x}$	$x^{1,5}e^{-3x}$	2,4	12,5	0,45
6	$\ln(4x+1)^2$	$\ln \sqrt[5]{x+x^2}$	2,6	5,8	0,3
7	$\ln \frac{ 1+x }{ 1-x }$	$x^{x+1}\sin(x)$	3,5	12,3	1,5
8	$\frac{1}{1-x}\ln(x)$	$e^{-2X} - \sqrt[3]{x}$	2	12	0,5
9	$\sqrt[5]{6x-x^2}$	$\sin(x^{2x}) - \cos(x)$	3,5	6,5	0,2
10	$2 + xe^{-x}$	$\sin^3(x^2)$	0,1	π	π/20
11	$\ln(x^3 + x^2)$	x(tg(x)+2)	π/3	2π	π/3
12	$\sqrt{1+x^2}$	$x\sin(x)$	0,1	2π	π/3
13	$x^2 e^{-x}$	$x^5 ctg(2x^3)$	0,1	π	$\pi/6$
14	$\sin(x^2) + x^{0.25}$	$\ln^3(x+4\sqrt{x})$	π/2	3π/2	π/6
15	$\ln^2(x) + \sqrt{x}$	$ctg(3x-1)^2$	8,3	16,7	0,8
16	$\sin(3x)$	$e^{-X} + \sqrt[4]{x}$	2,1	4,2	0,2
17	$\frac{5}{(x-0,4)}$	$\ln^2(x)\sqrt{x}$	1,4	4,3	0,3
18	x ⁴ /7	$\frac{1}{tg(2x)}$	0,3	3,56	0,87
19	$ctg(\frac{1}{x}+0,4)$	$x^2 \cos(x)$	1,5	4,6	0,9
20	$\ln^{3}(x-4)$	$\sin(x^2)$	0,9	3,9	1
21	$\ln(2x)$	$\cos(x-2)$	0,4	4	0,3
22	$4x + \frac{1}{tg(x)}$	$0.5/2\sin(4x)$	0,7	12,9	3,7
23	$\sqrt[3]{x-1}$	$\sin^3(2x)$	0,1	63	7
24	$\sqrt[3]{\sin^2(x) + \cos^4(x)}$	$\ln(2x+0,5)$	4,8	13,8	0,78
25	$x^3 - \overline{\ln(x)}$	$x^4 - x^{2-x}$	1,2	13,4	0,6

3.4 Программирование табулирования функции

Цель: изучить основные возможности приложения *SMathStudio* для составления программ вычисления таблицы значений функции.

3.4.1 Краткие теоретические сведения

Табулирование функций – получение таблицы значений функции при заданных значениях аргумента X, который изменяется от χ_k до χ_n с шагом изменения аргумента h.

Для организации цикла может быть использован любой из имеющихся в *SMathStudio* циклов.

Перед первым выполнением цикла необходимо задать начальное значение аргумента, а затем **n** раз выполнять вычисления и печать значений аргумента и функции.

При каждом новом выполнении цикла необходимо изменять аргумент на величину шага.

Количество точек для табулирования определяется так же, как и в п.3.3.3 (б), по формуле

$$n = \left[\frac{x_k - x_n}{h}\right] + 1 \, .$$

3.4.2 Пример выполнения задания

Вычислить таблицу значений функции

$$y = \begin{cases} \ln^3 \sqrt{|x|}, & \text{если } x \le 0,7, \\ \cos^2 |x|, & \text{если } x > 0,7. \end{cases}$$

для значений аргумента х в интервале от 0,6 до 0,9 с шагом 0,05.

Методические рекомендации Составим блок-схему (рис. 3.15).

Рисунок 3.15 – Блок-схема циклической структуры

Вид документа SMathStudio (рис. 3.16).

Здесь на каждом шаге повторения цикла вычисленные значения *x* и *y* заносятся в массивы *xx* и *yy*. Вывод полученных результатов записываем в виде вектора из одной строки и двух столбцов (*xx yy*). Для организации цикла может быть использован любой из имеющихся в *SMathStudio* циклов.

Рисунок 3.16

3.4.3 Вопросы для самоконтроля

1. Что такое табулирование?

2. С помощью каких операторов можно организовать процесс табулирования функции?

3. Как определить число точек для табулирования?

3.4.4 Индивидуальные задания

Вычислить таблицу значений функции

$$Y = \begin{cases} F1(x), & \text{если } x \leq a, \\ F2(x), & \text{если } x > a \end{cases}$$

для значений аргумента x в интервале от xn до xk с шагом hx. Исходные данные приведены в таблице 3.4.

Таблица 3.4

Вариант	F1(x)	F2(x)	xn	xk	hx	а
1	$\pi x^2 + \sin(x)$	e^{2X-10}	-2,1	3,2	0,2	0
2	$\ln^2(x^2+1,5)$	arctg(4x)	-10,3	-2,4	0,5	-5
3	e ^{2X-5}	$tg^2(x/5)$	3,2	7,2	0,8	4,1
4	$10x^3 - tg(\frac{x}{5})$	$\sqrt{5x^2+1}$	1,3	6,5	0,5	3,2
5	e ^{-2X}	$\sin(\pi x^2)$	1,2	3,6	0,2	4,1
6	$\cos^2(\pi x)$	<i>x</i> +5	2,8	5,3	0,6	3,1
7	$\cos(\pi x)$	$\ln(x^3 + 1.8)$	1,4	4,2	0,3	2,8
8	$\sin(\pi x)$	$\ln^2(3x+1)$	10	20	0,5	15
9	$\ln(x^2 + 2,5)$	$\sqrt{x^2+8}$	2,1	5,2	0,7	3,8
10	e^{-X_4}	$2\sin(x/\pi)$	0,7	3,8	0,2	2,4
11	arctg(3x)	$\ln(x+1,5)$	9	12	0,3	10,3
12	$\sin(\frac{x}{30})$	$\sqrt{\left \ln(x^2)\right }$	2,3	8,9	0,4	5,4
13	$\cos(\frac{x}{25})$	$\sqrt{x^3+4}$	0,4	2,8	0,4	1,7
14	$e^{-x_{10}}$	$\sin(3x+\pi)$	11,6	15,8	0,3	14,2
15	$\sqrt{ x-10 }$	$\sin(2\pi x)$	0,2	1,8	0,2	1,1
16	e^{2X-15}	$8x^3 - 20$	2,2	7,3	0,3	5,4
17	5e ^{-x}	e^{X+2}	1,9	3,8	0,2	2,5
18	$\pi \sin(\pi x)$	$\sin^3(x^2)$	1,8	4,2	0,3	2,7
19	$\sqrt{1+\cos^2(2x)}$	$arctg(\frac{x}{3})$	1,2	5,3	0,4	3,8
20	$\ln^3(\sqrt{ x })$	$\cos^2(x)$	0,6	0,9	0,005	0,7
21	$\sqrt[3]{x+\sin(2x)}$	$x^2 + 5x$	3,3	6,9	0,3	5
22	$\cos(2x)$	$x\sqrt{1+tg^2(2\mathbf{x})}$	1,9	3,8	0,2	2,5
23	$x\sqrt[5]{3x}$	$5x^3 - 1,5$	2,2	7,3	0,3	5,4
24	$\ln^{1,5}(7x-e^x)$	$tg^3(2^x)$	0,2	1,8	0,2	1,1
25	$4xe^{-0,2x}$	$5^{\sin(x)}-x$	11,6	15,8	0,2	12,5

4 ОСНОВЫ ЧИСЛЕННЫХ МЕТОДОВ НА БАЗЕ СИСТЕМ КОМПЬЮТЕРНОЙ МАТЕМАТИКИ

4.1 Численные методы решения нелинейных алгебраических уравнений

Цель: научится программированию численного решения нелинейных уравнений в приложении *SMathStudio*.

4.1.1 Краткие теоретические сведения

Методы решения уравнения f(x) = 0 можно разделить на *точные* (аналитические) и *приближенные* (итерационные). Точными методами корень находится за конечное число действий и представляется некоторой алгебраической формулой. Процесс нахождения решения приближенными методами бесконечен. Решением называется бесконечная последователь- $\lim x_n = x^*$ ность $\{x_n\}$, такая, что $n \rightarrow \infty$. По определению предела, для любого сколь угодно малого наперед заданного ε найдется такое N, что при n > N $|x_n - x^*| < \varepsilon$. Члены этой последовательности $\{x_n\}$ называются последовательными приближениями к решению, или итерациями. Наперед заданное число ε называют точностью метода, а N – это количество итераций, которое необходимо выполнить, чтобы получить решение с точностью ε . Существуют различные методы нахождения приближенного решения.

Прежде чем использовать приближенный метод, надо исследовать уравнение на наличие корней и уточнить, где эти корни находятся. Отделение корней – процедура нахождения отрезков, на которых уравнение имеет только одно решение.

Пусть интервалы изоляции корней известны. Познакомимся с несколькими итерационными методами, позволяющими найти корень на известном интервале изоляции [a, b].

Метод деления отрезка пополам (дихотомии).

Найдем середину отрезка [a, b]: c = (a+b)/2. Корень остался на одной из частей: [a, c] или [c, b]. Если $F(a) \cdot F(c) < 0$, то корень попал на отрезок [a, c], тогда деление отрезка можно повторить, приняв в качестве нового правого конца точку c, т. е. b = c. В противном случае корень попал на половину [c, b], и необходимо изменить значение левого конца отрезка: a = c. Поскольку корень всегда заключен внутри отрезка, итерационный процесс можно останавливать, если длина отрезка станет меньше заданной точности: $|b - a| < \varepsilon$. Метод дихотомии применяется тогда, когда требуется высокая надежность счета, а скорость сходимости малосущественна. Для нахождения приближенного решения нелинейных уравнений методом дихотомии на известном интервале необходимо найти середину отрезка, далее, используя циклический оператор, найти приближенное решение уравнения.

Метод хорд

В этом методе кривая F(x) заменяется прямой линией – хордой, стягивающей точки (*a*, F(a)) и (*b*, F(b)). В зависимости от знака выражения F(a)F''(a) метод хорд имеет два решения.

Пусть F(a)F''(a) > 0 (рис. 4.1, а). Тогда $x_0 = b$, точка *а* будет оставаться неподвижной. Следующее приближение x_1 находим как точку пересечения хорды, соединяющей точки (*a*, F(a)) и (x_0 , $F(x_0)$) с осью *x*. Уравнение хорды:

 $y = F(a) + \frac{F(x_0) - F(a)}{x_0 - a}(x - a)$. Тогда точка пересечения хорды с осью x:

Пусть теперь F(a)F''(a) < 0 (рис. 4.2, б). Тогда $x_0 = a$, точка b неподвижна. Проведем хорду, соединяющую точки (b, F(b)) и $(x_0, F(x_0))$:

 $a - F(a)F''(a) > 0; \ \delta - F(a)F''(a) < 0$

Рисунок 4.1 – Метод хорд

Метод Ньютона (касательных)

Как и предыдущий, этот метод основан на замене исходного нелинейного уравнения линейным уравнением, которое можно легко решить. Пусть x_0 – начальное приближение. Построим касательную к функции y = F(x), проходящую через точку (x_0 , $F(x_0)$). Найдем пересечение касательной: **УТСО С** с осью x: $x_1 = x_0 - \frac{F(x_0)}{F(x_0)}$.

На следующей итерации в качестве x_0 надо взять вычисленное значение x_1 . Окончание итерационного цикла, как и в методе хорд, выполняется по невязке уравнения: $|F(x_1)| < \varepsilon$.

Рисунок 4.2 – Метод Ньютона

4.1.2 Пример выполнения задания

Найти приближенные решения нелинейных алгебраических уравнений. Отделить корни заданого уравнения. Если корней несколько, то уточнить один из них указанными методами (табл. 4.1).

(А) – методом половинного деления (дихотомии);

(Б) – методом хорд;

(В) – методом касательных (методом Ньютона).

Сравнить результаты, полученные разными методами. Сделать проверку.

Методические рекомендации

Решения уравнений приближенными методами будем находить, используя основные элементы программирования, а именно циклические операторы. Наличие и количество корней уравнения определяем графически, изолируя корни, уточням их приближенными методами.

1. Задаем функцию.

2. Рассмотим метод половинного деления:

2.1. Рассчитываем длину отрезка, на котором уточняется корень, как разницу между концами отрезка.

2.2. Используя цикл *while*, уточняется корень. Находим середину отрезка и, с помощью операторов условного перехода, из двух половин выберем ту половину, на концах которой функция имеет разные знаки.

2.3. Цикл повторяется до тех пор, пока длина исследуемого отрезка не станет больше заданного числа ε .

Листинг программы в *SMathStudio* (рис. 4.3).

Рисунок 4.3

3. Рассмотрим метод хорд.

3.1. Задаем вычисление второй производной функции.

3.2. Используя условный оператор, проверяем знак выражения f(a)f''(a). В зависимости от знака, метод хорд имеет два решения.

3.3. Используя цикл while, уточняем корень.

3.4. Окончание итерационного цикла в этом методе происходит по условию малости невязки уравнения: $|f(xn)| \le \varepsilon$.

Листинг программы в *SMathStudio* (рис. 4.4).

n – количество итераций. Заданная точность достигнута на 233 итерации.

Рисунок 4.4

4. Рассмотрим метод Ньютона:

4.1. Задаем вычисления первой и второй производных функции.

4.2. Используя условный оператор, проверяем знак выражения f(a)f''(a).

4.3. Используя цикл *while*, уточняем корень. По формуле вычисляем точку пересечения касательной с осью абцисс.

Листинг программы в SMathStudio (рис. 4.5).

Рисунок 4.5

Заданная точность достигнута на восьмой итерации.

Результаты, полученные с использованием разных методов, совпадают. Для данного нелинейного уравнения выбор того или иного приближенного метода решения зависит от скорости сходимости итерационного процесса.

4.1.3 Вопросы для самоконтроля

- 1. Какие существуют способы исследования функции?
- 2. Какие методы используют для нахождения корней уравнения?
- 3. Для чего используют поцедуру отделения корней?
- 4. В чем суть метода дихотомии?
- 5. В чем суть методов хорд и Ньютона? Что общего между этими методами?
- 6. Критерии остановки итерационного процесса.

4.1.4 Индивидуальные задания

Найти приближенные решения нелинейных алгебраических уравнений. Отделить корни заданого уравнения. Если корней несколько, то уточнить один из них указанными методами (см. табл. 4.1).

(А) – методом половинного деления (дихотомии);

(Б) – методом хорд;

(В) – методом касательных (методом Ньютона).

Сравнить результаты, полученные разными методами. Сделать проверку.

Вариант	Уравнение	Метод	Вариант	Уравнение	Метод
1	$x - \sin x = 0.25$	A B	14	$tg(0.55x + 0.1) = x^2$	A B
2	$3x - \cos x - 1 = 0$	A B	15	$e^x \sin x - 1 = 0$	A B
3	$x + \ln x = 0.25$	A B	16	$\arcsin x - 2x - 0.1 = 0$	A B
4	$x^2 + 4\sin x = 0$	A B	17	$x^2 - 2\cos x = 0$	Б В
5	$3x + \cos x + 1 = 0$	A B	18	$x^2 - 20\sin x = 0$	A B
6	$3x - e^x = 0$	A B	19	$ctgx - \frac{x}{4} = 0$	А Б
7	$x^2 = \sin x$	A B	20	$x^3 + 4x - 6 = 0$	Б В
8	$x^3 - 3x^2 - 24x - 3 = 0$	Б В	21	$e^{x}(2-x)-0.5=0$	А Б
9	$2 - x = \ln x$	A B	22	$(x-2)^2 \cdot 2^x = 1$	Б В
10	$x^3 + 4x - 6 = 0$	Б В	23	$x^4 \cdot 3^x = 2$	Б В
11	$x + \cos x = 1$	А Б	24	$2e^x = 5x + 2$	А Б
12	$x^3 = \sin x$	А Б	25	$x^3 + 2x - 4 = 0$	Б В
13	$2x^3 - 3x^2 - 12x + 8 = 0$	Б В			

Таблица 4.1

4.2 Численное интергрирование

Цель: изучить методы численного интегрирования, используя приложение *SMathStudio*.

4.1.1 Краткие теоретические сведения

Пусть требуется найти значение определенного интеграла $I = \int_{a}^{b} f(x) dx$ для некоторой заданной на отрезке [a,b] функции f(x). Для некоторых функций значение интеграла можно найти точно. Однако в общем случае значение интеграла можно найти только приближенно, используя тот или иной способ численного интегрирования.

Идея численного интегрирования вытекает из геометрического смысла определенного интеграла — значение определенного интеграла численно равно площади криволинейной трапеции, ограниченной графиком функции y = f(x), осью абсцисс и прямыми x = a, x = b.

Находя приближенно площадь криволинейной трапеции, мы получаем значение интеграла. Формально процедура численного интегрирования заключается в том, что отрезок [a, b] разбивается на *n* частичных отрезков, а затем подинтегральная функция заменяется на нем легко интегрируемой функцией, по определенной зависимости интерполирующей значения подинтегральной функции в точках разбиения.

Рассмотрим теперь простейшие из численных методов интегрирования.

Методы прямоугольников

а) Метод левых прямоугольников.

Разбивается исследуемый отрезок на *n* частичных отрезков. Длина каждого частичного отрезка рассчитывается как $h = \frac{b-a}{n}$. Рассматриваем значения функции y = f(x) в точках, являющихся левыми концами частичных отрезков.

Тогда получим сумму:

Геометрическая интерпретация метода левых прямоугольников представлена на рисунке 4.6 *a*), который показывает, что точное значение интеграла (площадь криволинейной области под графиком
$$f(x)$$
) заменяется на сумму площадей прямоугольников, построенных под кусочно-постоянной интерполирующей функцией.

б) Метод правых прямоугольников.

Аналогично может быть получена формула правых прямоугольников.

При составлении суммы рассматриваеются значения функции y=f(x) в точках, являющихся правыми концами частичных отрезков (рис. 4.6, б).

а – иллюстрация метода левых прямоугольников; б – иллюстрация метода правых прямоугольников

Рисунок 4.6

Метод трапеций

Во всех рассмотренных формулах площадь криволинейной трапеции заменялась на площадь прямоугольников.

В методе трапеций криволинейная трапеция заменяется на прямоугольную, площадь которой вычисляется по формуле $\int_{x_i}^{x_i} f(x) dx \approx \frac{f(x_{i-1}) + f(x_i)}{2} h$.

Если на каждом отрезке разбиения дугу графика подинтегральной функции y=f(x) заменить стягивающей ее хордой (линейная интерполяция), то мы получим трапецию, площадь которой представляет собой площадь фигуры, состоящей из таких трапеций (рис. 4.7).

Рисунок 4.7 – Иллюстрация метода трапеций

4.2.2 Пример выполнения задания

Найти приближенное значение интеграла заданной функции y = f(x) на отрезке [a, b] различными методами.

(А) – левых прямоугольников;

(Б) – правых прямоугольников ;

(В) – трапеций.

Найти значение интеграла встроенными функциями Smath. Сравнить результаты.

Методические рекомендации

1. Задаем функцию.

2. Задаем значения границ отрезка интегрирования и число точек разбиения отрезка.

3. Рассчитываем длину отрезка разбиения *h*.

4. По формулам находим приближенные решения.

5. Проверить полученный результат можно с помощью встроенных функций.

Замечания.

1. Вычисление интеграла в пакете Smath осуществляется по формуле Симпсона (метод парабол). Метод Симпсона дает абсолютно точное значение интеграла. Это связано с тем, что первообразная функция является полиномом четвертого порядка, для которых метод Симпсона дает точное значение.

2. Точность полученного решения зависит от количества шагов разбиения отрезка.

Листинг программы в Smath (рис. 4.8).

Рисунок 4.8

Как видно из полученного решения, для данной подинтегральной функции формула левых прямоугольников дает приближенное значение с избытком, а формула правых прямоугольников – с недостатком. Хорошую точность дает метод трапеций.

4.2.3 Вопросы для самоконтроля

1. Геометрический смысл определенного интеграла.

2. В чем отличие приближенного нахождение определенного интеграла методами прямоугольников (квадратурными формулами) от метода трапеций?

3. Какие приближенные методы дают более точное решение и почему?

4.2.4 Индивидуальные задания

Найти приближенное значение интеграла заданной функции y=f(x) (табл. 4.2) на отрезке [a, b] различными методами:

(А) – левых прямоугольников;

(Б) – правых прямоугольников;

(В) – трапеций.

Найти значение интеграла встроенными функциями Smath. Сравнить результаты.

Вариант	Инеграл	Метод	Вариант	Интеграл	Метод
1	$\int_{0.8}^{1.6} \frac{dx}{\sqrt{2x^2 + 1}}$	A, B	14	$\int_{1.4}^{2.2} \frac{dx}{\sqrt{3x^2 + 1}}$	A, B
2	$\int_{1.2}^{2.7} \frac{dx}{\sqrt{x^2 + 3.2}}$	А,Б	15	$\int_{0.8}^{1.8} \frac{dx}{\sqrt{x^2 + 4}}$	Б, В
3	$\int_{1}^{2} \frac{dx}{\sqrt{2x^2 + 1.3}}$	A, B	16	$\int_{1.6}^{2.2} \frac{dx}{\sqrt{x^2 + 2.5}}$	Б, В
4	$\int_{0.2}^{1.2} \frac{dx}{\sqrt{x^2 + 1}}$	Б,В	17	$\int_{0.6}^{1.6} \frac{dx}{\sqrt{x^2 + 0.8}}$	А,Б
5	$\int_{0.8}^{1.4} \frac{dx}{\sqrt{2x^2 + 3}}$	Б, В	18	$\int_{1.2}^{2} \frac{dx}{\sqrt{x^2 + 1.2}}$	A, B
6	$\int_{0.4}^{1.2} \frac{dx}{\sqrt{0.5x^2 + 2}}$	A,B	19	$\int_{1.4}^{2} \frac{dx}{\sqrt{2x^2 + 0.7}}$	А, Б
7	$\int_{1.4}^{2.1} \frac{dx}{\sqrt{3x^2 - 1}}$	A, B	20	$\int_{3.2}^{4} \frac{dx}{\sqrt{0.5x^2 + 1}}$	Б, В
8	$\int_{1.2}^{2.4} \frac{dx}{\sqrt{x^2 + 0.5}}$	А, Б	21	$\int_{0.8}^{1.7} \frac{dx}{\sqrt{2x^2 + 0.3}}$	A,B
9	$\int_{0.4}^{1.2} \frac{dx}{\sqrt{x^2 + 3}}$	Б, В	22	$\int_{1.2}^{2} \frac{dx}{\sqrt{0.5x^2 + 1.5}}$	A, B
10	$\int_{0.6}^{1.5} \frac{dx}{\sqrt{2x^2 + 1}}$	Б, В	23	$\int_{2.1}^{3.6} \frac{dx}{\sqrt{x^2 - 3}}$	А, Б
11	$\int_{2}^{3.5} \frac{dx}{\sqrt{x^2 - 1}}$	A,B	24	$\int_{1.3}^{2.5} \frac{dx}{\sqrt{0.2x^2 + 1}}$	Б, В
12	$\int_{0.5}^{1.3} \frac{dx}{\sqrt{x^2 + 2}}$	A, B	25	$\int_{2.3}^{3.5} \frac{dx}{\sqrt{x^2 - 4}}$	Б, В
13	$\int_{1.2}^{2.6} \frac{dx}{\sqrt{x^2 + 0.6}}$	А, Б	_	_	_

Таблица 4.2 - Варианты заданий

1. С помощью стандартных функций SMath Studio найти сумму ряда $\sum_{n=0}^{N} a_n$ при значениях N = 5, 6, 7, 8, 9, 10. Варианты задания приведены в таблице 5.1.

2. С помощью стандартных функций SMath Studio вычислить $\prod_{n=0}^{N} a_n$ при значениях N = 5, 6, 7, 8, 9, 10. Варианты задания приведены в таблице 5.1.

3. Составить программу в SMath Studio для нахождения суммы ряда $\sum_{n=0}^{N} a_n$. Значение N запрашивать в диалоге. Варианты задания приведены в таблице 5.1.

4. Составить программу в SMath Studio для вычисления произведения $\prod_{n=0}^{N} a_n$. Значение N запрашивать в диалоге. Варианты задания приведены в таблице 5.1.

Вариант	a_n	Вариант	a_n	Вариант	a_n
1	$\frac{2}{n^2 + 5n + 6}$	11	$\frac{60}{11(n^2 + 12n + 35)}$	21	$\frac{24}{7(n^2+8n+15)}$
2	$\frac{36}{11(n^2+5n+4)}$	12	$\frac{144}{5(n^2+6n+8)}$	22	$\frac{36}{n^2 + 5n + 4}$
3	$\frac{9}{n^2 + 7n + 12}$	13	$\frac{36}{n^2 + 7n + 10}$	23	$\frac{46}{n^2 + 5n + 6}$
4	$\frac{48}{5(n^2+6n+8)}$	14	$\frac{48}{n^2 + 8n + 15}$	24	$\frac{96}{n^2 + 9n + 20}$
5	$\frac{48}{5(n^2+6n+5)}$	15	$\frac{20}{n^2 + 4n + 3}$	25	$\frac{60}{n^2 + 6n + 8}$
6	$\frac{72}{5(n^2+6n+8)}$	16	$\frac{32}{n^2 + 5n + 6}$	26	$\frac{72}{n^2 + 7n + 10}$
7	$\frac{24}{n^2 + 8n + 15}$	17	$\frac{144}{n^2 + 18n + 80}$	27	$\frac{24}{n^2 + 4n + 3}$
8	$\frac{32}{n^2+9n+20}$	18	$\frac{24}{n^2 + 4n + 3}$	28	$\frac{96}{n^2+8n+15}$
9	$\frac{216}{7(n^2 + 8n + 15)}$	19	$\frac{180}{n^2 + 20n + 99}$	29	$\frac{72}{n^2 + 6n + 8}$
10	$\frac{84}{13(n^2 + 14n + 48)}$	20	$\frac{112}{15(n^2 + 16n + 63)}$	30	$\frac{12}{5(n^2+6n+8)}$

Таблица 5.1

Приложние А Работа с программой SMath Studio

Программа *SMath Studio* предназначена для численного и аналитического решения математических задач (решения уравнений и систем, нахождения экстремумов функций, вычисления производных и интервалов, решения дифференциальных уравнений).

Позволяет работать с формулами, текстами, графиками, а также выполнять программирование вычислительных процессов. Позволяет получить ответ, как в численном, так и в аналитическом виде.

Программа состоит из 3 областей: Основное меню, Инструментальная панель, Рабочее поле (рис. А.1).

S	SM	ath St	udio - [Ли	1ст3*])	<
	1	⊅айл	Правка	а Вид	Вставка	Вычи	исление	Сервис	Листы	Г	Іомощь	- 8	×
	P		01%	hŵ	2 7	10 -	Α 🟐		$f(\mathbf{x})$	r e	3 S 🛛 🗉		
											Арнфметика		Ξ
I –										-	Матрицы		Ŧ
I										=	Булева		Ŧ
										-	Функции		Ŧ
											График		Ŧ
											Программирован	11H2	Ŧ
										-	Символы (α-ω)		Ŧ
1							1				Символы (A- Ω)		Ŧ
È													
Вы	чис	ление	e: 0,007 ce	к.									.::

Рисунок А.1

Основное меню – состоит из основных команд для работы с документом в целом, такие как: вставить, вырезать, открыть, сохранить... а также содержит математический справочник и набор примеров.

Инструментальная панель (ПИ) разделена по категориям:

а) *панель «Арифметика»* содержит цифры, математические символы, и основные операции:

– оператор присвоения « := » служит для присвоения переменным каких-либо значений, численных либо символьных;

 – оператор численного вычисления « = » служит для получения численного результата, он применим как к выражениям, так и к переменным;

– оператор символьного вычисления « → » позволяет вычислять символьный результат;

б) *панель «Матрицы»* содержит команды для работы с матрицами. Позволяет находить определитель матрицы, транспонировать ее, находить минор, а также содержит команду векторного умножения, потому что векторы программа рассматривает как матрицу с одним столбцом (или строкой);

в) *панель «Булева»* содержит набор для команд для булевой алгебры, а также позволяет задавать логические операции в командах ветвления и циклах;

г) *панель «Функции»* содержит набор часто используемых функций, таких как: sin, cos, log и т. п., а также 2 кнопки «2d» и «3d», эти кнопки позволяют вставить соответственно 2-мерные и 3-мерные графики;

д) *панель «График»* позволяет вращать, перемещать, увеличивать/уменьшать графики функций;

е) панель «Программирование» содержит 4 функции программирования, таких как: ветвление «IF», цикл с предусловием «WHILE», цикл со счетчиком «FOR», вспомогательная функция «LINE»

ж) последние две панели называются одинаково «Символы» и содержат греческие символы.

Рабочее поле занимает самую большую часть программы, здесь выполняются все расчеты. Основным элементом поля является курсор или Фокус ввода (место, где будет набираться выражение), он выглядит как красный крестик.

Работа с формулами

Для ввода формулы необходимо кликнуть указателем мыши по тому месту, где будет находится формула. Появится крестообразный курсор, указывающий место первого символа выражения. Вводимое выражение помещается в прямоугольную область, которая становится невидимой после ввода формулы.

SmathStudio обрабатывает формулы слева направо и сверху вниз

Для ввода формул можно использовать: панель «Арифметика» и «Функции»; кнопку *можно* использовать: панель «Арифметика» и «Функции»; кнопку *можно* на ПИ; меню Вставка – функция; автоматичекую помощь ввода (при наборе первого символа функции рядом с формулой появляется небольшой список со всеми функциями, которые начинаются с этого символа. Для ввода выполняется двойной щелчок мыши по выбранной строке).

Пример. Вычислить значение функции $f(x) = 2 + \sin(x)$ в точках x = 1, x = 5.

Последовательность действий:

1. Задаем функцию. В общем виде:

<имя функции>(список переменных):= < выражение >

Знак «:=» выбирают на ПИ «Арифметика» или комбинацией клавиш «CTRL + :». Аргументы функции всегда берутся в скобки.

2. Вычисляем значения в точках (рис. А.2).

Рисунок А.2

Для задания точности ответа (количество знаков после запятой) надо выполнить команду:

Сервис → *Опции* → *вкладка* «*Вычисление*» → «*Точность ответа*». Дробная часть в числах отделяется запятой.

Некоторые используемые сочетания клавиш даны в таблице А.1.

1 00000000000 1111	
Сочетание клавиш	Действие
Shift+ ж	Вставка оператора присвоения «:=» с ПИ «Арифме- тика»
ctrl+ ю	Вставка оператора символьного вычисления «→» с ПИ «Арифметика»
=	Вставка оператора численного вычисления «=» с ПИ «Арифметика»
Enter	Закончить ввод выражения и переместиться на строч- ку ниже
Ctrl+ =	Вставка «жирного» знака равенства для символьной записи уравнений (знак тождественного равенства)
@	Вставка двумерного графика

Таблица А.1

Работа с графиками

Для построения графика в Smath Studio используют кнопки пункт меню *Вставка – График – Двумерный / Трехмерный*.

Двумерные графики строятся по переменной *x*, а трехмерные – по переменным *x*, *y*.

В появившемся окне под шаблоном для графика указываем функцию, для которой строится график. Если необходимо построить несколько графиков, то имена соответствующих функций объединяют фигурной скобкой, выбрав ее на ПИ «Функции». Предварительно нужно определить эти функции. Также возможна запись формулы непосредственно на графике. Например (рис. А.3).

Рисунок А.З

Для редактирования графиков используют ПИ «График» (рис. А.4).

Рисунок А.4

Показанные на рисунке символы, означают в указанной последовательности»: вращение; масштабирование; перемещение; отрисовка графика точками; отрисовка графика линиями, обновление графика.

Единицы измерения и автоматическая помощь ввода

Если на свободном поле набрать первую букву нужной команды, напимер, «s», то ниже откроется список со всеми функциям / единицами измерения на букву «s» (sin, sign и т. п.) (рис. А.5).

Рисунок А.5

Теперь, если два раза кликнуть мышкой на выбранный пункт в списке, то выбранная функция/единица измерения вставиться в документ.

В Smath Studio можно выполнять расчеты с указанием единиц измерения. Полный перечень находится в меню Вставка – Единица измерения (рис. А.6).

Вставить единицу измерен	ия	X
Размерность: Все Вещество Время Вязкость, динамическая Вязкость, кинематическая Давление Длина Доза Емкость Заряд Индуктивность Информация	• III	Единица измерения: Водяная' лошадиная сила ('Г Акр ('акр) Ампер ('А) Ангстрем ('ангстрем) Атмосфера ('атм) Атомная единица массы - да Байт ('Б) Байт ('байт) Бар ('бар) Быстрый поиск:
		Вставить Отмена

Рисунок А.б

Работа с матрицами

Матрица – это прямоугольный набор элементов, который может содержать числа (целые, вещественные, комплексные), строковые значения, другие матрицы. Создать матрицу можно несколькими способами:

a) при помощи команды *mat()* или кнопки ^(#) с ПИ "Матрицы". В появившемся диалоговом окне задаются количества строк и столбцов, результате проделанных действий получится пустая матрица:

	۱.	۰Ì	
_		ıĻ	
_	I	4	

б) командой matrix(arg1, arg2), где arg1 – число строк, arg2 – число столбцов. Так, matrix(10, 20) создаст матрицу, заполненную нулями, состоящую из 10 строк и 20 столбцов (рис. А.7).

	(O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)
	ο	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
macrix(10,20)=	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Ο	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	lo	0	Ο	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	o)
																				Ľ

Рисунок А.7

Операторы работы с матрицами находятся на ПИ «Матрицы» (рис. А.8).

Матрицы								
(::)	 	∎⊤	A,	M,	$\overrightarrow{\times}$			

Рисунок А.8

Показанные на рисунке символы, означают в указанной последовательности»: вставка матрицы; нахождение определителя матрицы; транспонирование матрицы; алгебраическое дополнение; минор; векторное умножение.

В Smath Studio можно использовать матрицы как массив для хранения элементов. Некоторые команды, которые рассматривают матрицы как массив элементов, приведены в таблице А.2.

Команда	Описание
max	Находит максимальное значение в матрице, т. е. эта команда применительно к матрице (11 12 13) 21 22 23 31 32 33) вернет число 33.
min	Находит минимальное значение в матрице, т. е. эта команда применительно к матрице (11 12 13) 21 22 23 (31 32 33) вернет число 11.
cols	Возвращает количество столбцов в матрице. Применительно к матрице (11 21 31) вернет 1. а к матрице (11 12 13 21 22 23 31 32 33) вернет 3
rows	Возвращает количество строк в матрице, применительно к матрице. К примеру, для матрицы (11 12 13) (21 22 23) (31 32 33) вернет 3.

Таблица А.2

Некоторые команды, которые позволяют упорядочить/отсортировать элементы матрицы/массива по порядку (по возрастанию), приведены в таблице А.3.

Таблица А.З

Команда	Описание				
sort	Команда применима только к векторам, она сортирует эле менты вектора в порядке возрастания. Например: sort $\begin{pmatrix} 3 \\ +2 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 3 \end{pmatrix}$				
csort	Команда позволяет отсортировать всю матрицу по элементам выбранного столбца. Т. е. матрица сортируется по строчкам согласно возрастанию элементов указанного столбца. Например, сортируем матрицу по 1-му столбцу: $csort \begin{pmatrix} 3 & 0 - 5 \\ 1 & 3 & 0 \\ 0 & 2 & 1 \end{pmatrix}, 1 = \begin{bmatrix} 0 & 2 & 1 \\ 1 & 3 & 0 \\ 3 & 0 & -5 \end{bmatrix}$				
rsort	Команда позволяет отсортировать всю матрицу по элементам выбранной строки. Т. е. матрица сортируется по столбцам со- гласно возрастанию элементов указанной строки. Например, сортируем матрицу по 1-й строке: $rsort \begin{bmatrix} 3 & 0 & -5 \\ 1 & 3 & 0 \\ 0 & 2 & 1 \end{bmatrix}, 1 = \begin{bmatrix} -5 & 0 & 3 \\ 0 & 3 & 1 \\ 1 & 2 & 0 \end{bmatrix}$				

Некоторые команды, которые позволяют объединять матрицы, приведены в таблице А.4.

Таблица А.4

Команда	Описание	
augment	 Команда позволяет объединять матрицы по столбцам. augment (3 - 2 + 1 + 3 + 0 + 2 + 1 + 3 + 0 + 2 + 1 + 3 + 0 + 1 + 0 + 2 + 1 + 1 + 0 + 2 + 1 + 1 + 0 + 2 + 1 + 1 + 0 + 2 + 1 + 1 + 0 + 2 + 1 + 0 + 1 + 0 + 2 + 1 + 0 + 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0	

	Команда позволяет объединять матрицы по строкам		
stack	 вtack (3 -2 1), (3 0 -5) (3 -2 1) (3 0 -5) (1 3 0) (0 2 1) (3 -2 1) Важно: можно объединить матрицы только с одинаковым числом столбцов! Команда позволяет объединить за раз несколько матриц, все они отделяются между собой запятыми. Возможно использовать такую конструкцию: A:=stack(A, B), где матрица A должна быть определена перед первым использованием этой конструкции, она позволяет прибавлять к матрице A ее же значение плюс матрицу B. Этот прием используется в основном в циклических конструкциях. 		

Некоторые команды, которые служат для разделения матриц, приведены в таблице А.5.

Гаолица А.Э	Таблица	A.5
-------------	---------	-----

Команда	Описание
col	Эта команда позволяет выделить из матрицы любой указанный столбец, например, возьмем 3 столбец из матрицы:
row	Эта команда позволяет выделить из матрицы любую указан- ную строчку, например: $\begin{bmatrix} 3 & 0 - 5 - 2 \\ 1 & 3 & 0 & 0 \\ 0 & 2 & 1 & 5 \\ 3 & 4 & 3 & 68 \end{bmatrix} = (1 \ 3 \ 0 \ 0)$
submatrix	Эта команда позволяет выделить из матрицы указанную пря- моугольную область, например: submatrix $\begin{pmatrix} 3 & 0 & -5 & -2 \\ 1 & 3 & 0 & 0 \\ 0 & 2 & 1 & 5 \\ 3 & 4 & 3 & 68 \end{pmatrix}$, 1, 4, 2, 3 = $\begin{pmatrix} 0 & -5 \\ 3 & 0 \\ 2 & 1 \\ 4 & 3 \end{pmatrix}$ Здесь из основной матрицы выделена подматрица, которая включает в себя строки с 1 по 4 и столбцы со 2 по 3 из основ- ной матрицы.

Подробнее о работе в *SMath Studio* смотрите в литературе [2, 3].

Приложение Б Понятие алгоритма. Блок-схема

Алгоритм – конечная последовательность предписаний, однозначно определяющая процесс преобразования исходных данных в результат решения задачи.

В процессе разработки алгоритма могут использоваться различные способы его описания. Наиболее распространенные:

- словесная запись;

- *графические* схемы алгоритмов (блок-схемы);

- псевдокод (формальные алгоритмические языки);

- структурограммы.

Блок-схема – это графическое представление алгоритма, дополненное элементами словесной записи. На блок-схеме каждый пункт алгоритма изображается соответствующей геометрической фигурой. В таблице Б.1 приведены графические элементы, на которых компонуются блок-схемы, их названия и символы.

Название блока	Блок	Отображаемая функция
1	2	3
Начало-конец		Начало, конец, вход-выход в программах
Блок ввода-вывода		Ввод данных либо вывод результатов на экран
Блок вывода		Вывод данных на печать
Процесс		Вычисление или последовательность вычислений
Предопределенный процесс		Выполнение подпрограммы
Продолжение таблицы Б.1

1	2	3
Альтернатива		Проверка условий
Модификация		Начало цикла
Соединитель		Разрыв линий потока информации в пределах одной страницы

В таблице Б.2 приведены основные базовые элементарные структуры для составления блок-схем.

Название типа структуры	Изображение	
Основные		
Последовательность		
Разветвление (выбор)		
Цикл с предусловием		

Таблица Б.2 – Базовые структуры блок-схем

Продолжение таблицы Б.2

Название типа структуры	Изображение	
Дополнительные		
Выбор варианта		
Сокращенная запись разветвления		
Цикл с параметрами		
Цикл с постусловием		

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

1. Симонович, С. В. Информатика : Базовый курс / С. В. Симонович и др. – 2-е изд., перераб. и доп. – С Пб : Питер, 2006. – 640 с.

- 2. **Ивашов, А.** Форум проекта SMath / А. Ивашов. Режим доступа: http://ru.smath.info/forum/
- 3. Богданов, М. Неофициальный справочник проекта Smath Studio / М. Богданов. Режим доступа: https://sites.google.com/ site/mikkhalichlab/home

4. **Пташинский, В.** С. Excel 2010 с нуля. / В. С. Пташинский. – Эскино-Пресс, 2010. – 288 с.

5. Свиридова, М. Ю. Электронные таблицы Excel / М. Ю. Свиридова. – Академия, 2009. – 144 с.

6. Волков, В. Понятный самоучитель Excel 2010 / В. Волков. – С Пб : Питер, 2010. – 256 с.

7. Шакирин, А.И. Решение прикладных задач обработки данных средствами электронных таблиц : методические указания / А.И. Шакинин, Н.М. Жаболевич. – Минск. – 2003. – 51 с.

Навчальне видання

ГЕТЬМАН Ірина Анатоліївна ВАСИЛЬЄВА Людмила Володимирівна МАЛИГІНА Світлана Валеріївна КЛЬОВАНИК Олена Анатоліївна

ІНФОРМАТИКА

ПРАКТИКУМ

Навчальний посібник

для студентів інженерного напряму прискореної форми навчання

(Російською мовою)

Редактор І. І. Дьякова

Комп'ютерна верстка О. П. Ордіна

115/2012. Формат 60 х 84/16. Ум. друк. арк. 8,60. Обл.-вид. арк. 7,56. Тираж 20 пр. Зам. № 15

Вилавець і виготівник Донбаська державна машинобудівна академія 84313, м. Краматорськ, вул. Шкадінова, 72. Свідоцтво суб'єкта видавничої справи ДК № 1633 від 24.12.2003