МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ДОНБАССКАЯ ГОСУДАРСТВЕННАЯ МАШИНОСТРОИТЕЛЬНАЯ АКАДЕМИЯ

Составитель Климченков В.Т.

Методические указания к самостоятельной работе по дисциплине «Электрические машины» (для студентов электротехнических специальностей всех форм обучения)

В печать 200 экз. Проректор по учебной работе

А.Н.Фесенко

Утверждено на заседании кафедры электротехники и электрооборудования. Протокол №16 от 27.06.2003

УДК 621-313

Методические указания к самостоятельной работе по дисциплине «Электрические машины» (для студентов электротехнических специальностей всех форм обучения) / Сост.: В. Т. Климченков – Краматорск: ДГМА. 2004. – 24 с.

Приведены варианты контрольных задач и рекомендации по их решению применительно к разделам: однофазные и трехфазные трансформаторы, трехфазные асинхронные электродвигатели, генераторы и электродвигатели постоянного тока, трехфазные синхронные генераторы и электродвигатели.

Могут быть использованы для проведения практических занятий в учебных группах, выполнения контрольных работ, при подготовке к экзамену и самостоятельной работе над изучением разделов курса.

Составитель Ответственный за выпуск В. Т. Климченков, доцент А.М.Наливайко, доцент

1 Общие указания

Предлагаемые в методических указаниях контрольные задачи охватывают весь курс дисциплины «Электрические машины» и соответствуют программе курса для электротехнических специальностей всех форм обучения. Решение приведенных задач служит закреплению усвоенных теоретических знаний и проверке глубины усвоения студентами соответствующих разделов курса. Каждому студенту в течении семестра необходимо решить индивидуальные контрольные задачи по следующим разделам:

- 1) однофазные силовые трансформаторы;
- 2) трехфазные силовые трансформаторы;
- 3) трехфазные асинхронные электродвигатели с фазным ротором;
- 4) генераторы постоянного тока параллельного возбуждения;
- 5) электродвигатели постоянного тока параллельного возбуждения;
- 6) трехфазные синхронные генераторы с неявнополюсным ротором;
- 7) трехфазные синхронные электродвигатели с неявнополюсным ротором.

Приступать к решению контрольной задачи по очередному разделу следует после изучения необходимого материала по прочитанным лекциям или по рекомендуемой литературе. Для каждой задачи следует указать номер заданного или выбранного варианта из соответствующей таблицы и исходные данные для этого варианта. Перед решением задачи необходимо представить принципиальную электрическую схему объекта расчета с коммутационной аппаратурой и электроизмерительными приборами, выполненную в соответствии с ГОСТом. При решении задачи в начале необходимо представить используемые формулы в общем виде, а затем уже вводить в них цифровые значения величин, приводя размерности всех найденных при расчете параметров величин. Расчетные данные, необходимые для построения графиков, следует представлять в каждом разделе в виде таблиц.

2 Однофазные силовые трансформаторы

Перед решением контрольной задачи по этому разделу необходимо ознакомиться по литературе /1...7/ и конспекту лекций с назначением и принципом действия однофазного двухобмоточного силового трансформатора.

Варианты индивидуальных контрольных задач по данному разделу приведены в таблице 1, в которой для трансформаторов типа ОС заданы исходные данные, необходимые для расчета.

Перед решением задачи необходимо изобразить принципиальную электрическую схему подключения первичной обмотки к питающей сети, а электрической нагрузки — ко вторичной обмотке, которая содержала бы необходимую коммутационную аппаратуру и электроизмерительные приборы.

Определяем номинальные токи в первичной $I_{1\ \text{ном}}$ и вторичной $I_{2\ \text{ном}}$ обмотках трансформатора, исходя из выражения для полной мощности. Размерности используемых величин должны соответствовать СИ, полная мощность и напряжения заданы.

Равная надежность изоляции первичной и вторичной обмоток обеспечивается при одинаковом напряжении, приходящемся на один виток обмотки: $U_{\text{вит}} = U_{1 \text{ ном}} \, / \, W_1 = U_{2 \text{ ном}} \, / \, W_2$.

Это позволяет определить число витков в первичной W_1 и вторичной W_2 обмотках, а также коэффициенты трансформации напряжений к.

Если принять известной допустимую среднюю плотность тока в проводах обмоток γ , то можно определить сечение медных изолированных проводов первичной F_1 и вторичной F_2 обмоток. При полной мощности до 40 кВА можно принять γ от 1,4 до 2 A/mm^2 .При мощности от 40 до 250 кВА – от 2,1 до 2,6 A/mm^2

Величину максимального магнитного потока Φ_m в стальном сердечнике трансформатора определяем из выражения для действующего значения ЭДС первичной обмотки E_1 , если принять:

$$E_1 \approx U_{1 \text{ ном.}}$$
 $f = 50 \Gamma \mu$, $B_m = 1,6 \text{ Тл.}$

Поперечное сечение стального сердечника найдем из выражения

$$F_{cm} = \Phi_m / B_{m.}$$

По результатам проведения опыта холостого хода находим: ток холостого хода – I_0 , $\cos \phi_0$ – из выражения для активной мощности P_0 в опыте холостого хода, параметры намагничивающего конструктора –

$$z_0 = U_{1 \text{ hom}} / I_0$$
, $R_0 = P_0 / I_0$, X_0 .

Остальные параметры схемы замещения находим, используя данные опыта короткого замыкания: $U_{1\kappa}$, соѕ ϕ_{κ} — из выражения для активной мощности в опыте короткого замыкания P_k , $I_{1\kappa} = I_{1\text{ hom}}$, $z_k = U_{1\kappa} / I_{1\text{hom}}$, $R_k = P_k / I_k^2$, X_k . Зная коэффициент трансформации, находим: $R_k = R_1 + R_2!$, $R_1 \approx R_2! \approx R_k/2$, $R_2 = R_2! / \kappa^2$, $X_{\kappa} = X + X_2! / K_2! / K_2! = R_2! / \kappa^2$.

Индуктивность первичной L_1 и вторичной L_2 обмоток трансформатора находим из выражения для реактивного индуктивного сопротивления.

Если бы проектировали трансформатор на нестандартную частоту, то могли бы значительно изменить его размеры. Чтобы проанализировать влияние частоты питающего напряжения на величину площади поперечного сечения стали сердечника $F_{c\tau}$, строим кривую $F_{c\tau}$ = $\phi(f)$, принимая f=50,100,150 Γ ц. Используя выражение для $F_{c\tau}$ = $U_{\text{вит}}/4,44$ f B, приняв B = 1,6Tл.

В зависимости от величины электрической нагрузки, подключаемой ко вторичной обмотке, изменяется КПД трансформатора η . Для проведения анализа этой зависимости стоим кривую $\eta = f(\beta)$. Коэффициент загрузки $\beta = I_2/I_2$ ном задаем в пределах от0 до 1,2. Построение кривой проводим, используя выражение

$$\eta = \frac{\beta \cdot S_{HOM} \cos \varphi_2}{\beta \cdot S_{HOM} \cos \varphi_2 + P_0 + \beta^2 P_k}$$

Таблица 1- Исходные данные по однофазному трансформатору

1		ные данні				511 3 15p		
Вари-	S_{hom} ,	$U_{1_{HOM}}$	$U_{2_{HOM}}$	$U_{1 \kappa}$,	U _{вит} , В/ви-	P_0 ,	P_{κ} ,	I_0 ,
ант	кВА	кВ	В	%		Вт	кВт	%
1	10	0.66	220	7	TOK 2.5	75	0.29	17
2	10	0,66	230		3,5		0,28	4,7
	25	6,6	400	4,5	4,5	115	0,55	2,8
3	16	6,3	525	5,5	3	135	0,34	3,5
4	40	11	400	5	3,8	150	0,35	3,8
5	63	10	380	6,5	4	165	0,5	4,8
6	100	10,5	230	4,5	5,5	300	1,1	2,9
7	160	6	690	5,2	8	400	1,8	1,8
8	250	11	525	6,1	7,2	500	3,1	1,7
9	40	10,5	690	7	4,3	140	0,61	4
10	16	0,4	36	6,5	4	125	0,4	4,8
11	25	11	230	5,4	3,5	120	0,5	4,8
12	160	6,6	525	6,2	7,1	405	2,2	1,8
13	100	6	690	5,7	6,5	320	1,6	3,5
14	63	11	690	5	4,9	210	0,9	
15	25	10	690	4,8	3,5	130	0,52	2,4
16	40	6,3	525	5,3	4,1	155	0,45	2,6
17	160	11	400	6	7,1	410	2,1	1,7
18	100	6,6	525	5,4	6,5	280	1,4	3,4
19	63	10,5	230	4,6	3,7	220	0,93	3,9
20	10	0,4	42	5,5	3,6	95	0,31	5
21	25	13,2	400	5,7	4,7	100	0,6	3,3

22	250	10,5	230	6,4	6,2	330	2,8	2,3
23	250	13	690	4,5	5,8	425	3,8	1,9
24	160	10	230	6,1	8	350	1,9	2
25	16	0,66	42	5	5,5	110	0,35	5,8
26	100	10,5	400	7	3	310	1,5	3,2
27	63	6,5	525	6,6	4,2	200	0,8	2,7
28	40	6,6	230	4,5	4,5	145	0,42	2,3
29	25	11	325	4,7	4,8	125	0,69	3,5
30	10	0,38	36	6	4,5	90	0,3	6,5

Здесь можно принять $\cos \varphi_2 = 0.8$, а величины мощностей следует привести в одну систему единиц. Одной из характерных точек этой кривой является максимальный КПД $\eta_{\rm m}$., который определим при коэффициенте $\beta_m = \sqrt{P_0/P_k}$.

Влияние величины электрической нагрузки трансформатора I_2 на величину напряжения на зажимах вторичной обмотки U_2 проанализируем по внешней характеристике трансформатора U_2 = $f(I_2)$, где по оси абсцисс возьмем коэффициент загрузки β . При нагрузке от 0 до 1,2 это будет практически прямая линия, которую проводим через две точки с координатами: $1 - \beta = 0$, $U_2 = U_2$ _{ном}; $2 - \beta = 1$, U_2 _{ном}= ΔU . Первую точку наносим на график, а ординату второй нужно вычислить. Для определения ординаты второй точки используем

выражение:
$$\Delta U_0 \% = (P_k / S_{\text{ном}}) \cdot 100\%$$
, $\Delta U_P \% = \sqrt{(U_{1H} \%)^2 - (\Delta U_a \%)^2}$,

$$\Delta U\% = \beta(\Delta U_a\% \cos\phi_2 + \Delta U_p\% \cdot \sin\phi_2), \quad \cos\phi_2 = 0.8, \quad \sin\phi_2 = 0.6, \\ \Delta U = 1(\Delta U_a\% \cdot 0.8 + \Delta U_p\% \cdot 0.6), \quad \Delta U = (\Delta U\%/100\%)U_{2\text{\tiny HOM}}, \quad U_2 = U_{2\text{\tiny HOM}} - \Delta U.$$

Ток в первичной обмотке, возникающий при аварийном коротком замыкании вторичной обмотки в условиях эксплуатации $I_{1\kappa}$, найдем из сравнения номинального напряжения $U_{1\text{ном}}$ и напряжения в опыте короткого замыкания:

$$I_{1\kappa 3} = (U_{1\text{HOM}}/U_{1\kappa}) I_{1\text{HOM}} = (100/U_{1\kappa}\%) I_{1\text{HOM}}.$$

Необходимы сделать выводы исходя из графических зависимостей, построенных при решении задачи данного раздела.

3 Трехфазные силовые трансформаторы

Перед решением контрольной задачи по заданному разделу необходимо по литературе [1...7] и конспекту лекций ознакомиться с назначением, устройством и принципом действия трехфазного двух обмоточного силового трансформатора.

Варианты индивидуальных контрольных задач по этому разделу приведены в таблице 2, в которой для трансформаторов типа ТМ заданы исходные данные, необходимые для расчета. Для нечетных номеров вариантов следует принять схемы соединения обмоток и группу трансформатора — У/Y - 0, для четных номеров вариантов — Д/Y - 11.

До решения задачи необходимо изобразить принципиальную электрическую схему подключения первичной обмотки к питающей сети, а трехфазной электрической нагрузки, соединенной по схеме У, ко вторичной обмотке, которая содержала бы необходимую коммутационную аппаратуру и электроизмерительные приборы.

Определяем линейный ток первичной $I_{1\,_{\rm Л}\,_{\rm HOM}}$ и вторичной $I_{1\,_{\rm Л}\,_{\rm HOM}}$ обмоток, используя выражения для полной мощности трехфазной электрической нагрузок. Фазные токи первичной $I_{1 \phi_{\rm HOM}}$ и вторичной $I_{2 \phi_{\rm HOM}}$ обмоток для симметричной нагрузки находим через линейные с учетом схемы соединения фаз.

Число витков в фазе первичной W_1 и вторичной обмоток находим, приняв $U_{\text{вит}}=5~$ В/вит для трансформаторов мощностью до 100~ кВА, 10~ В/вит — мощностью от 100~ до 500~ кВА, 15~ В/вит — мощностью — свыше 500~ кВА. Фазные напряжения $U_{1~\phi~\text{ном}}$ и $U_{2~\phi~\text{ном}}$ определяем через линейные напряжения с учеттом схемы соединения фаз первичной и вторичной обмоток.

Площадь поперечного сечения медного изолированного провода первичной F_1 и вторичной F_2 обмоток находим, приняв допустимую плотность тока γ =1,8-2,2 A/mm^2 при мощности трансформатора до 40 кBA; 2,3 – 3,5 A/mm^2 - при мощности от 40 до 6300 кBA. При этом используем выражение γ = I_{ϕ}/F .

Таблица 2 – Исходные данные по трехфазному трансформатору

Вари-	S _{HOM} ,	$U_{1\pi \text{Hom}}$,	$U_{2\pi \text{Hom}}$,	U_{1K}	P_0 ,	Р _к ,	I_0 ,
ант	кВА	кВ	кВ	%	кВт	кВт	%
1	6300	110	11	10	11,5	55	3,7
2	4000	35	10,5	7,5	6,7	33	1,8
3	2500	35	6,3	6,5	5	24	2,1
4	1600	35	0,4	6	3,5	15	2,5
5	1000	35	0,4	5	3	12	2,6
6	630	35	0,4	5,5	2	8	2
7	400	35	0,4	6,2	1,4	6	2,3
8	1600	10	0,4	5,2	5	17	1,6
9	400	11	0,4	4,5	0,4	1,5	2,5
10	250	6,3	0,4	4,3	1	4	2,6
11	160	6	0,4	4,2	0,5	2,5	2,7
12	100	10	0,4	4,1	0,4	1,8	2,9
13	63	6,3	0,4	4,5	0,3	1,3	3,1
14	40	11	0,4	4,7	0,2	0,9	3,2
15	25	6	0,4	4,4	0,12	0,6	3,3
16	100	10	0,23	5,5	2,4	12,2	3,5
17	160	6,3	0,4	5,7	3	15	3,7
18	25	10	0,4	4,5	0,12	0,6	3,2
19	100	35	0,4	6	0,5	2	3,8
20	40	6	0,4	4,6	0,2	0,9	3
21	1000	6	0,23	6,2	2	10	4,1
22	1600	10	0,4	5,9	3,2	18	3,9
23	63	10,5	0,4	4,7	0,3	1,2	2,8
24	100	6	0,4	4,4	0,4	1,9	2,6
25	160	11	0,4	4,6	0,5	2,5	2,4
26	1000	10	0,4	5,1	4	14	3
27	160	35	10,5	6,8	0,7	2,8	2,5
28	2500	35	10,5	5,2	6	22	2,2
29	6300	35	10,5	7,7	9	46	1,3
30	250	35	0,4	6,3	1	4	2,4

Максимальную величину магнитного потока в стальном сердечнике трансформатора находим из выражения для ЭДС фазы первичной обмотки:

 $E_{1~\varphi~\text{hom}}\!\!=\!\!4,\!44\!\cdot\! f\!\cdot\! W_{1}\!\cdot\! \Phi_{m}, \qquad E_{1~\varphi~\text{hom}}\!\!\approx U_{1~\varphi~\text{hom}},\,f\!\!=\!\!50\Gamma\text{ц}.$

Площадь поперечного сечения стального сердечника определяем:

 $F_{cm} = \Phi_m/B_m$, $B_m = 1.8$ Тл.

Используя данные опыта холостого хода трансформатора, находим: $I_{0\varphi}$, $\cos\phi_0 = P_0/3 \ U_{1\varphi}I_{0\varphi}$, $U_{1\varphi}=U_{1\varphi_{HOM}}$, $z_0 = U_{1\varphi_{HOM}}/I_{0\varphi}$, $R_0 = P_0/3{I_{0\varphi}}^2$, X_0 .

Используя данные короткого замыкания, находим:

Аварийный ток первичной обмотки при коротком замыкании на зажимах вторичной в условиях эксплуатации $I_{1\phi \kappa o =} U_{1\phi hom}/z_{\kappa}$.

Строим зависимости КПД трансформатора η от коэффициента загрузки, т.е. η = $f(\beta)$. Используем ту же формулу, что для однофазного трансформатора. Характерные точки этой кривой: β =0, β = β_m , β =1 и несколько промежуточных нагрузок. $\cos \phi_2$ принять равным 0,8.

Для построения внешней характеристики $U_2 = f(\beta)$ используем те же пояснения, что использованы у однофазного трансформатора. Кривую строим для фазного напряжения: $U_{2\phi\text{ном}}$, $U_{2\phi} = U_{2\phi\text{ном}}$ - ΔU .

Следует определить угол ϕ , на который вторичное линейное напряжение сдвинуто относительно первичного линейного напряжения, что важно при подборе трансформаторов для параллельной работы на общую электрическую нагрузку: $\phi = N_{2rp} 30^0$, где N_{2rp} – номер группы трансформатора (от 0 до 11).

Необходимо проанализировать графические зависимости, построенные при решении задачи этого раздела и сделать соответствующие выводы по характеру их изменения.

4 Трехфазные асинхронные электродвигатели фазным ротором

До решения задачи данного раздела следует по литературе [1...7] и конспекту лекций ознакомиться с назначением, устройством и принципом действия трехфазного асинхронного электродвигателя с фазным ротором. Выяснить, что дает наличие фазного, а не короткозамкнутого ротора.

Варианты индивидуальных контрольных задач по данному разделу приведены в таблице 3, в которой для электродвигателей серии АКН 2 заданы необходимые исходные данные. Для всех вариантов принять: $U_{1лном}$ =6000 B,

 f_1 =50 Гц, соединение фаз обмотки статора и ротора – У.

До решения задачи необходимо изобразить электрическую схему подключения обмотки статора к сети трехфазного переменного тока и трехфазного реостата, соединенного по схеме У, к обмотке ротора, которая содержала бы необходимую коммутационную аппаратуру и электроизмерительные приборы.

Определяем активную мощность $P_{1\text{ном}}$, поступающую из сети к обмотке статора в номинальном режиме механической нагрузки на валу, используя $\eta_{\text{ном}}$. Линейный ток обмотки статора находим по $P_{1\text{ном}}$. Фазный ток $I_{1\phi\text{ном}}$ находим из линейного в соответствии со схемой обмотки статора.

Частоту вращения магнитного поля статора n_1 находим с учетом f_1 и 2p. Частоту вращения ротора при номинальной механической нагрузке - $n_{2\text{ном}} = n_1(1-S_{\text{ном}})$.

Номинальный вращающий момент на валу $M_{\text{ном}} = 9,55 P_{2\text{ном}} / n_{2\text{ном}}$

Таблица 3 – Исходные данные по асинхронному двигателю

Вари-	Р _{2ном,}	2p	S_{hom} ,	η_{hom} ,	203/2	I _{2HOM} ,	Е _{2л} ,	λ
ант	кВт	ШТ	%	%	$cos\phi_{1_{HOM}}$	A	В	^
1	1600	12	1,3	92,1	0,86	1140	855	2,4
2	630	24	1,9	91,3	0,65	380	1025	2,4
3	1250	20	1,5	91	0,8	800	960	2,6
4	400	10	1,7	90	0,78	1000	800	2,3
5	800	16	1,3	91,1	0,76	515	955	2,4
6	315	24	2,4	89,2	0,65	360	555	2,2
7	630	20	2,15	90	0,75	435	900	2,3
8	800	10	1,8	91	0,81	970	750	2,1
9	315	12	2,1	91,2	0,85	400	1100	2,2
10	1000	16	1,2	90,3	0,75	520	1175	2,3
11	500	24	2,25	90,6	0,67	425	735	2,2
12	400	8	1,9	90	0,7	950	700	2,1
13	1000	20	1,6	89,8	0,78	540	1140	2,5
14	500	16	2,1	90,1	0,8	580	1050	2,3
15	2000	12	1,2	91,1	0,86	1160	1045	2,5
16	400	24	2,3	88	0,65	385	655	2,3
17	1250	16	1,15	90,7	0,78	950	805	2,4
18	800	20	1,95	89,3	0,74	445	1110	2,3
19	1600	8	2,2	91	0,8	970	750	2,1
20	800	24	2	90,2	0,75	880	560	2,2
21	500	10	1,9	91,3	0,78	940	720	2,4
22	3000	8	2,2	91	0,81	300	570	2,3
23	1600	16	1,25	90,7	0,83	1160	845	2,1
24	500	8	1,7	90	0,84	1090	820	2,3
25	1000	24	2	89,2	0,84	880	560	2,2
26	2000	16	1,8	90,1	0,75	510	940	2,3
27	1000	12	1,5	89,7	0,76	985	890	2,4
28	500	20	2,5	88,2	0,81	440	715	2,2
29	630	8	2,1	88	0,72	370	980	2,3
30	1250	24	1,75	87,1	0,67	1280	600	2,2

Угловую скорость вращения поля и ротора находим:

В соответствии с заданной перегрузочной способностью электродвигателя λ находим: $M_{\text{макс}} = \lambda \cdot M_{\text{ном}}$.

Критическое скольжение при максимальном моменте на естественной механической характеристики ($\mathbf{R}_{дб}$ =0): \mathbf{S}_{κ} = \mathbf{S}_{nom} (λ + $\sqrt{\lambda^2-1}$).

Чтобы судить о характере изменения вращающегося момента M_{e} , развиваемого электродвигателем при $R_{\text{дб}}\!\!=\!\!0$, в зависимости от величины

скольжения s, используем формулу Клосса и строим естественную механическую характеристику M_e =f(s):

$$M_e=2M_{\text{make}}/(s/s_{\text{kpe}}+s_{\text{kpe}}/s)$$
.

Скольжение по абсциссе в двигательном режиме изменяется от s=0 до s=1, проходя все промежуточные значения. Вращающий момент изменяется от M=0 до пускового момента M_n , проходя через $M_{\text{макс}}$ при $s_{\text{кре}}$. Задавая текущие значения величины s, находим текущее M_e при конкретных $M_{\text{макс}}$ и $s_{\text{крe}}$. Часто механическую характеристику удобнее рассматривать в виде $n_2 = f(M_e)$. Эту характеристику строим с учетом уже полученной: для каждого $n_2 = n_1(1-s)$, величину момента M_e дает ордината кривой $M_e = f(s)$. Максимум кривой $n_2 = f(M_e)$ находим по координатам: $M = M_{\text{макс}}$, $n_2 = n_2$ ($1-s_{\text{кpe}}$): частота вращения ротора в двигательном режиме изменяется от $n_2 = 0$ до $n_2 = n_1$, проходя через n_2 Величину пускового момента находим по формуле Клосса при s=1, а затем переносим его на вторую кривую при $n_2 = 0$.

Наличие фазного ротора позволяет получить множество искусственных механических характеристик. Строим вначале в системе координат M и s кривую M_u =f(s), а в системе координат n_2 и M - кривую n_2 = $f(M_u)$, у которой величина $R_{дб}$ такова, что при пуске s_n = $s_{\kappa pn}$ =1, тогда пуск осуществляется при M= M_n = $M_{\text{макс}}$. Искусственную механическую характеристику строим в одной системе координат с естественной, используя формулу M_u = $2M_{\text{макс}}/(s/s_{\kappa pu}+s_{\kappa pu}/s)$. Возможно построение любой другой искусственной характеристики при $s_{\kappa pu}$. Переход от построенной кривой M_u =f(s), и кривой n_2 = $f(M_u)$ осуществляется так, как показано ранее для естественных механических характеристик.

Активное сопротивление фазы обмотки ротора определим приблизительно, электрических мощности обмотке исходя потерь ротора ИЗ $\Delta P_{\text{эл2}} = P_{\text{эм}} s = m_2 {I_2}^2_{\phi \text{ном}} R_2$, где число фаз обмотки $m_2 = 3$, а $P_{\text{эм}} \approx M_{\text{ном}} n_1 / 9,55$. Откуда $R_2 = M_{\text{ном}} n_1 s_{\text{ном}} / 9,55 m_2 I_2^{\ 2} + M_{\text{ном}}$ Находим по $I_{2,\text{лном}}$ в соответствии со схемой соединения фаз обмотки ротора. Добавочное сопротивление, подключаемое к каждой фазе обмотки ротора для получения нужной искусственной механической характеристики, находим из соотношения скольжений на естественной $s_{\text{ном}}$ и искусственной $s_{\text{и}}$ характеристиках при $M_{\text{ном}}$ на валу: $(R_2 + R_{\pi 6})/S_{\mu} = R_2/S_{HOM}$. Соотношение вытекает ИЗ приблизительной прямолинейности характеристик: от s=0 почти до $s=s_{\kappa p}$, от $n_2=n_1$ почти до $n_2 = n_{2\kappa p}$. Если искусственная характеристика рассчитана при условии $M_n =$ $M_{\text{макс}}$,то $s_{\text{и}} = s_{\text{кри}} = s_{\text{n}} = 1$, а вместо $s_{\text{ном}}$ вводим $s_{\text{кре}}$, тогда $R_{\text{пб}} = R_2 (1/s_{\text{кре}} - 1)$.

Подключение к фазам обмотки ротора $R_{\rm дб}$ позволяет помимо увеличения $M_{\rm n}$ до $M_{\rm макс}$, ограничить величину пускового тока в обмотке ротора (и статора). Следует произвести сравнение этих токов при пуске по естественной механической характеристике и пуске по искусственной:

$$I'_{2n\phi e} = U_{1\phi hom} / \sqrt{(R_1 + R'_2)^2 + X_k^2}, \quad R'_{2} = \kappa^2 R_2, \quad R'_{2} \approx R_1, \quad \kappa = E_{1\phi hom} / E_{2\phi},$$

$$E_{1\phi hom} \approx U_{1\phi hom}, \quad X_{\kappa} = R'_{2} / S_{\kappa pe}.$$

Находим $I'_{2n\phi u} = U_{1\phi no \omega} / \sqrt{(R_1 + R'_2 + R'_{\partial \delta})^2 + X_k^2}$, $R'_{д\delta}$ найденное ранее при пуске с $M_{\Pi} = M_{\text{макс}}$, $R'_{д\delta} = \kappa^2 R_{д\delta}$. После вычисления токов сравним их, т.е найдем $I'_{2n\phi e}/I'_{2n\phi u}$, сделав вывод о назначении $R_{д\delta}$.

Так как при работе электродвигателя на естественной механической характеристике изменяется частота вращения и скольжения, то представляет интерес исследование изменения частоты тока в обмотке ротора f_2 и величины ЭДС в фазе обмотки ротора с изменением скольжения. Рассмотрим следующие характерные точки двигательного режима: пуск в ход - n_2 =0, M_n , s_n =1; максимальный момент на валу - $n_{2\kappa p}$, $M_{\text{макс}}$, $s_{\kappa pe}$; холостой ход - n_2 = n_1 , M=0, s=0 номинальный режим механической нагрузки на валу - $n_{2\kappa p}$, $M_{\text{ном}}$, $S_{\text{ном}}$;. Для определения частоты переменного тока в обмотке ротора используем выражение f_2 = f_1 s, подставляем s для тех же точек. Для определения действующего значения ЭДС в фазе обмотки ротора - E_{2S} = E_2 S, а подставляем S для тех же точек, а E_2 = $E_{2\phi}$ = $E_{2\phi}$ / $\sqrt{3}$.

Вращающий момент на валу электродвигателя в значительной мере зависит от величины напряжения питающей сети. Рассмотри изменение величины $M_{\text{макс}}$ при снижении номинального напряжения на 5, 10, 30%, используя выражение $M_{\text{макс}}$ = $\kappa_1 U^2_{1\varphi}$. При номинальном напряжении $M_{\text{макс}}$ = $\kappa_1 U^2_{1\varphi \text{ном}}$, при снижении напряжения $M^!_{\text{макс}}$ = $\kappa_1 (U_{1\varphi})^2$, где $U_{1\varphi}$ =0,95 $U_{1\varphi \text{ном}}$, 0,9 $U_{1\varphi \text{ном}}$, 0,7 $U_{1\varphi \text{ном}}$. Выводы о снижении величины максимального момента следует сделать путем сравнения $M_{\text{макс}}/M^!_{\text{макс}}$ для указанных $U_{1\varphi}$.

Приблизительно определим число витков в фазе обмотки статора из выражения: $E_{1\phi\text{ном}}\!\!=\!4,\!44f_1W_1k_{oб1}\Phi_m$, где $E_{1\phi\text{ном}}\!\!\approx\!U_{1\phi\text{ном}}$; $\kappa_{oб1}\!\!=\!\!0,\!96$; $f_1\!\!=\!\!50$ Гц, $\Phi_m\!\!=\!\!0,\!01...0,\!02$ Вб. Так как коэффициент трансформации ЭДС найден ранее, то приближенно определим число витков обмотки ротора: $W_2\!\!=\!\!W_1/\kappa$, приняв $\kappa_{oб2}\!\!=\!\!0,\!96$.

Естественное изменение частоты вращения ротора с ростом момента сопротивления механизма M_c не относится к регулированию частоты вращения. Определим частоту вращения ротора n_2 при увеличении момента сопротивления от величины $M_{c1}\!\!=\!\!M_{\text{ном}}$ до $M_{c2}\!\!=\!\!M_{\text{макс}}\!\frac{1}{4}$, $\frac{1}{2}M_{\text{макс}}$, $\frac{3}{4}M_{\text{макс}}$, $4M_{\text{макс}}$. Скольжение ротора при более высоком M_{c2} найдем из соотношения $M_{c2}/M_{c1}\!\!=\!\!S_2/S_1$, первый вариант нагрузки $M_{c1}\!\!=\!\!M_{\text{ном}}$, $S_1\!\!=\!\!S_{\text{ном}}$; второй вариант задан через максимальный момент, для каждой из трех величин M_{c2} найдем S_2 и определим $n_2\!\!=\!\!n_1(1\!-\!S_2)$.

Для регулирования частоты вращения ротора вводяят $R_{д\delta}$ в каждую фазу обмотки ротора, изменение частоты ведется вниз от номинальной. Определим частоты вращения ротора, полученные при введении в цепь ротора следующих сопротивлений $R'_{д\delta}=R_{д\delta}/4$, $R_{д\delta}/2$, $3R_{д\delta}/4$. За величину $R_{д\delta}$ принять ту, что получена при построении искусственной механической характеристики. Регулирование частоты вращения ведем при $M_c=M_{\text{ном}}$ на валу электродвигателя. Используем соотношение $(R_2+R'_{д\delta})/R_2=S/S_{\text{ном}}$. Для каждой величины $R'_{д\delta}$ найдем соответствующее скольжение S и определим n_2 .

Определим отдельные составляющие потерь мощности в электродвигателе при преобразовании электрической энергии в механическую для номинального режима механической нагрузки. Суммарные потери мощности $\Sigma \Delta P = P_{1\text{ном}} - P_{2\text{ном}}$. Электрические потери в меди трехфазной обмотки статора $\Delta P_{\text{эл}1} = m_1 I^2_{1\varphi \text{ном}} R_1$. Число фаз $m_1 = 3$. Электрические потери в меди трехфазной обмотки ротора $\Delta P_{\text{эл}2} = m_2 I^2_{2\varphi \text{ном}} R_2$. Число фаз $m_2 = 3$. Потери на перемагничивание стали ротора малы, так как мала f_2 при $S_{\text{ном}}$, ими можно пренебречь. $\Delta P_{\text{ст}2} \approx 0$. Добавочные потери мощности $\Delta P_{\text{дб}} = 0,01 P_{2\text{ном}}$. Механические потери в роторе $\Delta P_{\text{мех}}$ и потери мощности в стали статора $\Delta P_{\text{ст}1}$: $\Delta P_{\text{мех}} + \Delta P_{\text{ст}1} = \Sigma \Delta P - (\Delta P_{\text{эл}1} + \Delta P_{\text{эл}2} + \Delta P_{\text{дб}})$. Электромагнитная мощность $P_{\text{эм}} \approx M_{\text{ном}} \omega_1$

5 Генераторы постоянного тока параллельного возбуждения

Перед решением задачи данного раздела следует по литературе /1...7/ и конспекту лекций ознакомиться с назначением, устройством и принципом действия генератора постоянного тока, влиянием схемы подключения обмотки возбуждения на характеристики генератора.

Варианты индивидуальных контрольных задач по данному разделу приведены в табл.4, в которых для генераторов серии 4ПН заданы исхдные данные. Для всех вариантов принять 2a=2, 2p=4.

До решения задачи следует изобразить принципиальную электрическую схему генератора с подключенной к нему нагрузкой $R_{\rm H2}$, которая содержала бы необходимую коммутационную аппаратуру и электроизмерительные приборы.

Для определения магнитного потока Φ в магнитопроводе генератора используем выражение $E_{\text{яном}} = C_e n\Phi$, где $C_e = pN/60a$ — константа ЭДС. Константа момента $C_M = pN/2\pi a$. Тормозящий электромагнитный момент на валу генератора $M_{\text{ном}} = C_M I_{\text{яном}} \Phi$.

принципиальной схемы генератора найдем: $I_{\text{HHOM}} = I_{\text{BHOM}} + I_{\text{HTHOM}}$ $I_{\text{вном}} = U_{\text{ном}}/R_{\text{в}}$. Ток в каждой параллельной ветви обмотки найдем: $i_{\text{яном}} = I_{\text{яном}}/2a$. Число проводников в каждой параллельной ветви, определяющее ЭДС на щетках генератора, определим: N/2a. Сопротивление обмотки ротора (якоря) находим из уравнения равновесия ЭДС и напряжений в замкнутом контуре : $E_{\text{HHOM}} - U_{\text{HOM}} = I_{\text{HHOM}} R_z$. Электрическая мощность, отдаваемая нагрузке Угловая $\omega_{\text{hom}} = 2\pi n_{\text{hom}}/60$. $P_{2\text{HOM}} = U_{\text{HOM}} I_{\text{HITHOM}}$. скорость вращения ротора Механическую мощность, передаваемую от приводного двигателя на вал найдем ИЗ соотношения $P_{1\text{HOM}}P_{2\text{HOM}}/\eta_{\text{HOM}}$. Электрическое сопротивление нагрузки в номинальном режиме найдем из выражения $P_{2\text{HOM}} = I^2_{\text{HFHOM}} R_{\text{HFHOM}}$.

Представляет интерес внешняя характеристика генератора, то есть $U=f(I_{\rm g})$ в диапазоне тока от нуля до $I_{\rm ghom}$. По ней определяется напряжение, подаваемое к нагрузке в зависимости от $I_{\rm g}$. Для построения этой характеристики достаточно двух точек. Первая точка имеет координаты $I_{\rm g}=0$, $U=U_0=E_{\rm ghom}$, $1.1I_{\rm ghom}$, $1.2I_{\rm ghom}$. Вторая точка имеет координаты $I_{\rm ghom}$, $U_{\rm hom}$. Используя полученную характеристику можно определить напряжение на нагрузке при $I_{\rm ghom}$;

 $1.2I_{\text{яном}}$. Следует сделать выводы о характере кривой и закономерности изменения напряжения с ростом $I_{\text{я}}$.

Таблица 4 – Исходные данные по генератору постоянного тока

Вари-						lorona	n
ант	U _{HOM} , B	$\mathbf{E}_{\text{shom}},$ \mathbf{B}	n _{ном} , мин ⁻¹	$egin{array}{c} I_{\mbox{\tiny H\Gamma HOM}}, \ A \end{array}$	$R_{\scriptscriptstyle B}$, Om	N, шт	η _{ном} , %
1	115	121	3000	15	372	1218	80
2	460	483	2200	22	250	1116	81
3	230	241	3000	24	298	812	82
4	460	483	3000	36	298	522	83
5	360	378	3000	53	188	496	81
6	230	241	2850	49	228	744	82
7	460	483	3000	83	96	556	83
8				57			
9	115 350	121 378	1500 1450	33	136 188	834 624	80 80
	•					+	
10	230	241	2850	81	172	712	82
11	115	121	2260	54	110	450	80
12	460	483	975	42	220	1100	80
13	230	241	1450	36	215	572	79
14	360	378	2200	30	295	932	81
15	115	121	1500	56	152	380	82
16	460	483	1450	29	136	250	79
17	230	241	2850	72	165	652	82
18	115	121	975	45	105	430	80
19	360	375	3000	54	295	822	81
20	460	483	2850	104	274	1200	83
21	115	121	1500	60	97	528	80
22	230	241	975	14	123	474	78
23	360	378	725	75	372	1310	82
24	460	483	750	58	380	1340	83
25	230	241	1450	44	215	924	79
26	360	378	2850	35	230	874	81
27	115	121	725	25	98	484	89
28	460	483	3000	78	295	1320	84
29	230	241	1500	57	158	582	79
30	115	121	1450	56	127	440	78

У генератора параллельного возбуждения величина тока в обмотке возбуждения зависит от напряжения. Необходимо найти зависимость $I_{\text{в}}=f(U)$, применив выражение $I_{\text{в}}=U/R_{\text{в}}$. Задаем три значения напряжения: $U_{\text{ном}}$; U при $I_{\text{я}}=1,1I_{\text{аном}}$; U при $1.2I_{\text{аном}}$. Из расчетов необходимо сделать вывод о характере зависимости.

Определим отдельные составляющие потерь мощности в генераторе при номинальной электрической нагрузке. Суммарные потери мощности при преобразовании механической энергии в электрическую $\Sigma\Delta P_{\text{ном}} = P_{1\text{ном}} - P_{2\text{ном}}$.

Потери мощности в обмотке якоря $\Delta P_{\text{я}} = I_{\text{яном}}^2 R_{\text{я}}$. Потери мощности в обмотке возбуждения $\Delta P_{\text{в}} = I_{\text{вном}}^2 R_{\text{в}}$. электрические потери мощности в скользящем контакте (щетка-коллектор) $\Delta P_{\text{щ}} = \Delta U_{\text{щ}} I_{\text{яном}}$, падение напряжения на двух щетках разной полярности можно принять для графитных щеток $\Delta U_{\text{щ}} = 2B$. Добавочные потери найдем: $\Delta P_{\text{доб}} = 0.01 P_{\text{2ном}}$. Механические потери и магнитные (на перемагничивание стали) $\Delta P_{\text{мех}} + \Delta P_{\text{см}} = \Sigma \Delta P - (\Delta P_{\text{я}} + \Delta P_{\text{щ}} + \Delta P_{\text{доб}})$. Электромагнитную мощность генератора определим $P_{\text{эм}} = E_{\text{яном}} I_{\text{яном}}$.

6 Электродвигатели постоянного тока параллельного возбуждения

Перед решением контрольной задачи данного раздела следует ознакомиться по литературе /1..7/ и конспекту лекций с назначением, устройством и принципом действия электродвигателя постоянного тока, влиянием схемы подключения обмотки возбуждения на его характеристики.

Варианты индивидуальных контрольных задач по этому разделу приведены в табл. 6, в которой для электродвигателей серии 4ПН заданы исходные данные. Для всех вариантов принять 2a=2, 2p=4.

До решения задачи необходимо изобразить принципиальную электрическую схему электродвигателя подключенного к сети, которая содержала бы необходимую коммутационную аппаратуру и электроизмерительные приборы.

Электрическую мощность, потребляемую электродвигателем из сети, найдем: $P_{1\text{ном}} = P_{2\text{ном}}/\eta_{\text{ном}}$. Из принципиальной схемы вытекает: $I_{\text{нгном}} = I_{\text{яном}} + I_{\text{вном}}$; $I_{\text{вном}} = U_{\text{ном}}/R_{\text{в}}$. Ток нагрузки найдем: $P_{1\text{ном}} = U_{\text{ном}}/I_{\text{нгном}}$, теперь найдем $I_{\text{яном}}$, ток в параллельной ветви $i_z = I_{\text{яном}}/2a$. Из уравнения равновесия ЭДС и напряжений в замкнутом контуре находим $E_{\text{яном}} = U_{\text{ном}} - I_{\text{яном}} R_{\text{я}}$. Постоянная ЭДС $c_e = pN/60a$. Постоянная момента: $c_{\text{м}} = pN/2\pi a$. Число проводников в одной параллельной ветви, соединенных последовательно между двумя соседними щетками разной полярности, определяющее величину ЭДС на щетках: N/2a. Величину магнитного потока в стали магнитопровода найдем из выражения $E_{\text{яном}} = c_e n_{\text{ном}} \Phi$. Вращающий электромагнитный момент на валу $M_{\text{эмном}} = c_{\text{м}} I_{\text{яном}} \Phi$. Угловую скорость вращения ротора: $\omega_{\text{ном}} = 2\pi n_{\text{ном}}/60$.

При пуске электродвигателя в ход без $R_{\rm дб}$ в цепи обмотки ротора $I_{\rm яп} = U_{\rm ном}/R_{\rm я}$ и превышает номинальный ток в 10..30 раз. Найдем соотношение пускового и номинального токов $I_{\rm яп}/I_{\rm яном}$. Определим величину $R_{\rm дб}$ в цепи обмотки ротора, если мы хотим ограичить пусковой ток до $I_{\rm яп} = 1,5I_{\rm яном}$ и $I_{\rm яп} = 3I_{\rm яном}$, используя соотношение $R_{\rm дб} = (U_{\rm ном}/I_{\rm яп}) - R_{\rm я}$.

При использовании электродвигателя важен вид естественной механической характеристики n=f(M). Для ее построения достаточно двух точек. Первая точка имеет координаты: M=0, $n=n_0$. Частоту вращения ротора на холостом ходу найдем: $n_0=U_{\text{ном}}/c_e\Phi$. Вторая точка имеет координаты: $M_{\text{ном}}$, $n_{\text{ном}}$. В той же системе координат можно построить множество искусственных механических характеристик, проходящих при $U_{\text{ном}}$ и $I_{\text{вном}}$ через точку с ординатой n_0 . Из них выберем одну характеристику, проходящую через две

точки с координатами: M=0, $n=n_0$; $2M_{\text{ном}}$, n=0. Для получения этой характеристики находим $R_{\text{дб}}$, считая $I_{\text{яп}}=2I_{\text{яном}}$ при $M=2M_{\text{ном}}$.

Таблица 5 – Исходные данные по двигателю постоянного тока

Вари-	Р _{2ном} ,	U _{HOM} ,	n _{hom} ,	R_{s}	D O		$\eta_{\scriptscriptstyle \mathrm{HOM}},$
ант	кВт	В	мин ⁻¹	Ом	$R_{\scriptscriptstyle B}$, Om	N, шт	%
1	3,15	110	1060	0,37	372	1210	81
2	5,5	440	1500	0,48	228	744	82
3	8,5	220	2240	0,35	166	834	82
4	14	440	3350	0,22	92	700	83
5	18	220	3150	0,12	86	524	83
6	3	340	750	0,2	380	1020	81
7	4	110	710	0,3	162	980	82
8	16	440	2240	0,2	66	572	80
9	25	220	2240	0,1	94	558	81
10	37	440	3150	0,1	90	420	82
11	7,1	340	750	0,4	154	820	81
12	18,5	220	1400	0,12	84	542	80
13	30	440	2120	0,1	92	380	82
14	8	110	1060	0,36	164	754	82
15	3,15	440	1000	0,25	390	1000	83
16	13	220	2120	0,12	150	356	80
17	6,3	110	950	0,36	350	544	81
18	5	340	1000	0,48	224	722	82
19	11	220	1400	0,3	77	634	81
20	23,5	440	3000	0,1	150	420	81
21	3	110	750	0,3	172	1120	84
22	14	220	3150	0,25	90	700	83
23	25	440	2240	0,2	64	400	83
24	15	220	1500	0,15	98	556	82
25	5	110	1000	0,3	134	784	81
26	5,5	110	1500	0,3	124	824	83
27	42,5	340	3000	0,1	60	240	81
28	5	440	1000	0,4	132	528	83
29	8,5	340	2240	0,4	142	780	82
30	3,15	220	1000	1,3	350	1150	84

При использовании электродвигателя часто контролируют обороты ротора по электромеханическим (скоростным) характеристикам $n=f(I_{\rm g})$. В одной системе координат строим естественную и искусственную электромеханическую характеристику. Естественная имеет координаты: n_0 , $I_{\rm g}=0$; $n_{\rm hom}$, $I_{\rm ghom}$. Искусственная характеристика имеет координаты: n_0 , $I_{\rm g}=0$; n=0, $I_{\rm g}=2I_{\rm ghom}$. Искусственная характеристика получается при величине $R_{\rm g}$ 6, найденной ранее для $I_{\rm gn}=2I_{\rm ghom}$.

Определим отдельные составляющие потерь мощности в электродвигателе при преобразовании электрической энергии в механическую для номинального режима механической нагрузки. Суммарные потери мощности в электродвигателе $\Sigma \Delta P = P_{1\text{ном}} - P_{2\text{ном}}$.

Потери мощности в обмотке якоря $\Delta P_{\rm g} = I_{\rm яном}^2 R_{\rm g}$. В обмотке возбуждения $\Delta P_{\rm g} = I_{\rm вном}^2 R_{\rm g}$. Потери в скользящем режиме $\Delta P_{\rm iii} = \Delta U_{\rm iii} I_{\rm яном}$, принять $\Delta U_{\rm iii} = 2B$. добавочные потери $\Delta P_{\rm iii} = 0.01 P_{\rm 2ном}$. Механические и магнитные потери $\Delta P_{\rm mex} + \Delta P_{\rm cr} = \Sigma \Delta P - (\Delta P_{\rm B} + \Delta P_{\rm iii} + \Delta P_{\rm iii})$. Электромагнитная мощность $P_{\rm 3M} = E_{\rm яном} I_{\rm яном}$.

7 Трехфазные синхронные генераторы с неявнополюсным ротором

Перед решением контрольной задачи данного раздела необходимо ознакомиться по литературе /1..7/ и конспекту лекций с назначением, устройством и принципом действия синхронного генератора, его основными характеристиками, способами возбуждения магнитного поля ротора (индуктора).

Варианты индивидуальных контрольных задач по данному разделу приведены в табл.6, в которой для трехфазных синхронных генераторов серии СГД заданы исходные данные. Для нечетных номеров вариантов следует принять соединение фазных обмоток статора по схеме У, для четных номеров вариантов – по схеме Д. Для всех вариантов принять: $f_{\text{ном}}$ =50 Гц, $\cos\phi_{\text{нг}}$ =0,8

До решения задачи необходимо изобразить принципиальную электрическую схему трехфазного синхронного генератора с подключенной к нему трехфазной электрической нагрузкой, соединенной по схеме У, которая содержала бы необходимую коммутационную аппаратуру и электроизмерительные приборы.

Определяем активную мощность, отдаваемую от обмотки статора генератора и трехфазной нагрузке в номинальном режиме: $P_{2\text{ном}} = S_{\text{ном}} \cos \phi_{\text{нг}}$. Мощность дизеля, приводящего во вращение ротор генератора, найдем $P_{1\text{ном}} = P_{2\text{ном}}/\eta_{\text{ном}}$. Реактивную мощность, отдаваемую к нагрузке $Q_{2\text{ном}} = S_{\text{ном}} \sin \phi_{\text{нг}}$. Ток в линейном проводе $I_{\text{лном}} = I_{\text{яном}} = P_{2\text{ном}} / \sqrt{3} U_{\text{лном}} \cos \phi_{\text{нг}}$, где $P_{2\text{ном}} = P_{\text{нг}}$. Ток в фазах обмотки статора $I_{\text{фном}}$ найдем через величину линейного тока $I_{\text{пном}}$ в зависимости от схемы соединения фазных обмоток (У или Д). Частоту вращения ротора генератора дизелем находим: $n_{\text{ном}} = 60 f_{\text{ном}} / \text{р}$. угловую скорость вращения ротора $\omega_{\text{ном}} = 2\pi n_{\text{ном}}/60$. Тормозящий момент, возникающий на валу генератора и преодалеваемый дизелем $M_{\text{ном}} = P_{1\text{ном}}/\omega_{\text{ном}}$. Суммарные потери мощности, возникающие в генераторе при преобразовании механической энергии в электрическую $\Sigma \Delta P = P_{1\text{ном}} - P_{2\text{ном}}$. Потери мощности в фазах обмотки статора (якоря) $\Delta P_{\rm я} = {\rm mI}^2_{\rm фном} R_{\rm ф}$, где m=3; активное сопротивление фазы обмотки статора принять: $R_{\phi} = (0.03...0.15)$ Ом. Потери в обмотке возбуждения (ротора) $\Delta P_{\rm B} = U_{\rm B} I_{\rm B}$. добавочные потери $\Delta P_{\pi 6} = 0.01 P_{2_{\rm HOM}}$. Механические потери $\Delta P_{\text{mex}} + \Delta P_{\text{M}} = \Sigma \Delta P - (\Delta P_{\text{g}} + \Delta P_{\text{B}} + \Delta P_{\pi 6})$. Электромагнитная $P_{\text{HOM}} \approx M_{\text{HOM}} \omega_{\text{HOM}}$

Таблица 6 – Исходные данные по синхронному генератору

Вари-	S_{hom} ,	II vD	2n 1117	$\eta_{\scriptscriptstyle \mathrm{HOM}},$	$U_{\scriptscriptstyle B}$, B	Ι Λ
ант	кВА	$U_{\text{лном}}$, к B	2р, шт	%	O_B, D	$I_{\scriptscriptstyle B}$, A
1	12500	10,5	24	92,1	226	290
2	10000	6,3	16	92,3	190	270
3	8000	10,5	10	91,4	166	262
4	63000	6,3	6	92,5	136	261
5	5000	10,5	2	92,2	120	290
6	4000	6,3	100	91,3	102	267
7	630	10,5	40	92,6	31	245
8	800	6,3	48	92,4	36	274
9	10000	10,5	20	91,9	102	259
10	12800	6,3	30	92,2	220	282
11	63000	10,5	8	90,7	137	253
12	8000	6,3	12	90,8	150	261
13	4000	10,5	120	92	102	283
14	5000	6,3	4	90,9	119	289
15	3150	10,5	80	90,8	89	262
16	2500	6,3	60	92,1	77	248
17	2000	10,5	48	92,3	61	290
18	1600	6,3	30	92,4	54	277
19	1250	10,5	20	92,2	46	253
20	1000	6,3	12	91,1	41	284
21	800	10,0	8	90,7	36	275
22	630	6,3	4	90,8	31	247
23	630	10,5	2	92,4	31	245
24	800	6,3	6	92,1	31	245
25	1000	10,5	10	90,4	40	295
26	1250	6,3	16	90,5	46	253
27	1600	10,5	24	90,8	54	274
28	2000	6,3	40	90,9	61	291
29	2500	10,5	50	92,1	77	244
30	3150	6,3	80	92,3	89	262

8 Трехфазные синхронные электродвигатели с неявнополюсным ротором

Перед решением контрольной задачи данного раздела необходимо ознакомиться по литературе /1..7/ и конспекту лекций с назначением, устройством и принципом действия синхронного электродвигателя, его механическими и рабочими характеристиками, способами возбуждения магнитного поля ротора (индуктора), обратить внимание на способы пуска

Таблица 7 – Исходные данные по синхронному двигателю

Вариант	Р _{2ном} , кВт	U _{лном} , кВ	2р, шт	Θ _{HOM} ,	η _{ном} , %	$U_{\scriptscriptstyle B}$, B	I _B , A
1	630	10	2	градус 15	90,8	31	245
2	800	6	6	18	90,8	36	274
3	1000	10	10	20	90,1	40	
4					ł	-	295
5	1250	6	16	22	90,8	46	253
	1600	10	24	24	90,9	54	274
6	2000	6	40	26	90,4	61	291
7	2500	10	50	28	91,2	77	244
8	3150	6	80	30	91,3	89	252
9	4000	10	100	32	92,1	102	287
10	5000	6	2	34	92,2	120	290
11	6300	10	6	15	92,8	136	251
12	8000	6	10	17	92,7	156	262
13	1000	10	16	19	92,8	190	270
14	1250	6	24	21	91,4	126	290
15	630	10	40	23	91,7	31	245
16	800	6	48	24	90,1	36	274
17	1200	10	30	22	91,8	120	282
18	1000	6	20	20	92,7	82	259
19	8000	10	12	18	91,9	86	261
20	6300	6	8	16	91,5	137	253
21	5000	10	4	35	91,4	110	289
22	4000	6	120	33	91,5	102	283
23	3150	10	80	31	90,7	89	262
24	2500	6	60	29	92	77	248
25	2600	10	48	27	90,8	61	290
26	1600	6	30	25	92	54	277
27	1250	10	20	23	90,5	46	253
28	1000	6	12	21	92	41	284
29	650	10	8	19	90	36	275
30	630	6	4	17	90,6	31	247

электродвигателя в ход. Варианты индивидуальных контрольных задач по данному разделу приведены в табл.7, в которой для трехфазных синхронных электродвигателей серии СТД заданы исходные данные. Для нечетных номеров вариантов следует принять соединение фазных обмоток статора по схеме У, для четных номеров вариантов – по схеме Д. Для всех вариантов принять $f_{\text{ном}}$ =50 Γ ц, $\cos \phi_1$ =0,9

До решения задачи необходимо изобразить принципиальную электрическую схему трехфазного синхронного электродвигателя подключенного к трехфазной электрической сети, которая содержала бы необходимую коммутационную аппаратуру и электроизмерительные приборы.

Активную мощность $P_{1\text{ном}}$, потребляемую обмоткой статора (якоря) из сети, найдем через $P_{2\text{ном}}$ и $\eta_{\text{ном}}$. Ток в линейном проводе $I_{1\text{лном}}$ найдем через $P_{1\text{ном}} = \sqrt{3} U_{\text{яном}} I_{\text{яном}} \cos \phi_1$ Ток в фазе обмотки статора $I_{\text{оном}}$ найдем через $I_{\text{лном}}$ в зависимости от схемы соединения фаз обмотки статора. Реактивную мощность, потребляемую из сети, найдем $Q_{1\text{ном}} = \sqrt{3} U_{\text{лном}} I_{\text{лном}} \sin \phi_1$. Полную мощность $S_{1\text{ном}} = \sqrt{3} \, U_{\text{лном}} I_{\text{лном}}$. Частоту вращения ротора $n_{\text{ном}}$ найдем через $f_{\text{ном}}$ и число пар полюсов р. угловую скорость вращения ротора $\omega_{\text{ном}}$ найдем через $n_{\text{ном}}$. Вращающий известного момент на валу найдем выражения ИЗ $M_{\mbox{\tiny Hom}} = 9,55 P_{\mbox{\tiny 2Hom}} / n_{\mbox{\tiny Hom}}.$ Вращающий момент на валу синхронного электродвигателя зависит от угла нагрузки Θ по синусоидальному закону $M=M_{\text{маке}}\sin\Theta$. Следует построить зависимость $M=f(\Theta)$ в диапазоне изменения угла Θ от $\Theta=0$ до $\Theta=180^{\circ}$, которую называют угловой характеристикой. Чтобы найти максимум вращающего момента, воспользуемся параметрами номинального режима $M_{\text{Make}} = M_{\text{HoM}} / \sin \Theta_{\text{HoM}}$.

Выбираем масштаб для вращающего момента в пределах от нуля до $M_{\text{макс}}$, масштаб для угла нагрузки по оси абсцисс в пределах от нуля до 180 градусов; строим характеристику $M=f(\Theta)$, задавая значения $\Theta=0^{\circ}$, 30° , 90° , 150° , 180° и определяем M. Возможное число витков W_1 в фазе обмотки статора найдем из выражения $E_{\text{оф}}=4,44f_{\text{ном}}W_1K_{\text{об}}\Phi$, где $K_{\text{об}}=0,96$. $E_{\text{оф}}\approx U_{\text{ном}}$, $\Phi=0,03...0,06$ Вб. Суммарные потери мощности $\Sigma\Delta P=P_{1\text{ном}}-P_{2\text{ном}}$. Потери мощности в фазе обмотки статора $\Delta P_{\text{я}}=\text{mI}^2_{\phi\text{ном}}R_{\phi}$, где $R_{\phi}=0,03...0,15$ Ом, m=3. Потери мощности в обмотке возбуждения ротора $\Delta P_{\text{в}}=U_{\text{в}}I_{\text{в}}$. добавочные потери $\Delta P_{\text{дб}}=0,01P_{2\text{ном}}$. Механические потери и магнитные потери $\Delta P_{\text{мех}}+\Delta P_{\text{ст}}=\Sigma\Delta P-\Delta P_{\text{я}}-\Delta P_{\text{в}}-\Delta P_{\text{дб}}$. Электромагнитная мощность электродвигателя $P_{\text{эмном}}\approx M_{\text{ном}}\omega_{\text{ном}}$.

Список рекомендуемой литературы

- 1. Проектирование электрических машин: Учеб. для вузов/ И.П.Копылов, Б.К.Клоков, В.П.Морозкин, Б.Ф.Токарев; Под ред. И.П.Копылова. 3-е изд. испр. и доп. М.Высшая школа. 2002. 757 с.
- 2. Копылов И.П. Электрические машины: Учебник для вузов. 2-е изд. перераб. М.: Высшая школа. 2000. 607 с.
- 3. Копылов И.П. Электрические машины/учебник для вузов М.: Энергоатомиздат, 1986. 360 с.
- 4. Тихомиров П.И. Расчет трансформаторов. Учебн. пособие для вузов. 5-е изд., перераб и доп. М.: Энергоатомиздат, 1986. 528 с.
- 5. Атабеков В.Б. Ремонт трансформаторов, электрических машин и аппаратов. М.: Высшюшк., 1988. 416 с.
- 6. Электрические машины: Сборник задач и упражнений. /Пер. с венг. А. Данку, А. Фаркаг. М.: Энергоатомиздат, 1987. 360 с.
- 7. Жерве Г.К. Промышленные испытания электрических машин. М.: Госэнергоиздат, 1960. 504 с.
- 8. Правила технической эксплуатации энергоустановок потребителей и правила техники безопасности при эксплуатации энергоустановок потребителей. М.: Атомиздат, 1973. 157 с.

Учебное издание

Методические указания к самостоятельной работе дисциплине «Электрические машины»

Составитель Редактор Валерий Тимофеевич Климченков Нелли Александровна Хахина

Поз.80. Подп. в печ. Офсетная печать. Усл.печ.

Тираж 100 экз.

Формат 60х90/16.

Уч.-изд. л. Бесплатно.

ДГМА, 343913 Краматорск, ул. Шкадинова, 70