

DESCRIPTION/Syllabi of Curricula/Module

Short Name of the University/Country code	DSEA
Date (Month / Year)	Jan 2019
TITLE OF THE MODULE	Code
Distributed computer systems and networks	

Teacher(s)	Department
Coordinating: Olexander Altukhov, PhD Others:	Department of Computer and Information Technology (CIT)

Study cycle	Level of the module	Type of the module
(BA/MA)	(Semester number)	(compulsary/elective)
Master	1 th semester (first year) for Master	compulsary

Form of delivery	Duration	Language(s)			
(theory/lab/exercises)	(weeks/months)				
Lectures, lab	8 weeks	Ukrainian / English			

Prerequisites							
Prerequisites:	Co-requisites (if necessary):						
the study of the disciplines "System programming and operating systems", "Circuit engineering", "Computers and microprocessor systems" and "Organization of Databases and Knowledge"							

ECTS (Credits of the module)	Total student workload hours	Contact hours	Individual work hours	
4,5	135	45	90	

Aim of the module (course unit): competences foreseen by the study programme

Students should be able to: formation of cognitive, affective and motor competencies in the field of studying and explaining a set of basic concepts and knowledge in the field of development and operation of distributed systems and services, architectures and technologies of distributed computing, interaction of distributed system components, software for distributed systems and networks, and development and the formation of students' complex knowledge and skills in the technological cycle of creating software products for distributed data processing. The discipline is aimed at developing students' theoretical and practical skills in working with distributed computing technologies.

·	Teaching/learning methods	Assessment methods
Learning outcomes of module (course unit)	(theory, lab, exercises)	(written exam, oral exam, reports)
Knowledge:	Work with the lecture notes as well as on the	Knowledge test
• to teach the future specialist in computer science knowledge and use of fundamental	available fundamental	
concepts and practical solutions that	subject literature	
underlie modern distributed computing;		
• acquaintance with the basic principles of		
distributed data processing;		
• consideration of architectures and		
technologies of distributed computing;		
• gaining skills of analysis and algorithmic thinking, the formation of arguments in		
choosing the architecture and technology		
of distributed computing and knowledge		
and algorithms for distributed data		
processing;		
• formation of skills and abilities to use		
development tools to create distributed		
systems and networks.		
Skills:		
- to develop computerized systems using system programming languages and		
software development methods that		
interact with the components of computer		Active attendance on
systems, based on knowledge of network	Lectures, lab, consultation	lectures, individual project
technologies and computer network		and presentation
architecture;		
- plan, organize, implement and control the		
implementation of information security		
systems in enterprises and organizations,		

		-
using the concepts of information security,		
database security, network security,		
cryptography, including ethical issues of		
storage and access to medical data;		
- to ensure the efficiency of processing		
large data sets, including the use of parallel		
and distributed computing, to apply		
numerical methods and algorithms for		
parallel structures, parallel programming		
languages.		
Competences:		
- ability to take into account the basic		
requirements of information security,		
ethical and legal aspects of the use of		
information in various subject areas		
(technical, organizational, technical and		
medical purposes);		
- ability to use network technologies of		
data transmission, appropriate		
programming languages and equipment,		
when creating and researching	Lectures, practiacl work,	Individual project and
computerized systems;	consultation	presentation
- ability to conduct research and provide,		
through the development and		
implementation of software systems,		
protection of information in enterprises		
and organizations;		
- ability to reasonably choose and apply		
methods of parallel and distributed		
computing in order to develop software to		
accelerate the execution time of data		
processing algorithms.		

	Contact work hours						Time and tasks for individual work		
Themes	Lectures	Consultations	Seminars	Practiacl work	Laboratory work	Placements	Total contact work	Individual work	Tasks
1. Introduction to distributed	3				-		3	10	Study exam/
computing systems. Definition									complete
of a distributed computer									exercise
system (DCS). Intermediate									
software. DCS terminology.									

Classification of DCS.						
2. Cluster architecture. Client-	3		-	3	10	Study exam/
server architecture. Distributed						complete
systems architecture.						exercise
3. Web. Client-server model.	3		3	6	10	Study exam/
Object distributed systems.	3			3	10	complete
Agent technologies. Service-						exercise
oriented architecture. Web						CACICISC
services. Peer-to-peer network						
technologies. GRID						
technologies. Cloud computing.						
	3			3	10	Study over /
4. Ensuring security in	3		-	3	10	Study exam/
distributed systems. Task flow						complete exercise
management services in						exercise
distributed systems. Interaction						
of system-wide services of						
GRID and cloud structure.						
Monitoring services. Methods						
for estimating process states in						
spatially distributed systems.			4		4.0	G. 1 '
5. SOA concept. Connectivity	3		4	7	10	Study exam/
of software systems. Principles						complete
of SOA construction. SOA						exercise
approach.						
6. GRID architecture. GRID	4		4	8	10	Study exam/
standards. Globus system.						complete
UNICORE system. Parametric						exercise
models of GRID performance.				_		
7. Definition of cloud	5		4	9	10	Study exam/
computing. Components of						complete
cloud applications. Advantages						exercise
and disadvantages of cloud						
computing. Classification of						
clouds. The most common						
cloud platforms. Comparison of						
GRID and cloud computing.						
8. Transition systems. Systems	3		-	3	10	Study exam/
with synchronous and						complete
asynchronous messaging.						exercise
Property of fairness of						
execution of system.						
9. Dependent and independent	3		-	3	10	Study exam/
events. Causal order of events.						complete
Performance equivalence.						exercise
Logical clock.						
Total	30		15	45	90	

Assessment strategy	Weight in %	Deadlines	Assessment criteria
written exam theory	40%	during the semester / exam	Good response to the questions
Practical exam on a computer	60%	during the semester / exam	the work is done completely without mistakes or minor errors

Author	Year of issue	Title	No of periodical or volume	Place of printing. Printing house or internet link
Compulsory literature				
Christel Baier, Luís Caires Giancarlo Fortino, A.B.M. Shawkat Ali, Mukaddim	2018	Formal Techniques for Distributed Objects, Components, and Systems Internet and Distributed		Springer International Publishing, ISBN 978- 3-319-92611-7, 978-3- 319-92612-4 Springer International Publishing, ISBN 978-
Pathan, Antonio Guerrieri, Giuseppe Di Fatta		Computing Systems		3-319-97794-2, 978-3- 319-97795-9
Magnús M. Halldórsson (auth.), Paola Flocchini, Jie Gao, Evangelos Kranakis, Friedhelm Meyer auf der Heide (eds.)	2014	Algorithms for Sensor Systems: 9th International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics, ALGOSENSORS 2013, Sophia Antipolis, France, September 5-6, 2013, Revised Selected Papers		Springer-Verlag Berlin Heidelberg, ISBN 978- 3-642-45345-8, 978-3- 642-45346-5
Additional literature Бойчук В.О., Огнєвий	2013	Компютерні		ХНУ
О.В., Хмельницький Ю.В.		системи паралельної обробки даних: навч. посібник		