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Preface

This is the third edition of “Distributed Systems.” In many ways, it is a
huge difference compared to the previous editions, the most important one
perhaps being that we have fully integrated the “principles” and “paradigms”
by including the latter at appropriate places in the chapters that discussed the
principles of distributed systems.

The material has been thoroughly revised and extended, while at the same
time we were keen on limiting the total number of pages. The size of the book
has been reduced by more than 10% compared to the second edition, which is
mainly due to removing material on paradigms. To make it easier to study
the material by a wide range of readers, we have moved specific material to
separate boxed sections. These sections can be skipped on first reading.

Another major difference is the use of coded examples, all written in
Python and supported by a simple communication system wrapped around
the Redis package. The examples in the book leave out many details for read-
ability, but the complete examples are available through the book’s Website,
hosted at www.distributed-systems.net. Next to code for running, testing,
and extending algorithms, the site provides access to slides, all figures, and
exercises.

The new material has been classroom tested, for which we particularly
thank Thilo Kielmann at VU University Amsterdam. His constructive and
critical observatiions have helped us improve matters considerably.

Our publisher Pearson Education was kind enough to return the copy-
rights, and we owe many thanks to Tracy Johnson for making this a smooth
transition. Having the copyrights back has made it possible for us to start
with something that we both feel comfortable with: running experiments. In
this case, we were looking for a means that would make the material easy
to access, relatively inexpensive to obtain, and manageable when it came to
upgrades. The book can now be (freely) downloaded, making it much easier
to use hyperlinks where appropriate. At the same time, we are offering a
printed version through Amazon.com, available at minimal costs.

The book now being fully digital allows us to incorporate updates when

xi
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xii PREFACE

needed. We plan to run updates on a yearly basis, while keeping previous
versions digitally available, as well as the printed versions for some fixed
period. Running frequent updates is not always the right thing to do from the
perspective of teaching, but yearly updates and maintaining previous versions
seems a good compromise.

Maarten van Steen
Andrew S. Tanenbaum
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Chapter 1

Introduction

The pace at which computer systems change was, is, and continues to be
overwhelming. From 1945, when the modern computer era began, until about
1985, computers were large and expensive. Moreover, for lack of a way to
connect them, these computers operated independently from one another.

Starting in the mid-1980s, however, two advances in technology began to
change that situation. The first was the development of powerful microproces-
sors. Initially, these were 8-bit machines, but soon 16-, 32-, and 64-bit CPUs
became common. With multicore CPUs, we now are refacing the challenge
of adapting and developing programs to exploit parallelism. In any case, the
current generation of machines have the computing power of the mainframes
deployed 30 or 40 years ago, but for 1/1000th of the price or less.

The second development was the invention of high-speed computer net-
works. Local-area networks or LANs allow thousands of machines within a
building to be connected in such a way that small amounts of information
can be transferred in a few microseconds or so. Larger amounts of data
can be moved between machines at rates of billions of bits per second (bps).
Wide-area networks or WANs allow hundreds of millions of machines all
over the earth to be connected at speeds varying from tens of thousands to
hundreds of millions bps.

Parallel to the development of increasingly powerful and networked ma-
chines, we have also been able to witness miniaturization of computer systems
with perhaps the smartphone as the most impressive outcome. Packed with
sensors, lots of memory, and a powerful CPU, these devices are nothing less
than full-fledged computers. Of course, they also have networking capabilities.
Along the same lines, so-called plug computers are finding their way to the

A version of this chapter has been published as “A Brief Introduction to Distributed Systems,”
Computing, vol. 98(10):967-1009, 2016.
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2 CHAPTER 1. INTRODUCTION

market. These small computers, often the size of a power adapter, can be
plugged directly into an outlet and offer near-desktop performance.

The result of these technologies is that it is now not only feasible, but
easy, to put together a computing system composed of a large numbers of
networked computers, be they large or small. These computers are generally
geographically dispersed, for which reason they are usually said to form a
distributed system. The size of a distributed system may vary from a handful
of devices, to millions of computers. The interconnection network may be
wired, wireless, or a combination of both. Moreover, distributed systems are
often highly dynamic, in the sense that computers can join and leave, with the
topology and performance of the underlying network almost continuously
changing.

In this chapter, we provide an initial exploration of distributed systems
and their design goals, and follow that up by discussing some well-known
types of systems.

1.1 What is a distributed system?

Various definitions of distributed systems have been given in the literature,
none of them satisfactory, and none of them in agreement with any of the
others. For our purposes it is sufficient to give a loose characterization:

A distributed system is a collection of autonomous computing elements
that appears to its users as a single coherent system.

This definition refers to two characteristic features of distributed systems.
The first one is that a distributed system is a collection of computing elements
each being able to behave independently of each other. A computing element,
which we will generally refer to as a node, can be either a hardware device
or a software process. A second feature is that users (be they people or
applications) believe they are dealing with a single system. This means
that one way or another the autonomous nodes need to collaborate. How
to establish this collaboration lies at the heart of developing distributed
systems. Note that we are not making any assumptions concerning the
type of nodes. In principle, even within a single system, they could range
from high-performance mainframe computers to small devices in sensor
networks. Likewise, we make no assumptions concerning the way that nodes
are interconnected.

Characteristic 1: Collection of autonomous computing elements

Modern distributed systems can, and often will, consist of all kinds of nodes,
ranging from very big high-performance computers to small plug computers
or even smaller devices. A fundamental principle is that nodes can act inde-
pendently from each other, although it should be obvious that if they ignore
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1.1. WHAT IS A DISTRIBUTED SYSTEM? 3

each other, then there is no use in putting them into the same distributed
system. In practice, nodes are programmed to achieve common goals, which
are realized by exchanging messages with each other. A node reacts to in-
coming messages, which are then processed and, in turn, leading to further
communication through message passing.

An important observation is that, as a consequence of dealing with inde-
pendent nodes, each one will have its own notion of time. In other words, we
cannot always assume that there is something like a global clock. This lack
of a common reference of time leads to fundamental questions regarding the
synchronization and coordination within a distributed system, which we will
come to discuss extensively in Chapter 6. The fact that we are dealing with a
collection of nodes implies that we may also need to manage the membership
and organization of that collection. In other words, we may need to register
which nodes may or may not belong to the system, and also provide each
member with a list of nodes it can directly communicate with.

Managing group membership can be exceedingly difficult, if only for
reasons of admission control. To explain, we make a distinction between
open and closed groups. In an open group, any node is allowed to join the
distributed system, effectively meaning that it can send messages to any other
node in the system. In contrast, with a closed group, only the members of
that group can communicate with each other and a separate mechanism is
needed to let a node join or leave the group.

It is not difficult to see that admission control can be difficult. First, a
mechanism is needed to authenticate a node, and as we shall see in Chap-
ter 9, if not properly designed, managing authentication can easily create
a scalability bottleneck. Second, each node must, in principle, check if it is
indeed communicating with another group member and not, for example,
with an intruder aiming to create havoc. Finally, considering that a member
can easily communicate with nonmembers, if confidentiality is an issue in the
communication within the distributed system, we may be facing trust issues.

Concerning the organization of the collection, practice shows that a dis-
tributed system is often organized as an overlay network [Tarkoma, 2010]. In
this case, a node is typically a software process equipped with a list of other
processes it can directly send messages to. It may also be the case that a neigh-
bor needs to be first looked up. Message passing is then done through TCP/IP
or UDP channels, but as we shall see in Chapter 4, higher-level facilities may
be available as well. There are roughly two types of overlay networks:

Structured overlay: In this case, each node has a well-defined set of neighbors
with whom it can communicate. For example, the nodes are organized
in a tree or logical ring.

Unstructured overlay: In these overlays, each node has a number of refer-
ences to randomly selected other nodes.
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In any case, an overlay network should, in principle, always be connected,
meaning that between any two nodes there is always a communication path
allowing those nodes to route messages from one to the other. A well-known
class of overlays is formed by peer-to-peer (P2P) networks. Examples of
overlays will be discussed in detail in Chapter 2 and later chapters. It is
important to realize that the organization of nodes requires special effort and
that it is sometimes one of the more intricate parts of distributed-systems
management.

Characteristic 2: Single coherent system

As mentioned, a distributed system should appear as a single coherent system.
In some cases, researchers have even gone so far as to say that there should be
a single-system view, meaning that end users should not even notice that they
are dealing with the fact that processes, data, and control are dispersed across
a computer network. Achieving a single-system view is often asking too much,
for which reason, in our definition of a distributed system, we have opted for
something weaker, namely that it appears to be coherent. Roughly speaking, a
distributed system is coherent if it behaves according to the expectations of its
users. More specifically, in a single coherent system the collection of nodes
as a whole operates the same, no matter where, when, and how interaction
between a user and the system takes place.

Offering a single coherent view is often challenging enough. For example,
it requires that an end user would not be able to tell exactly on which computer
a process is currently executing, or even perhaps that part of a task has
been spawned off to another process executing somewhere else. Likewise,
where data is stored should be of no concern, and neither should it matter
that the system may be replicating data to enhance performance. This so-
called distribution transparency, which we will discuss more extensively in
Section 1.2, is an important design goal of distributed systems. In a sense, it
is akin to the approach taken in many Unix-like operating systems in which
resources are accessed through a unifying file-system interface, effectively
hiding the differences between files, storage devices, and main memory, but
also networks.

However, striving for a single coherent system introduces an important
trade-off. As we cannot ignore the fact that a distributed system consists of
multiple, networked nodes, it is inevitable that at any time only a part of the
system fails. This means that unexpected behavior in which, for example,
some applications may continue to execute successfully while others come
to a grinding halt, is a reality that needs to be dealt with. Although partial
failures are inherent to any complex system, in distributed systems they are
particularly difficult to hide. It lead Turing-Award winner Leslie Lamport, to
describe a distributed system as “[. . .] one in which the failure of a computer
you didn’t even know existed can render your own computer unusable.”
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Middleware and distributed systems

To assist the development of distributed applications, distributed systems are
often organized to have a separate layer of software that is logically placed on
top of the respective operating systems of the computers that are part of the
system. This organization is shown in Figure 1.1, leading to what is known as
middleware [Bernstein, 1996].

Figure 1.1: A distributed system organized in a middleware layer, which
extends over multiple machines, offering each application the same interface.

Figure 1.1 shows four networked computers and three applications, of
which application B is distributed across computers 2 and 3. Each application
is offered the same interface. The distributed system provides the means for
components of a single distributed application to communicate with each
other, but also to let different applications communicate. At the same time,
it hides, as best and reasonably as possible, the differences in hardware and
operating systems from each application.

In a sense, middleware is the same to a distributed system as what an
operating system is to a computer: a manager of resources offering its ap-
plications to efficiently share and deploy those resources across a network.
Next to resource management, it offers services that can also be found in most
operating systems, including:

• Facilities for interapplication communication.
• Security services.
• Accounting services.
• Masking of and recovery from failures.

The main difference with their operating-system equivalents, is that mid-
dleware services are offered in a networked environment. Note also that
most services are useful to many applications. In this sense, middleware can
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also be viewed as a container of commonly used components and functions
that now no longer have to be implemented by applications separately. To
further illustrate these points, let us briefly consider a few examples of typical
middleware services.

Communication: A common communication service is the so-called Remote
Procedure Call (RPC). An RPC service, to which we return in Chapter 4,
allows an application to invoke a function that is implemented and
executed on a remote computer as if it was locally available. To this
end, a developer need merely specify the function header expressed in
a special programming language, from which the RPC subsystem can
then generate the necessary code that establishes remote invocations.

Transactions: Many applications make use of multiple services that are dis-
tributed among several computers. Middleware generally offers special
support for executing such services in an all-or-nothing fashion, com-
monly referred to as an atomic transaction. In this case, the application
developer need only specify the remote services involved, and by fol-
lowing a standardized protocol, the middleware makes sure that every
service is invoked, or none at all.

Service composition: It is becoming increasingly common to develop new
applications by taking existing programs and gluing them together. This
is notably the case for many Web-based applications, in particular those
known as Web services [Alonso et al., 2004]. Web-based middleware can
help by standardizing the way Web services are accessed and providing
the means to generate their functions in a specific order. A simple
example of how service composition is deployed is formed by mashups:
Web pages that combine and aggregate data from different sources.
Well-known mashups are those based on Google maps in which maps
are enhanced with extra information such as trip planners or real-time
weather forecasts.

Reliability: As a last example, there has been a wealth of research on pro-
viding enhanced functions for building reliable distributed applications.
The Horus toolkit [van Renesse et al., 1994] allows a developer to build
an application as a group of processes such that any message sent by
one process is guaranteed to be received by all or no other process. As it
turns out, such guarantees can greatly simplify developing distributed
applications and are typically implemented as part of the middleware.

Note 1.1 (Historical note: The term middleware)
Although the term middleware became popular in the mid 1990s, it was most
likely mentioned for the first time in a report on a NATO software engineering
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conference, edited by Peter Naur and Brian Randell in October 1968 [Naur and
Randell, 1968]. Indeed, middleware was placed precisely between applications
and service routines (the equivalent of operating systems).

1.2 Design goals

Just because it is possible to build distributed systems does not necessarily
mean that it is a good idea. In this section we discuss four important goals
that should be met to make building a distributed system worth the effort. A
distributed system should make resources easily accessible; it should hide the
fact that resources are distributed across a network; it should be open; and it
should be scalable.

Supporting resource sharing

An important goal of a distributed system is to make it easy for users (and
applications) to access and share remote resources. Resources can be virtually
anything, but typical examples include peripherals, storage facilities, data,
files, services, and networks, to name just a few. There are many reasons for
wanting to share resources. One obvious reason is that of economics. For
example, it is cheaper to have a single high-end reliable storage facility be
shared than having to buy and maintain storage for each user separately.

Connecting users and resources also makes it easier to collaborate and
exchange information, as is illustrated by the success of the Internet with
its simple protocols for exchanging files, mail, documents, audio, and video.
The connectivity of the Internet has allowed geographically widely dispersed
groups of people to work together by means of all kinds of groupware, that is,
software for collaborative editing, teleconferencing, and so on, as is illustrated
by multinational software-development companies that have outsourced much
of their code production to Asia.

However, resource sharing in distributed systems is perhaps best illustrated
by the success of file-sharing peer-to-peer networks like BitTorrent. These
distributed systems make it extremely simple for users to share files across
the Internet. Peer-to-peer networks are often associated with distribution of
media files such as audio and video. In other cases, the technology is used for
distributing large amounts of data, as in the case of software updates, backup
services, and data synchronization across multiple servers.

Note 1.2 (More information: Sharing folders worldwide)
To illustrate where we stand when it comes to seamless integration of resource-
sharing facilities in a networked environment, Web-based services are now de-
ployed that allow a group of users to place files into a special shared folder that is
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maintained by a third party somewhere on the Internet. Using special software,
the shared folder is barely distinguishable from other folders on a user’s computer.
In effect, these services replace the use of a shared directory on a local distributed
file system, making data available to users independent of the organization they
belong to, and independent of where they are. The service is offered for different
operating systems. Where exactly data are stored is completely hidden from the
end user.

Making distribution transparent

An important goal of a distributed system is to hide the fact that its processes
and resources are physically distributed across multiple computers possibly
separated by large distances. In other words, it tries to make the distribution
of processes and resources transparent, that is, invisible, to end users and
applications.

Types of distribution transparency

The concept of transparency can be applied to several aspects of a distributed
system, of which the most important ones are listed in Figure 1.2. We use the
term object to mean either a process or a resource.

Transparency Description
Access Hide differences in data representation and how an object is

accessed
Location Hide where an object is located
Relocation Hide that an object may be moved to another location while

in use
Migration Hide that an object may move to another location
Replication Hide that an object is replicated
Concurrency Hide that an object may be shared by several independent

users
Failure Hide the failure and recovery of an object

Figure 1.2: Different forms of transparency in a distributed system (see ISO
[1995]). An object can be a resource or a process.

Access transparency deals with hiding differences in data representation
and the way that objects can be accessed. At a basic level, we want to hide
differences in machine architectures, but more important is that we reach
agreement on how data is to be represented by different machines and operat-
ing systems. For example, a distributed system may have computer systems
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that run different operating systems, each having their own file-naming con-
ventions. Differences in naming conventions, differences in file operations, or
differences in how low-level communication with other processes is to take
place, are examples of access issues that should preferably be hidden from
users and applications.

An important group of transparency types concerns the location of a pro-
cess or resource. Location transparency refers to the fact that users cannot
tell where an object is physically located in the system. Naming plays an
important role in achieving location transparency. In particular, location
transparency can often be achieved by assigning only logical names to re-
sources, that is, names in which the location of a resource is not secretly
encoded. An example of a such a name is the uniform resource locator (URL)
http://www.prenhall.com/index.html, which gives no clue about the actual
location of Prentice Hall’s main Web server. The URL also gives no clue as
to whether the file index.html has always been at its current location or was
recently moved there. For example, the entire site may have been moved from
one data center to another, yet users should not notice. The latter is an exam-
ple of relocation transparency, which is becoming increasingly important in
the context of cloud computing to which we return later in this chapter.

Where relocation transparency refers to being moved by the distributed
system, migration transparency is offered by a distributed system when it
supports the mobility of processes and resources initiated by users, with-
out affecting ongoing communication and operations. A typical example
is communication between mobile phones: regardless whether two people
are actually moving, mobile phones will allow them to continue their con-
versation. Other examples that come to mind include online tracking and
tracing of goods as they are being transported from one place to another,
and teleconferencing (partly) using devices that are equipped with mobile
Internet.

As we shall see, replication plays an important role in distributed systems.
For example, resources may be replicated to increase availability or to im-
prove performance by placing a copy close to the place where it is accessed.
Replication transparency deals with hiding the fact that several copies of a
resource exist, or that several processes are operating in some form of lockstep
mode so that one can take over when another fails. To hide replication from
users, it is necessary that all replicas have the same name. Consequently,
a system that supports replication transparency should generally support
location transparency as well, because it would otherwise be impossible to
refer to replicas at different locations.

We already mentioned that an important goal of distributed systems is
to allow sharing of resources. In many cases, sharing resources is done in a
cooperative way, as in the case of communication channels. However, there
are also many examples of competitive sharing of resources. For example,
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two independent users may each have stored their files on the same file server
or may be accessing the same tables in a shared database. In such cases, it
is important that each user does not notice that the other is making use of
the same resource. This phenomenon is called concurrency transparency.
An important issue is that concurrent access to a shared resource leaves that
resource in a consistent state. Consistency can be achieved through locking
mechanisms, by which users are, in turn, given exclusive access to the desired
resource. A more refined mechanism is to make use of transactions, but these
may be difficult to implement in a distributed system, notably when scalability
is an issue.

Last, but certainly not least, it is important that a distributed system
provides failure transparency. This means that a user or application does not
notice that some piece of the system fails to work properly, and that the system
subsequently (and automatically) recovers from that failure. Masking failures
is one of the hardest issues in distributed systems and is even impossible
when certain apparently realistic assumptions are made, as we will discuss
in Chapter 8. The main difficulty in masking and transparently recovering
from failures lies in the inability to distinguish between a dead process and a
painfully slowly responding one. For example, when contacting a busy Web
server, a browser will eventually time out and report that the Web page is
unavailable. At that point, the user cannot tell whether the server is actually
down or that the network is badly congested.

Degree of distribution transparency

Although distribution transparency is generally considered preferable for any
distributed system, there are situations in which attempting to blindly hide
all distribution aspects from users is not a good idea. A simple example is
requesting your electronic newspaper to appear in your mailbox before 7 AM
local time, as usual, while you are currently at the other end of the world
living in a different time zone. Your morning paper will not be the morning
paper you are used to.

Likewise, a wide-area distributed system that connects a process in San
Francisco to a process in Amsterdam cannot be expected to hide the fact
that Mother Nature will not allow it to send a message from one process to
the other in less than approximately 35 milliseconds. Practice shows that it
actually takes several hundred milliseconds using a computer network. Signal
transmission is not only limited by the speed of light, but also by limited
processing capacities and delays in the intermediate switches.

There is also a trade-off between a high degree of transparency and the
performance of a system. For example, many Internet applications repeatedly
try to contact a server before finally giving up. Consequently, attempting to
mask a transient server failure before trying another one may slow down the
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system as a whole. In such a case, it may have been better to give up earlier,
or at least let the user cancel the attempts to make contact.

Another example is where we need to guarantee that several replicas,
located on different continents, must be consistent all the time. In other words,
if one copy is changed, that change should be propagated to all copies before
allowing any other operation. It is clear that a single update operation may
now even take seconds to complete, something that cannot be hidden from
users.

Finally, there are situations in which it is not at all obvious that hiding
distribution is a good idea. As distributed systems are expanding to devices
that people carry around and where the very notion of location and context
awareness is becoming increasingly important, it may be best to actually expose
distribution rather than trying to hide it. An obvious example is making use
of location-based services, which can often be found on mobile phones, such
as finding the nearest Chinese take-away or checking whether any of your
friends are nearby.

There are also other arguments against distribution transparency. Recog-
nizing that full distribution transparency is simply impossible, we should ask
ourselves whether it is even wise to pretend that we can achieve it. It may
be much better to make distribution explicit so that the user and applica-
tion developer are never tricked into believing that there is such a thing as
transparency. The result will be that users will much better understand the
(sometimes unexpected) behavior of a distributed system, and are thus much
better prepared to deal with this behavior.

Note 1.3 (Discussion: Against distribution transparency)
Several researchers have argued that hiding distribution will only lead to further
complicating the development of distributed systems, exactly for the reason that
full distribution transparency can never be achieved. A popular technique for
achieving access transparency is to extend procedure calls to remote servers. How-
ever, Waldo et al. [1997] already pointed out that attempting to hide distribution
by means of such remote procedure calls can lead to poorly understood semantics,
for the simple reason that a procedure call does change when executed over a
faulty communication link.

As an alternative, various researchers and practitioners are now arguing for
less transparency, for example, by more explicitly using message-style commu-
nication, or more explicitly posting requests to, and getting results from remote
machines, as is done in the Web when fetching pages. Such solutions will be
discussed in detail in the next chapter.

A somewhat radical standpoint is taken by Wams [2011] by stating that partial
failures preclude relying on the successful execution of a remote service. If such
reliability cannot be guaranteed, it is then best to always perform only local
executions, leading to the copy-before-use principle. According to this principle,
data can be accessed only after they have been transferred to the machine of the
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process wanting that data. Moreover, modifying a data item should not be done.
Instead, it can only be updated to a new version. It is not difficult to imagine
that many other problems will surface. However, Wams shows that many existing
applications can be retrofitted to this alternative approach without sacrificing
functionality.

The conclusion is that aiming for distribution transparency may be a
nice goal when designing and implementing distributed systems, but that
it should be considered together with other issues such as performance
and comprehensibility. The price for achieving full transparency may be
surprisingly high.

Being open

Another important goal of distributed systems is openness. An open dis-
tributed system is essentially a system that offers components that can easily
be used by, or integrated into other systems. At the same time, an open
distributed system itself will often consist of components that originate from
elsewhere.

Interoperability, composability, and extensibility

To be open means that components should adhere to standard rules that
describe the syntax and semantics of what those components have to offer (i.e.,
which service they provide). A general approach is to define services through
interfaces using an Interface Definition Language (IDL). Interface definitions
written in an IDL nearly always capture only the syntax of services. In other
words, they specify precisely the names of the functions that are available
together with types of the parameters, return values, possible exceptions that
can be raised, and so on. The hard part is specifying precisely what those
services do, that is, the semantics of interfaces. In practice, such specifications
are given in an informal way by means of natural language.

If properly specified, an interface definition allows an arbitrary process
that needs a certain interface, to talk to another process that provides that
interface. It also allows two independent parties to build completely different
implementations of those interfaces, leading to two separate components that
operate in exactly the same way.

Proper specifications are complete and neutral. Complete means that
everything that is necessary to make an implementation has indeed been
specified. However, many interface definitions are not at all complete, so
that it is necessary for a developer to add implementation-specific details.
Just as important is the fact that specifications do not prescribe what an
implementation should look like; they should be neutral.
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As pointed out in Blair and Stefani [1998], completeness and neutrality are
important for interoperability and portability. Interoperability characterizes
the extent by which two implementations of systems or components from
different manufacturers can co-exist and work together by merely relying
on each other’s services as specified by a common standard. Portability
characterizes to what extent an application developed for a distributed system
A can be executed, without modification, on a different distributed system B
that implements the same interfaces as A.

Another important goal for an open distributed system is that it should
be easy to configure the system out of different components (possibly from
different developers). Also, it should be easy to add new components or
replace existing ones without affecting those components that stay in place.
In other words, an open distributed system should also be extensible. For
example, in an extensible system, it should be relatively easy to add parts that
run on a different operating system, or even to replace an entire file system.

Note 1.4 (Discussion: Open systems in practice)
Of course, what we have just described is an ideal situation. Practice shows that
many distributed systems are not as open as we would like and that still a lot
of effort is needed to put various bits and pieces together to make a distributed
system. One way out of the lack of openness is to simply reveal all the gory
details of a component and to provide developers with the actual source code.
This approach is becoming increasingly popular, leading to so-called open source
projects where large groups of people contribute to improving and debugging
systems. Admittedly, this is as open as a system can get, but if it is the best way is
questionable.

Separating policy from mechanism

To achieve flexibility in open distributed systems, it is crucial that the system
be organized as a collection of relatively small and easily replaceable or
adaptable components. This implies that we should provide definitions of not
only the highest-level interfaces, that is, those seen by users and applications,
but also definitions for interfaces to internal parts of the system and describe
how those parts interact. This approach is relatively new. Many older and
even contemporary systems are constructed using a monolithic approach
in which components are only logically separated but implemented as one,
huge program. This approach makes it hard to replace or adapt a component
without affecting the entire system. Monolithic systems thus tend to be closed
instead of open.

The need for changing a distributed system is often caused by a component
that does not provide the optimal policy for a specific user or application.
As an example, consider caching in Web browsers. There are many different
parameters that need to be considered:
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Storage: Where is data to be cached? Typically, there will be an in-memory
cache next to storage on disk. In the latter case, the exact position in the
local file system needs to be considered.

Exemption: When the cache fills up, which data is to be removed so that
newly fetched pages can be stored?

Sharing: Does each browser make use of a private cache, or is a cache to be
shared among browsers of different users?

Refreshing: When does a browser check if cached data is still up-to-date?
Caches are most effective when a browser can return pages without
having to contact the original Web site. However, this bears the risk of
returning stale data. Note also that refresh rates are highly dependent
on which data is actually cached: whereas timetables for trains hardly
change, this is not the case for Web pages showing current highway-
traffic conditions, or worse yet, stock prices.

What we need is a separation between policy and mechanism. In the case
of Web caching, for example, a browser should ideally provide facilities for
only storing documents and at the same time allow users to decide which
documents are stored and for how long. In practice, this can be implemented
by offering a rich set of parameters that the user can set (dynamically). When
taking this a step further, a browser may even offer facilities for plugging in
policies that a user has implemented as a separate component.

Note 1.5 (Discussion: Is a strict separation really what we need?)
In theory, strictly separating policies from mechanisms seems to be the way to go.
However, there is an important trade-off to consider: the stricter the separation, the
more we need to make sure that we offer the appropriate collection of mechanisms.
In practice this means that a rich set of features is offered, in turn leading to many
configuration parameters. As an example, the popular Firefox browser comes
with a few hundred configuration parameters. Just imagine how the configuration
space explodes when considering large distributed systems consisting of many
components. In other words, strict separation of policies and mechanisms may
lead to highly complex configuration problems.

One option to alleviate these problems is to provide reasonable defaults, and
this is what often happens in practice. An alternative approach is one in which
the system observes its own usage and dynamically changes parameter settings.
This leads to what are known as self-configurable systems. Nevertheless, the
fact alone that many mechanisms need to be offered in order to support a wide
range of policies often makes coding distributed systems very complicated. Hard
coding policies into a distributed system may reduce complexity considerably,
but at the price of less flexibility.

Finding the right balance in separating policies from mechanisms is one of the
reasons why designing a distributed system is often more an art than a science.
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Being scalable

For many of us, worldwide connectivity through the Internet is as common
as being able to send a postcard to anyone anywhere around the world.
Moreover, where until recently we were used to having relatively powerful
desktop computers for office applications and storage, we are now witnessing
that such applications and services are being placed in what has been coined
“the cloud,” in turn leading to an increase of much smaller networked devices
such as tablet computers. With this in mind, scalability has become one of the
most important design goals for developers of distributed systems.

Scalability dimensions

Scalability of a system can be measured along at least three different dimen-
sions (see [Neuman, 1994]):

Size scalability: A system can be scalable with respect to its size, meaning
that we can easily add more users and resources to the system without
any noticeable loss of performance.

Geographical scalability: A geographically scalable system is one in which
the users and resources may lie far apart, but the fact that communication
delays may be significant is hardly noticed.

Administrative scalability: An administratively scalable system is one that
can still be easily managed even if it spans many independent adminis-
trative organizations.

Let us take a closer look at each of these three scalability dimensions.

Size scalability. When a system needs to scale, very different types of prob-
lems need to be solved. Let us first consider scaling with respect to size.
If more users or resources need to be supported, we are often confronted
with the limitations of centralized services, although often for very different
reasons. For example, many services are centralized in the sense that they
are implemented by means of a single server running on a specific machine
in the distributed system. In a more modern setting, we may have a group
of collaborating servers co-located on a cluster of tightly coupled machines
physically placed at the same location. The problem with this scheme is
obvious: the server, or group of servers, can simply become a bottleneck when
it needs to process an increasing number of requests. To illustrate how this
can happen, let us assume that a service is implemented on a single machine.
In that case there are essentially three root causes for becoming a bottleneck:

• The computational capacity, limited by the CPUs
• The storage capacity, including the I/O transfer rate
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• The network between the user and the centralized service

Let us first consider the computational capacity. Just imagine a service for
computing optimal routes taking real-time traffic information into account. It
is not difficult to imagine that this may be primarily a compute-bound service
requiring several (tens of) seconds to complete a request. If there is only a
single machine available, then even a modern high-end system will eventually
run into problems if the number of requests increases beyond a certain point.

Likewise, but for different reasons, we will run into problems when having
a service that is mainly I/O bound. A typical example is a poorly designed
centralized search engine. The problem with content-based search queries is
that we essentially need to match a query against an entire data set. Even
with advanced indexing techniques, we may still face the problem of having
to process a huge amount of data exceeding the main-memory capacity of
the machine running the service. As a consequence, much of the processing
time will be determined by the relatively slow disk accesses and transfer of
data between disk and main memory. Simply adding more or higher-speed
disks will prove not to be a sustainable solution as the number of requests
continues to increase.

Finally, the network between the user and the service may also be the cause
of poor scalability. Just imagine a video-on-demand service that needs to
stream high-quality video to multiple users. A video stream can easily require
a bandwidth of 8 to 10 Mbps, meaning that if a service sets up point-to-point
connections with its customers, it may soon hit the limits of the network
capacity of its own outgoing transmission lines.

There are several solutions to attack size scalability which we discuss
below after having looked into geographical and administrative scalability.

Note 1.6 (Advanced: Analyzing service capacity)
Size scalability problems for centralized services can be formally analyzed using
queuing theory and making a few simplifying assumptions. At a conceptual level,
a centralized service can be modeled as the simple queuing system shown in
Figure 1.3: requests are submitted to the service where they are queued until
further notice. As soon as the process can handle a next request, it fetches it from
the queue, does its work, and produces a response. We largely follow Menasce
and Almeida [2002] in explaining the performance of a centralized service.

Figure 1.3: A simple model of a service as a queuing system.

In many cases, we may assume that the queue has an infinite capacity, meaning
that there is no restriction on the number of requests that can be accepted for
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further processing. Strictly speaking, this means that the arrival rate of requests is
not influenced by what is currently in the queue or being processed. Assuming
that the arrival rate of requests is λ requests per second, and that the processing
capacity of the service is µ requests per second, one can compute that the fraction
of time pk that there are k requests in the system is equal to:

pk =
(
1− λ

µ

)(λ

µ

)k

If we define the utilization U of a service as the fraction of time that it is busy,
then clearly,

U = ∑
k>0

pk = 1− p0 =
λ

µ
⇒ pk = (1−U)Uk

We can then compute the average number N of requests in the system as

N = ∑
k≥0

k · pk = ∑
k≥0

k · (1−U)Uk = (1−U) ∑
k≥0

k ·Uk =
(1−U)U
(1−U)2 =

U
1−U

.

What we are really interested in, is the response time R: how long does it take
before the service to process a request, including the time spent in the queue.
To that end, we need the average throughput X. Considering that the service is
“busy” when at least one request is being processed, and that this then happens
with a throughput of µ requests per second, and during a fraction U of the total
time, we have:

X = U · µ︸ ︷︷ ︸
server at work

+ (1−U) · 0︸ ︷︷ ︸
server idle

=
λ

µ
· µ = λ

Using Little’s formula [Trivedi, 2002], we can then derive the response time as

R =
N
X

=
S

1−U
⇒ R

S
=

1
1−U

where S = 1
µ , the actual service time. Note that if U is very small, the response-

to-service time ratio is close to 1, meaning that a request is virtually instantly
processed, and at the maximum speed possible. However, as soon as the utilization
comes closer to 1, we see that the response-to-server time ratio quickly increases to
very high values, effectively meaning that the system is coming close to a grinding
halt. This is where we see scalability problems emerge. From this simple model,
we can see that the only solution is bringing down the service time S. We leave it
as an exercise to the reader to explore how S may be decreased.

Geographical scalability. Geographical scalability has its own problems.
One of the main reasons why it is still difficult to scale existing distributed
systems that were designed for local-area networks is that many of them are
based on synchronous communication. In this form of communication, a
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party requesting service, generally referred to as a client, blocks until a reply is
sent back from the server implementing the service. More specifically, we often
see a communication pattern consisting of many client-server interactions as
may be the case with database transactions. This approach generally works
fine in LANs where communication between two machines is often at worst
a few hundred microseconds. However, in a wide-area system, we need
to take into account that interprocess communication may be hundreds of
milliseconds, three orders of magnitude slower. Building applications using
synchronous communication in wide-area systems requires a great deal of
care (and not just a little patience), notably with a rich interaction pattern
between client and server.

Another problem that hinders geographical scalability is that communica-
tion in wide-area networks is inherently much less reliable than in local-area
networks. In addition, we also need to deal with limited bandwidth. The
effect is that solutions developed for local-area networks cannot always be
easily ported to a wide-area system. A typical example is streaming video. In
a home network, even when having only wireless links, ensuring a stable, fast
stream of high-quality video frames from a media server to a display is quite
simple. Simply placing that same server far away and using a standard TCP
connection to the display will surely fail: bandwidth limitations will instantly
surface, but also maintaining the same level of reliability can easily cause
headaches.

Yet another issue that pops up when components lie far apart is the
fact that wide-area systems generally have only very limited facilities for
multipoint communication. In contrast, local-area networks often support
efficient broadcasting mechanisms. Such mechanisms have proven to be
extremely useful for discovering components and services, which is essential
from a management point of view. In wide-area systems, we need to develop
separate services, such as naming and directory services to which queries can
be sent. These support services, in turn, need to be scalable as well and in
many cases no obvious solutions exist as we will encounter in later chapters.

Administrative scalability. Finally, a difficult, and in many cases open, ques-
tion is how to scale a distributed system across multiple, independent adminis-
trative domains. A major problem that needs to be solved is that of conflicting
policies with respect to resource usage (and payment), management, and
security.

To illustrate, for many years scientists have been looking for solutions to
share their (often expensive) equipment in what is known as a computational
grid. In these grids, a global distributed system is constructed as a federation
of local distributed systems, allowing a program running on a computer at
organization A to directly access resources at organization B.

For example, many components of a distributed system that reside within
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a single domain can often be trusted by users that operate within that same
domain. In such cases, system administration may have tested and certified
applications, and may have taken special measures to ensure that such com-
ponents cannot be tampered with. In essence, the users trust their system
administrators. However, this trust does not expand naturally across domain
boundaries.

Note 1.7 (Example: A modern radio telescope)
As an example, consider developing a modern radio telescope, such as the Pierre
Auger Observatory [Abraham et al., 2004]. The final system can be considered as
a federated distributed system:

• The radio telescope itself may be a wireless distributed system developed
as a grid of a few thousand sensor nodes, each collecting radio signals
and collaborating with neighboring nodes to filter out relevant events. The
nodes dynamically maintain a sink tree by which selected events are routed
to a central point for further analysis.

• The central point needs to be a reasonably powerful system, capable of
storing and processing the events sent to it by the sensor nodes. This system
is necessarily placed in proximity of the sensor nodes, but is otherwise to
be considered to operate independently. Depending on its functionality, it
may operate as a small local distributed system. In particular, it stores all
recorded events and offers access to remote systems owned by partners in
the consortium.

• Most partners have local distributed systems (often in the form of a cluster
of computers) that they use to further process the data collected by the
telescope. In this case, the local systems directly access the central point at
the telescope using a standard communication protocol. Naturally, many
results produced within the consortium are made available to each partner.

It is thus seen that the complete system will cross boundaries of several adminis-
trative domains, and that special measures are needed to ensure that data that
is supposed to be accessible only to (specific) consortium partners cannot be
disclosed to unauthorized parties. How to achieve administrative scalability is
not obvious.

If a distributed system expands to another domain, two types of security
measures need to be taken. First, the distributed system has to protect
itself against malicious attacks from the new domain. For example, users
from the new domain may have only read access to the file system in its
original domain. Likewise, facilities such as expensive image setters or high-
performance computers may not be made available to unauthorized users.
Second, the new domain has to protect itself against malicious attacks from
the distributed system. A typical example is that of downloading programs
such as applets in Web browsers. Basically, the new domain does not know
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what to expect from such foreign code. The problem, as we shall see in
Chapter 9, is how to enforce those limitations.

As a counterexample of distributed systems spanning multiple adminis-
trative domains that apparently do not suffer from administrative scalability
problems, consider modern file-sharing peer-to-peer networks. In these cases,
end users simply install a program implementing distributed search and
download functions and within minutes can start downloading files. Other ex-
amples include peer-to-peer applications for telephony over the Internet such
as Skype [Baset and Schulzrinne, 2006], and peer-assisted audio-streaming
applications such as Spotify [Kreitz and Niemelä, 2010]. What these dis-
tributed systems have in common is that end users, and not administrative
entities, collaborate to keep the system up and running. At best, underlying
administrative organizations such as Internet Service Providers (ISPs) can
police the network traffic that these peer-to-peer systems cause, but so far
such efforts have not been very effective.

Scaling techniques

Having discussed some of the scalability problems brings us to the question
of how those problems can generally be solved. In most cases, scalability
problems in distributed systems appear as performance problems caused by
limited capacity of servers and network. Simply improving their capacity (e.g.,
by increasing memory, upgrading CPUs, or replacing network modules) is
often a solution, referred to as scaling up. When it comes to scaling out, that
is, expanding the distributed system by essentially deploying more machines,
there are basically only three techniques we can apply: hiding communication
latencies, distribution of work, and replication (see also Neuman [1994]).

Hiding communication latencies. Hiding communication latencies is appli-
cable in the case of geographical scalability. The basic idea is simple: try to
avoid waiting for responses to remote-service requests as much as possible.
For example, when a service has been requested at a remote machine, an
alternative to waiting for a reply from the server is to do other useful work at
the requester’s side. Essentially, this means constructing the requesting appli-
cation in such a way that it uses only asynchronous communication. When
a reply comes in, the application is interrupted and a special handler is called
to complete the previously issued request. Asynchronous communication
can often be used in batch-processing systems and parallel applications in
which independent tasks can be scheduled for execution while another task is
waiting for communication to complete. Alternatively, a new thread of control
can be started to perform the request. Although it blocks waiting for the reply,
other threads in the process can continue.

However, there are many applications that cannot make effective use of
asynchronous communication. For example, in interactive applications when
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(a)

(b)

Figure 1.4: The difference between letting (a) a server or (b) a client check
forms as they are being filled.

a user sends a request he will generally have nothing better to do than to
wait for the answer. In such cases, a much better solution is to reduce the
overall communication, for example, by moving part of the computation that
is normally done at the server to the client process requesting the service. A
typical case where this approach works is accessing databases using forms.
Filling in forms can be done by sending a separate message for each field and
waiting for an acknowledgment from the server, as shown in Figure 1.4(a). For
example, the server may check for syntactic errors before accepting an entry.
A much better solution is to ship the code for filling in the form, and possibly
checking the entries, to the client, and have the client return a completed
form, as shown in Figure 1.4(b). This approach of shipping code is widely
supported by the Web by means of Java applets and Javascript.

Partitioning and distribution. Another important scaling technique is par-
titioning and distribution, which involves taking a component, splitting it
into smaller parts, and subsequently spreading those parts across the system.
A good example of partitioning and distribution is the Internet Domain Name
System (DNS). The DNS name space is hierarchically organized into a tree
of domains, which are divided into nonoverlapping zones, as shown for the
original DNS in Figure 1.5. The names in each zone are handled by a single
name server. Without going into too many details now (we return to DNS
extensively in Chapter 5), one can think of each path name being the name of
a host in the Internet, and is thus associated with a network address of that

downloaded by OLEXANDER.PERIG@GMAIL.COM DS 3.02



22 CHAPTER 1. INTRODUCTION

host. Basically, resolving a name means returning the network address of the
associated host. Consider, for example, the name flits.cs.vu.nl. To resolve this
name, it is first passed to the server of zone Z1 (see Figure 1.5) which returns
the address of the server for zone Z2, to which the rest of name, flits.cs.vu, can
be handed. The server for Z2 will return the address of the server for zone
Z3, which is capable of handling the last part of the name and will return the
address of the associated host.

Figure 1.5: An example of dividing the (original) DNS name space into zones.

This examples illustrates how the naming service, as provided by DNS, is
distributed across several machines, thus avoiding that a single server has to
deal with all requests for name resolution.

As another example, consider the World Wide Web. To most users, the
Web appears to be an enormous document-based information system in which
each document has its own unique name in the form of a URL. Conceptually,
it may even appear as if there is only a single server. However, the Web is
physically partitioned and distributed across a few hundred million servers,
each handling a number of Web documents. The name of the server handling
a document is encoded into that document’s URL. It is only because of this
distribution of documents that the Web has been capable of scaling to its
current size.

Replication. Considering that scalability problems often appear in the form
of performance degradation, it is generally a good idea to actually repli-
cate components across a distributed system. Replication not only increases
availability, but also helps to balance the load between components leading
to better performance. Also, in geographically widely dispersed systems,
having a copy nearby can hide much of the communication latency problems
mentioned before.

Caching is a special form of replication, although the distinction between
the two is often hard to make or even artificial. As in the case of replication,
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caching results in making a copy of a resource, generally in the proximity of
the client accessing that resource. However, in contrast to replication, caching
is a decision made by the client of a resource and not by the owner of a
resource.

There is one serious drawback to caching and replication that may ad-
versely affect scalability. Because we now have multiple copies of a resource,
modifying one copy makes that copy different from the others. Consequently,
caching and replication leads to consistency problems.

To what extent inconsistencies can be tolerated depends highly on the
usage of a resource. For example, many Web users find it acceptable that
their browser returns a cached document of which the validity has not been
checked for the last few minutes. However, there are also many cases in which
strong consistency guarantees need to be met, such as in the case of electronic
stock exchanges and auctions. The problem with strong consistency is that
an update must be immediately propagated to all other copies. Moreover, if
two updates happen concurrently, it is often also required that updates are
processed in the same order everywhere, introducing an additional global
ordering problem. To further aggravate problems, combining consistency with
other desirable properties such as availability may simply be impossible, as
we discuss in Chapter 8.

Replication therefore often requires some global synchronization mecha-
nism. Unfortunately, such mechanisms are extremely hard or even impossible
to implement in a scalable way, if alone because network latencies have a nat-
ural lower bound. Consequently, scaling by replication may introduce other,
inherently nonscalable solutions. We return to replication and consistency
extensively in Chapter 7.

Discussion. When considering these scaling techniques, one could argue
that size scalability is the least problematic from a technical point of view. In
many cases, increasing the capacity of a machine will save the day, although
perhaps there is a high monetary cost to pay. Geographical scalability is a
much tougher problem as network latencies are naturally bound from below.
As a consequence, we may be forced to copy data to locations close to where
clients are, leading to problems of maintaining copies consistent. Practice
shows that combining distribution, replication, and caching techniques with
different forms of consistency generally leads to acceptable solutions. Finally,
administrative scalability seems to be the most difficult problem to solve,
partly because we need to deal with nontechnical issues, such as politics of or-
ganizations and human collaboration. The introduction and now widespread
use of peer-to-peer technology has successfully demonstrated what can be
achieved if end users are put in control [Lua et al., 2005; Oram, 2001]. How-
ever, peer-to-peer networks are obviously not the universal solution to all
administrative scalability problems.
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Pitfalls

It should be clear by now that developing a distributed system is a formidable
task. As we will see many times throughout this book, there are so many
issues to consider at the same time that it seems that only complexity can
be the result. Nevertheless, by following a number of design principles,
distributed systems can be developed that strongly adhere to the goals we set
out in this chapter.

Distributed systems differ from traditional software because components
are dispersed across a network. Not taking this dispersion into account during
design time is what makes so many systems needlessly complex and results in
flaws that need to be patched later on. Peter Deutsch, at the time working at
Sun Microsystems, formulated these flaws as the following false assumptions
that everyone makes when developing a distributed application for the first
time:

• The network is reliable
• The network is secure
• The network is homogeneous
• The topology does not change
• Latency is zero
• Bandwidth is infinite
• Transport cost is zero
• There is one administrator

Note how these assumptions relate to properties that are unique to dis-
tributed systems: reliability, security, heterogeneity, and topology of the
network; latency and bandwidth; transport costs; and finally administrative
domains. When developing nondistributed applications, most of these issues
will most likely not show up.

Most of the principles we discuss in this book relate immediately to these
assumptions. In all cases, we will be discussing solutions to problems that
are caused by the fact that one or more assumptions are false. For example,
reliable networks simply do not exist and lead to the impossibility of achieving
failure transparency. We devote an entire chapter to deal with the fact that
networked communication is inherently insecure. We have already argued
that distributed systems need to be open and take heterogeneity into account.
Likewise, when discussing replication for solving scalability problems, we
are essentially tackling latency and bandwidth problems. We will also touch
upon management issues at various points throughout this book.

1.3 Types of distributed systems

Before starting to discuss the principles of distributed systems, let us first
take a closer look at the various types of distributed systems. We make a
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distinction between distributed computing systems, distributed information
systems, and pervasive systems (which are naturally distributed).

High performance distributed computing

An important class of distributed systems is the one used for high-performance
computing tasks. Roughly speaking, one can make a distinction between two
subgroups. In cluster computing the underlying hardware consists of a
collection of similar workstations or PCs, closely connected by means of a
high-speed local-area network. In addition, each node runs the same operating
system.

The situation becomes very different in the case of grid computing. This
subgroup consists of distributed systems that are often constructed as a
federation of computer systems, where each system may fall under a different
administrative domain, and may be very different when it comes to hardware,
software, and deployed network technology.

From the perspective of grid computing, a next logical step is to simply
outsource the entire infrastructure that is needed for compute-intensive ap-
plications. In essence, this is what cloud computing is all about: providing
the facilities to dynamically construct an infrastructure and compose what
is needed from available services. Unlike grid computing, which is strongly
associated with high-performance computing, cloud computing is much more
than just providing lots of resources. We discuss it briefly here, but will return
to various aspects throughout the book.

Note 1.8 (More information: Parallel processing)
High-performance computing more or less started with the introduction of mul-
tiprocessor machines. In this case, multiple CPUs are organized in such a way
that they all have access to the same physical memory, as shown in Figure 1.6(a).
In contrast, in a multicomputer system several computers are connected through
a network and there is no sharing of main memory, as shown in Figure 1.6(b).
The shared-memory model proved to be highly convenient for improving the
performance of programs and it was relatively easy to program.

Its essence is that multiple threads of control are executing at the same time,
while all threads have access to shared data. Access to that data is controlled
through well-understood synchronization mechanisms like semaphores (see Ben-
Ari [2006] or Herlihy and Shavit [2008] for more information on developing
parallel programs). Unfortunately, the model does not easily scale: so far, ma-
chines have been developed in which only a few tens (and sometimes hundreds)
of CPUs have efficient access to shared memory. To a certain extent, we are seeing
the same limitations for multicore processors.
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(a) (b)

Figure 1.6: A comparison between (a) multiprocessor and (b) multicom-
puter architectures.

To overcome the limitations of shared-memory systems, high-performance
computing moved to distributed-memory systems. This shift also meant that many
programs had to make use of message passing instead of modifying shared data as
a means of communication and synchronization between threads. Unfortunately,
message-passing models have proven to be much more difficult and error-prone
compared to the shared-memory programming models. For this reason, there
has been significant research in attempting to build so-called distributed shared-
memory multicomputers, or simply DSM system [Amza et al., 1996].

In essence, a DSM system allows a processor to address a memory location
at another computer as if it were local memory. This can be achieved using
existing techniques available to the operating system, for example, by mapping all
main-memory pages of the various processors into a single virtual address space.
Whenever a processor A addresses a page located at another processor B, a page
fault occurs at A allowing the operating system at A to fetch the content of the
referenced page at B in the same way that it would normally fetch it locally from
disk. At the same time, processor B would be informed that the page is currently
not accessible.

This elegant idea of mimicking shared-memory systems using multicomputers
eventually had to be abandoned for the simple reason that performance could
never meet the expectations of programmers, who would rather resort to far
more intricate, yet better (predictably) performing message-passing programming
models.

An important side-effect of exploring the hardware-software boundaries of
parallel processing is a thorough understanding of consistency models, to which
we return extensively in Chapter 7.

Cluster computing

Cluster computing systems became popular when the price/performance
ratio of personal computers and workstations improved. At a certain point, it
became financially and technically attractive to build a supercomputer using
off-the-shelf technology by simply hooking up a collection of relatively simple
computers in a high-speed network. In virtually all cases, cluster computing is
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used for parallel programming in which a single (compute intensive) program
is run in parallel on multiple machines.

Figure 1.7: An example of a cluster computing system.

One widely applied example of a cluster computer is formed by Linux-
based Beowulf clusters, of which the general configuration is shown in Fig-
ure 1.7. Each cluster consists of a collection of compute nodes that are con-
trolled and accessed by means of a single master node. The master typically
handles the allocation of nodes to a particular parallel program, maintains
a batch queue of submitted jobs, and provides an interface for the users of
the system. As such, the master actually runs the middleware needed for the
execution of programs and management of the cluster, while the compute
nodes are equipped with a standard operating system extended with typical
middleware functions for communication, storage, fault tolerance, and so on.
Apart from the master node, the compute nodes are thus seen to be highly
identical.

An even more symmetric approach is followed in the MOSIX system [Amar
et al., 2004]. MOSIX attempts to provide a single-system image of a cluster,
meaning that to a process a cluster computer offers the ultimate distribution
transparency by appearing to be a single computer. As we mentioned, pro-
viding such an image under all circumstances is impossible. In the case of
MOSIX, the high degree of transparency is provided by allowing processes
to dynamically and preemptively migrate between the nodes that make up
the cluster. Process migration allows a user to start an application on any
node (referred to as the home node), after which it can transparently move to
other nodes, for example, to make efficient use of resources. We will return to
process migration in Chapter 3. Similar approaches at attempting to provide
a single-system image are compared by [Lottiaux et al., 2005].

However, several modern cluster computers have been moving away from
these symmetric architectures to more hybrid solutions in which the middle-
ware is functionally partitioned across different nodes, as explained by En-
gelmann et al. [2007]. The advantage of such a separation is obvious: having
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compute nodes with dedicated, lightweight operating systems will most likely
provide optimal performance for compute-intensive applications. Likewise,
storage functionality can most likely be optimally handled by other specially
configured nodes such as file and directory servers. The same holds for other
dedicated middleware services, including job management, database services,
and perhaps general Internet access to external services.

Grid computing

A characteristic feature of traditional cluster computing is its homogeneity.
In most cases, the computers in a cluster are largely the same, have the
same operating system, and are all connected through the same network.
However, as we just discussed, there has been a trend towards more hybrid
architectures in which nodes are specifically configured for certain tasks. This
diversity is even more prevalent in grid computing systems: no assumptions
are made concerning similarity of hardware, operating systems, networks,
administrative domains, security policies, etc.

A key issue in a grid-computing system is that resources from different
organizations are brought together to allow the collaboration of a group of
people from different institutions, indeed forming a federation of systems.
Such a collaboration is realized in the form of a virtual organization. The
processes belonging to the same virtual organization have access rights to the
resources that are provided to that organization. Typically, resources consist of
compute servers (including supercomputers, possibly implemented as cluster
computers), storage facilities, and databases. In addition, special networked
devices such as telescopes, sensors, etc., can be provided as well.

Given its nature, much of the software for realizing grid computing evolves
around providing access to resources from different administrative domains,
and to only those users and applications that belong to a specific virtual
organization. For this reason, focus is often on architectural issues. An
architecture initially proposed by Foster et al. [2001] is shown in Figure 1.8,
which still forms the basis for many grid computing systems.

Figure 1.8: A layered architecture for grid computing systems.
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The architecture consists of four layers. The lowest fabric layer provides
interfaces to local resources at a specific site. Note that these interfaces are
tailored to allow sharing of resources within a virtual organization. Typically,
they will provide functions for querying the state and capabilities of a resource,
along with functions for actual resource management (e.g., locking resources).

The connectivity layer consists of communication protocols for supporting
grid transactions that span the usage of multiple resources. For example,
protocols are needed to transfer data between resources, or to simply access
a resource from a remote location. In addition, the connectivity layer will
contain security protocols to authenticate users and resources. Note that in
many cases human users are not authenticated; instead, programs acting on
behalf of the users are authenticated. In this sense, delegating rights from
a user to programs is an important function that needs to be supported in
the connectivity layer. We return to delegation when discussing security in
distributed systems in Chapter 9.

The resource layer is responsible for managing a single resource. It uses the
functions provided by the connectivity layer and calls directly the interfaces
made available by the fabric layer. For example, this layer will offer functions
for obtaining configuration information on a specific resource, or, in general,
to perform specific operations such as creating a process or reading data. The
resource layer is thus seen to be responsible for access control, and hence will
rely on the authentication performed as part of the connectivity layer.

The next layer in the hierarchy is the collective layer. It deals with handling
access to multiple resources and typically consists of services for resource
discovery, allocation and scheduling of tasks onto multiple resources, data
replication, and so on. Unlike the connectivity and resource layer, each
consisting of a relatively small, standard collection of protocols, the collective
layer may consist of many different protocols reflecting the broad spectrum of
services it may offer to a virtual organization.

Finally, the application layer consists of the applications that operate within a
virtual organization and which make use of the grid computing environment.

Typically the collective, connectivity, and resource layer form the heart of
what could be called a grid middleware layer. These layers jointly provide
access to and management of resources that are potentially dispersed across
multiple sites.

An important observation from a middleware perspective is that in grid
computing the notion of a site (or administrative unit) is common. This
prevalence is emphasized by the gradual shift toward a service-oriented ar-
chitecture in which sites offer access to the various layers through a collection
of Web services [Joseph et al., 2004]. This, by now, has lead to the definition
of an alternative architecture known as the Open Grid Services Architecture
(OGSA) [Foster et al., 2006]. OGSA is based upon the original ideas as for-
mulated by Foster et al. [2001], yet having gone through a standardization
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process makes it complex, to say the least. OGSA implementations generally
follow Web service standards.

Cloud computing

While researchers were pondering on how to organize computational grids
that were easily accessible, organizations in charge of running data centers
were facing the problem of opening up their resources to customers. Eventu-
ally, this lead to the concept of utility computing by which a customer could
upload tasks to a data center and be charged on a per-resource basis. Utility
computing formed the basis for what is now called cloud computing.

Following Vaquero et al. [2008], cloud computing is characterized by an
easily usable and accessible pool of virtualized resources. Which and how
resources are used can be configured dynamically, providing the basis for
scalability: if more work needs to be done, a customer can simply acquire
more resources. The link to utility computing is formed by the fact that cloud
computing is generally based on a pay-per-use model in which guarantees
are offered by means of customized service level agreements (SLAs).

Figure 1.9: The organization of clouds (adapted from Zhang et al. [2010]).

In practice, clouds are organized into four layers, as shown in Figure 1.9
(see also Zhang et al. [2010]):

Hardware: The lowest layer is formed by the means to manage the necessary
hardware: processors, routers, but also power and cooling systems. It is
generally implemented at data centers and contains the resources that
customers normally never get to see directly.

Infrastructure: This is an important layer forming the backbone for most
cloud computing platforms. It deploys virtualization techniques (dis-
cussed in Section 3.2) to provide customers an infrastructure consisting
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of virtual storage and computing resources. Indeed, nothing is what
it seems: cloud computing evolves around allocating and managing
virtual storage devices and virtual servers.

Platform: One could argue that the platform layer provides to a cloud-
computing customer what an operating system provides to application
developers, namely the means to easily develop and deploy applications
that need to run in a cloud. In practice, an application developer is
offered a vendor-specific API, which includes calls to uploading and ex-
ecuting a program in that vendor’s cloud. In a sense, this is comparable
the Unix exec family of system calls, which take an executable file as
parameter and pass it to the operating system to be executed.

Also like operating systems, the platform layer provides higher-level
abstractions for storage and such. For example, as we discuss in more
detail later, the Amazon S3 storage system [Murty, 2008] is offered to the
application developer in the form of an API allowing (locally created)
files to be organized and stored in buckets. A bucket is somewhat
comparable to a directory. By storing a file in a bucket, that file is
automatically uploaded to the Amazon cloud.

Application: Actual applications run in this layer and are offered to users
for further customization. Well-known examples include those found
in office suites (text processors, spreadsheet applications, presentation
applications, and so on). It is important to realize that these applica-
tions are again executed in the vendor’s cloud. As before, they can be
compared to the traditional suite of applications that are shipped when
installing an operating system.

Cloud-computing providers offer these layers to their customers through
various interfaces (including command-line tools, programming interfaces,
and Web interfaces), leading to three different types of services:

• Infrastructure-as-a-Service (IaaS) covering the hardware and infrastructure
layer

• Platform-as-a-Service (PaaS) covering the platform layer
• Software-as-a-Service (SaaS) in which their applications are covered

As of now, making use of clouds is relatively easy, and we discuss in later
chapters more concrete examples of interfaces to cloud providers. As a
consequence, cloud computing as a means for outsourcing local computing
infrastructures has become a serious option for many enterprises. However,
there are still a number of serious obstacles including provider lock-in, security
and privacy issues, and dependency on the availability of services, to mention
a few (see also Armbrust et al. [2010]). Also, because the details on how
specific cloud computations are actually carried out are generally hidden, and
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even perhaps unknown or unpredictable, meeting performance demands may
be impossible to arrange in advance. On top of this, Li et al. [2010] have shown
that different providers may easily show very different performance profiles.
Cloud computing is no longer a hype, and certainly a serious alternative
to maintaining huge local infrastructures, yet there is still a lot of room for
improvement.

Note 1.9 (Advanced: Is cloud computing cheaper?)
One of the important reasons to migrate to a cloud environment is that it may be
much cheaper compared to maintaining a local computing infrastructure. There
are many ways to compute the savings, but as it turns out, only for simple and
obvious cases will straightforward computations give a realistic perspective. Hajjat
et al. [2010] propose a more thorough approach, taking into account that part of
an application suite is migrated to a cloud, and the other part continues to be
operated on a local infrastructure. The crux of their method is providing the right
model of a suite of enterprise applications.

The core of their approach is formed by a potentially large set of software
components. Each enterprise application is assumed to consist of components.
Furthermore, each component Ci is considered to be run on Ni servers. A simple
example is a database component to be executed by a single server. A more
elaborate example is a Web application for computing bicycle routes, consisting
of a Web server front end for rendering HTML pages and accepting user input, a
component for computing shortest paths (perhaps under different constraints),
and a database component containing various maps.

Each application is modeled as a directed graph, in which a vertex represents
a component and an arc 〈−→i, j〉 the fact that data flows from component Ci to
component Cj. Each arc has two associated weights: Ti,j represents the number of
transactions per time unit leading to data flowing from Ci to Cj, and Si,j the average
size of those transactions (i.e., the average amount of data per transaction). They
assume that Ti,j and Si,j are known, typically obtained through straightforward
measurements.

Migrating a suite of applications from a local infrastructure to the cloud
then boils down to finding an optimal migration plan M: figuring out for each
component Ci, how many ni of its Ni servers should be moved to the cloud, such
that the monetary benefits resulting from M, reduced by the additional costs for
communicating over the Internet, are maximal. A plan M should also meet the
following constraints:

1. Policy constraints are met. For example, there may be data that is legally
required to be located at an organization’s local infrastructure.

2. Because communication is now partly across long-haul Internet links, it may
be that certain transactions between components become much slower. A
plan M is acceptable only if any additional latencies do not violate specific
delay constraints.

3. Flow balance equations should be respected: transactions continue to
operate correctly, and requests or data are not lost during a transaction.
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Let us now look into the benefits and Internet costs of a migration plan.

Benefits For each migration plan M, one can expect to have monetary savings
expressed as Benefits(M), because fewer machines or network connections need to
be maintained. In many organizations, such costs are known so that it may be
relatively simple to compute the savings. On the other hand, there are costs to
be made for using the cloud. Hajjat et al. [2010] make a simplifying distinction
between the benefit Bc of migrating a compute-intensive component, and the
benefit Bs of migrating a storage-intensive component. If there are Mc compute-
intensive and Ms storage-intensive components, we have Benefits(M) = Bc ·Mc +
Bs ·Ms. Obviously, much more sophisticated models can be deployed as well.

Internet costs To compute the increased communication costs because com-
ponents are spread across the cloud as well as the local infrastructure, we need
to take user-initiated requests into account. To simplify matters, we make no
distinction between internal users (i.e., members of the enterprise), and external
users (as one would see in the case of Web applications). Traffic from users before
migration can be expressed as:

Trlocal,inet = ∑
Ci

(Tuser,iSuser,i + Ti,userSi,user)

where Tuser,i denotes the number of transactions per time unit leading to data
flowing from users to Ci. We have analogous interpretations for Ti,user, Suseri , and
Si,user.

For each component Ci, let Ci,local denote the servers that continue to operate
on the local infrastructure, and Ci,cloud its servers that are placed in the cloud. Note
that |Ci,cloud| = ni. For simplicity, assume that a server from Ci,local distributes
traffic in the same proportions as a server from Ci,cloud. We are interested in
the rate of transactions between local servers, cloud servers, and between local
and cloud servers, after migration. Let sk be the server for component Ck and
denote by fk the fraction nk/Nk. We then have for the rate of transactions T∗i,j after
migration:

T∗i,j =


(1− fi) · (1− f j) · Ti,j when si ∈ Ci,local and sj ∈ Cj,local

(1− fi) · f j · Ti,j when si ∈ Ci,local and sj ∈ Cj,cloud

fi · (1− f j) · Ti,j when si ∈ Ci,cloud and sj ∈ Cj,local

fi · f j · Ti,j when si ∈ Ci,cloud and sj ∈ Cj,cloud

S∗i,j is the amount of data associated with T∗i,j. Note that fk denotes the fraction of
servers of component Ck that are moved to the cloud. In other words, (1− fk) is
the fraction that stays in the local infrastructure. We leave it to the reader to give
an expression for T∗i,user.

Finally, let costlocal,inet and costcloud,inet denote the per-unit Internet costs for
traffic to and from the local infrastructure and cloud, respectively. Ignoring a few
subtleties explained in [Hajjat et al., 2010], we can then compute the local Internet
traffic after migration as:

Tr∗local,inet = ∑
Ci,local ,Cj,local

(T∗i,jS
∗
i,j + T∗j,iS

∗
j,i) + ∑

Cj,local

(T∗user,jS
∗
user,j + T∗j,userS∗j,user)
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and, likewise, for the cloud Internet traffic after migration:

Tr∗cloud,inet = ∑
Ci,cloud ,Cj,cloud

(T∗i,jS
∗
i,j + T∗j,iS

∗
j,i) + ∑

Cj,cloud

(T∗user,jS
∗
user,j + T∗j,userS∗j,user)

Together, this leads to a model for the increase in Internet communication costs:

costlocal,inet(Tr∗local,inet − Trlocal,inet) + costcloud,inetTr∗cloud,inet

Clearly, answering the question whether moving to the cloud is cheaper requires a
lot of detailed information and careful planning of exactly what to migrate. Hajjat
et al. [2010] provide a first step toward making an informed decision. Their model
is more detailed than we are willing to explain here. An important aspect that
we have not touched upon is that migrating components also means that special
attention will have to be paid to migrating security components. The interested
reader is referred to their paper.

Distributed information systems

Another important class of distributed systems is found in organizations
that were confronted with a wealth of networked applications, but for which
interoperability turned out to be a painful experience. Many of the existing
middleware solutions are the result of working with an infrastructure in which
it was easier to integrate applications into an enterprise-wide information
system [Alonso et al., 2004; Bernstein, 1996; Hohpe and Woolf, 2004].

We can distinguish several levels at which integration can take place. In
many cases, a networked application simply consists of a server running that
application (often including a database) and making it available to remote
programs, called clients. Such clients send a request to the server for executing
a specific operation, after which a response is sent back. Integration at the
lowest level allows clients to wrap a number of requests, possibly for different
servers, into a single larger request and have it executed as a distributed
transaction. The key idea is that all, or none of the requests are executed.

As applications became more sophisticated and were gradually separated
into independent components (notably distinguishing database components
from processing components), it became clear that integration should also
take place by letting applications communicate directly with each other. This
has now lead to a huge industry that concentrates on Enterprise Application
Integration (EAI).

Distributed transaction processing

To clarify our discussion, we concentrate on database applications. In practice,
operations on a database are carried out in the form of transactions. Pro-
gramming using transactions requires special primitives that must either be
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supplied by the underlying distributed system or by the language runtime
system. Typical examples of transaction primitives are shown in Figure 1.10.
The exact list of primitives depends on what kinds of objects are being used
in the transaction [Gray and Reuter, 1993; Bernstein and Newcomer, 2009]. In
a mail system, there might be primitives to send, receive, and forward mail.
In an accounting system, they might be quite different. READ and WRITE are
typical examples, however. Ordinary statements, procedure calls, and so on,
are also allowed inside a transaction. In particular, remote procedure calls
(RPCs), that is, procedure calls to remote servers, are often also encapsulated
in a transaction, leading to what is known as a transactional RPC. We discuss
RPCs extensively in Section 4.2.

Primitive Description
BEGIN_TRANSACTION Mark the start of a transaction
END_TRANSACTION Terminate the transaction and try to commit
ABORT_TRANSACTION Kill the transaction and restore the old values
READ Read data from a file, a table, or otherwise
WRITE Write data to a file, a table, or otherwise

Figure 1.10: Example primitives for transactions.

BEGIN_TRANSACTION and END_TRANSACTION are used to delimit the
scope of a transaction. The operations between them form the body of the
transaction. The characteristic feature of a transaction is either all of these
operations are executed or none are executed. These may be system calls,
library procedures, or bracketing statements in a language, depending on the
implementation.

This all-or-nothing property of transactions is one of the four characteristic
properties that transactions have. More specifically, transactions adhere to the
so-called ACID properties:

• Atomic: To the outside world, the transaction happens indivisibly
• Consistent: The transaction does not violate system invariants
• Isolated: Concurrent transactions do not interfere with each other
• Durable: Once a transaction commits, the changes are permanent

In distributed systems, transactions are often constructed as a number of
subtransactions, jointly forming a nested transaction as shown in Figure 1.11.
The top-level transaction may fork off children that run in parallel with one
another, on different machines, to gain performance or simplify programming.
Each of these children may also execute one or more subtransactions, or fork
off its own children.

Subtransactions give rise to a subtle, but important, problem. Imagine
that a transaction starts several subtransactions in parallel, and one of these

downloaded by OLEXANDER.PERIG@GMAIL.COM DS 3.02



36 CHAPTER 1. INTRODUCTION

Figure 1.11: A nested transaction.

commits, making its results visible to the parent transaction. After further
computation, the parent aborts, restoring the entire system to the state it
had before the top-level transaction started. Consequently, the results of
the subtransaction that committed must nevertheless be undone. Thus the
permanence referred to above applies only to top-level transactions.

Since transactions can be nested arbitrarily deep, considerable administra-
tion is needed to get everything right. The semantics are clear, however. When
any transaction or subtransaction starts, it is conceptually given a private copy
of all data in the entire system for it to manipulate as it wishes. If it aborts,
its private universe just vanishes, as if it had never existed. If it commits,
its private universe replaces the parent’s universe. Thus if a subtransaction
commits and then later a new subtransaction is started, the second one sees
the results produced by the first one. Likewise, if an enclosing (higher level)
transaction aborts, all its underlying subtransactions have to be aborted as
well. And if several transactions are started concurrently, the result is as if
they ran sequentially in some unspecified order.

Nested transactions are important in distributed systems, for they provide
a natural way of distributing a transaction across multiple machines. They
follow a logical division of the work of the original transaction. For example,
a transaction for planning a trip by which three different flights need to be
reserved can be logically split up into three subtransactions. Each of these
subtransactions can be managed separately and independently of the other
two.

In the early days of enterprise middleware systems, the component that
handled distributed (or nested) transactions formed the core for integrating
applications at the server or database level. This component was called a
transaction processing monitor or TP monitor for short. Its main task was
to allow an application to access multiple server/databases by offering it a
transactional programming model, as shown in Figure 1.12. Essentially, the TP
monitor coordinated the commitment of subtransactions following a standard
protocol known as distributed commit, which we discuss in Section 8.5.
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Figure 1.12: The role of a TP monitor in distributed systems.

An important observation is that applications wanting to coordinate sev-
eral subtransactions into a single transaction did not have to implement this
coordination themselves. By simply making use of a TP monitor, this coordi-
nation was done for them. This is exactly where middleware comes into play:
it implements services that are useful for many applications avoiding that
such services have to be reimplemented over and over again by application
developers.

Enterprise application integration

As mentioned, the more applications became decoupled from the databases
they were built upon, the more evident it became that facilities were needed
to integrate applications independently from their databases. In particular, ap-
plication components should be able to communicate directly with each other
and not merely by means of the request/reply behavior that was supported
by transaction processing systems.

This need for interapplication communication led to many different com-
munication models, The main idea was that existing applications could directly
exchange information, as shown in Figure 1.13.

Several types of communication middleware exist. With remote procedure
calls (RPC), an application component can effectively send a request to another
application component by doing a local procedure call, which results in the
request being packaged as a message and sent to the callee. Likewise, the
result will be sent back and returned to the application as the result of the
procedure call.

As the popularity of object technology increased, techniques were devel-
oped to allow calls to remote objects, leading to what is known as remote
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Figure 1.13: Middleware as a communication facilitator in enterprise applica-
tion integration.

method invocations (RMI). An RMI is essentially the same as an RPC, except
that it operates on objects instead of functions.

RPC and RMI have the disadvantage that the caller and callee both need
to be up and running at the time of communication. In addition, they need
to know exactly how to refer to each other. This tight coupling is often expe-
rienced as a serious drawback, and has lead to what is known as message-
oriented middleware, or simply MOM. In this case, applications send mes-
sages to logical contact points, often described by means of a subject. Likewise,
applications can indicate their interest for a specific type of message, after
which the communication middleware will take care that those messages are
delivered to those applications. These so-called publish/subscribe systems
form an important and expanding class of distributed systems.

Note 1.10 (More information: On integrating applications)
Supporting enterprise application integration is an important goal for many mid-
dleware products. In general, there are four ways to integrate applications [Hohpe
and Woolf, 2004]:

File transfer: The essence of integration through file transfer, is that an appli-
cation produces a file containing shared data that is subsequently read
by other applications. The approach is technically very simple, making it
appealing. The drawback, however, is that there are a lot of things that
need to be agreed upon:

• File format and layout: text, binary, its structure, and so on. Nowadays,
XML has become popular as its files are, in principle, self-describing.

• File management: where are they stored, how are they named, who is
responsible for deleting files?
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• Update propagation: When an application produces a file, there may
be several applications that need to read that file in order to provide
the view of a single coherent system, as we argued in Section 1.1. As a
consequence, sometimes separate programs need to be implemented
that notify applications of file updates.

Shared database: Many of the problems associated with integration through files
are alleviated when using a shared database. All applications will have ac-
cess to the same data, and often through a high-level language such as SQL.
Also, it is easy to notify applications when changes occur, as triggers are
often part of modern databases. There are, however, two major drawbacks.
First, there is still a need to design a common data schema, which may be
far from trivial if the set of applications that need to be integrated is not
completely known in advance. Second, when there are many reads and
updates, a shared database can easily become a performance bottleneck.

Remote procedure call: Integration through files or a database implicitly as-
sumes that changes by one application can easily trigger other applications
to take action. However, practice shows that sometimes small changes
should actually trigger many applications to take actions. In such cases,
it is not really the change of data that is important, but the execution of a
series of actions.
Series of actions are best captured through the execution of a procedure
(which may, in turn, lead to all kinds of changes in shared data). To
prevent that every application needs to know all the internals of those
actions (as implemented by another application), standard encapsulation
techniques should be used, as deployed with traditional procedure calls
or object invocations. For such situations, an application can best offer
a procedure to other applications in the form of a remote procedure call,
or RPC. In essence, an RPC allows an application A to make use of the
information available only to application B, without giving A direct access
to that information. There are many advantages and disadvantages to
remote procedure calls, which are discussed in depth in Chapter 4.

Messaging: A main drawback of RPCs is that caller and callee need to be up
and running at the same time in order for the call to succeed. However, in
many scenarios this simultaneous activity is often difficult or impossible
to guarantee. In such cases, offering a messaging system carrying requests
from application A to perform an action at application B, is what is needed.
The messaging system ensures that eventually the request is delivered,
and if needed, that a response is eventually returned as well. Obviously,
messaging is not the panacea for application integration: it also introduces
problems concerning data formatting and layout, it requires an application
to know where to send a message to, there need to be scenarios for dealing
with lost messages, and so on. Like RPCs, we will be discussing these
issues extensively in Chapter 4.

What these four approaches tell us, is that application integration will generally
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not be simple. Middleware (in the form of a distributed system), however, can
significantly help in integration by providing the right facilities such as support
for RPCs or messaging. As said, enterprise application integration is an important
target field for many middleware products.

Pervasive systems

The distributed systems discussed so far are largely characterized by their
stability: nodes are fixed and have a more or less permanent and high-quality
connection to a network. To a certain extent, this stability is realized through
the various techniques for achieving distribution transparency. For example,
there are many ways how we can create the illusion that only occasionally
components may fail. Likewise, there are all kinds of means to hide the actual
network location of a node, effectively allowing users and applications to
believe that nodes stay put.

However, matters have changed since the introduction of mobile and
embedded computing devices, leading to what are generally referred to as
pervasive systems. As its name suggests, pervasive systems are intended to
naturally blend into our environment. They are naturally also distributed
systems, and certainly meet the characterization we gave in Section 1.1.

What makes them unique in comparison to the computing and information
systems described so far, is that the separation between users and system
components is much more blurred. There is often no single dedicated interface,
such as a screen/keyboard combination. Instead, a pervasive system is often
equipped with many sensors that pick up various aspects of a user’s behavior.
Likewise, it may have a myriad of actuators to provide information and
feedback, often even purposefully aiming to steer behavior.

Many devices in pervasive systems are characterized by being small,
battery-powered, mobile, and having only a wireless connection, although
not all these characteristics apply to all devices. These are not necessarily
restrictive characteristics, as is illustrated by smartphones [Roussos et al., 2005]
and their role in what is now coined as the Internet of Things [Mattern and
Floerkemeier, 2010; Stankovic, 2014]. Nevertheless, notably the fact that we
often need to deal with the intricacies of wireless and mobile communication,
will require special solutions to make a pervasive system as transparent or
unobtrusive as possible.

In the following, we make a distinction between three different types of
pervasive systems, although there is considerable overlap between the three
types: ubiquitous computing systems, mobile systems, and sensor networks.
This distinction allows us to focus on different aspects of pervasive systems.
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Ubiquitous computing systems

So far, we have been talking about pervasive systems to emphasize that
its elements have spread through in many parts of our environment. In a
ubiquitous computing system we go one step further: the system is pervasive
and continuously present. The latter means that a user will be continuously
interacting with the system, often not even being aware that interaction is
taking place. Poslad [2009] describes the core requirements for a ubiquitous
computing system roughly as follows:

1. (Distribution) Devices are networked, distributed, and accessible in a
transparent manner

2. (Interaction) Interaction between users and devices is highly unobtru-
sive

3. (Context awareness) The system is aware of a user’s context in order to
optimize interaction

4. (Autonomy) Devices operate autonomously without human interven-
tion, and are thus highly self-managed

5. (Intelligence) The system as a whole can handle a wide range of dy-
namic actions and interactions

Let us briefly consider these requirements from a distributed-systems perspec-
tive.

Ad. 1: Distribution. As mentioned, a ubiquitous computing system is an
example of a distributed system: the devices and other computers forming
the nodes of a system are simply networked and work together to form
the illusion of a single coherent system. Distribution also comes naturally:
there will be devices close to users (such as sensors and actuators), connected
to computers hidden from view and perhaps even operating remotely in a
cloud. Most, if not all, of the requirements regarding distribution transparency
mentioned in Section 1.2, should therefore hold.

Ad. 2: Interaction. When it comes to interaction with users, ubiquitous
computing systems differ a lot in comparison to the systems we have been
discussing so far. End users play a prominent role in the design of ubiquitous
systems, meaning that special attention needs to be paid to how the interac-
tion between users and core system takes place. For ubiquitous computing
systems, much of the interaction by humans will be implicit, with an implicit
action being defined as one “that is not primarily aimed to interact with a com-
puterized system but which such a system understands as input” [Schmidt,
2000]. In other words, a user could be mostly unaware of the fact that input is
being provided to a computer system. From a certain perspective, ubiquitous
computing can be said to seemingly hide interfaces.
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A simple example is where the settings of a car’s driver’s seat, steering
wheel, and mirrors is fully personalized. If Bob takes a seat, the system will
recognize that it is dealing with Bob and subsequently makes the appropriate
adjustments. The same happens when Alice uses the car, while an unknown
user will be steered toward making his or her own adjustments (to be remem-
bered for later). This example already illustrates an important role of sensors
in ubiquitous computing, namely as input devices that are used to identify a
situation (a specific person apparently wanting to drive), whose input analysis
leads to actions (making adjustments). In turn, the actions may lead to natural
reactions, for example that Bob slightly changes the seat settings. The system
will have to take all (implicit and explicit) actions by the user into account
and react accordingly.

Ad. 3: Context awareness. Reacting to the sensory input, but also the explicit
input from users is more easily said than done. What a ubiquitous computing
system needs to do, is to take the context in which interactions take place
into account. Context awareness also differentiates ubiquitous computing
systems from the more traditional systems we have been discussing before,
and is described by Dey and Abowd [2000] as “any information that can be
used to characterize the situation of entities (i.e., whether a person, place or
object) that are considered relevant to the interaction between a user and an
application, including the user and the application themselves.” In practice,
context is often characterized by location, identity, time, and activity: the where,
who, when, and what. A system will need to have the necessary (sensory) input
to determine one or several of these context types.

What is important from a distributed-systems perspective, is that raw data
as collected by various sensors is lifted to a level of abstraction that can be
used by applications. A concrete example is detecting where a person is,
for example in terms of GPS coordinates, and subsequently mapping that
information to an actual location, such as the corner of a street, or a specific
shop or other known facility. The question is where this processing of sensory
input takes place: is all data collected at a central server connected to a
database with detailed information on a city, or is it the user’s smartphone
where the mapping is done? Clearly, there are trade-offs to be considered.

Dey [2010] discusses more general approaches toward building context-
aware applications. When it comes to combining flexibility and potential
distribution, so-called shared data spaces in which processes are decoupled
in time and space are attractive, yet as we shall see in later chapters, suffer
from scalability problems. A survey on context-awareness and its relation to
middleware and distributed systems is provided by Baldauf et al. [2007].

Ad. 4: Autonomy. An important aspect of most ubiquitous computing sys-
tems is that explicit systems management has been reduced to a minimum. In
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a ubiquitous computing environment there is simply no room for a systems
administrator to keep everything up and running. As a consequence, the
system as a whole should be able to act autonomously, and automatically
react to changes. This requires a myriad of techniques of which several will
be discussed throughout this book. To give a few simple examples, think of
the following:

Address allocation: In order for networked devices to communicate, they
need an IP address. Addresses can be allocated automatically using
protocols like the Dynamic Host Configuration Protocol (DHCP) [Droms,
1997] (which requires a server) or Zeroconf [Guttman, 2001].

Adding devices: It should be easy to add devices to an existing system. A
step towards automatic configuration is realized by the Universal Plug
and Play Protocol (UPnP) [UPnP Forum, 2008]. Using UPnP, devices can
discover each other and make sure that they can set up communication
channels between them.

Automatic updates: Many devices in a ubiquitous computing system should
be able to regularly check through the Internet if their software should
be updated. If so, they can download new versions of their components
and ideally continue where they left off.

Admittedly, these are very simple examples, but the picture should be clear
that manual intervention is to be kept to a minimum. We will be discussing
many techniques related to self-management in detail throughout the book.

Ad. 5: Intelligence. Finally, Poslad [2009] mentions that ubiquitous com-
puting systems often use methods and techniques from the field of artificial
intelligence. What this means, is that in many cases a wide range of ad-
vanced algorithms and models need to be deployed to handle incomplete
input, quickly react to a changing environment, handle unexpected events,
and so on. The extent to which this can or should be done in a distributed
fashion is crucial from the perspective of distributed systems. Unfortunately,
distributed solutions for many problems in the field of artificial intelligence
are yet to be found, meaning that there may be a natural tension between
the first requirement of networked and distributed devices, and advanced
distributed information processing.

Mobile computing systems

As mentioned, mobility often forms an important component of pervasive
systems, and many, if not all aspects that we have just discussed also apply to
mobile computing. There are several issues that set mobile computing aside
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to pervasive systems in general (see also Adelstein et al. [2005] and Tarkoma
and Kangasharju [2009]).

First, the devices that form part of a (distributed) mobile system may
vary widely. Typically, mobile computing is now done with devices such
as smartphones and tablet computers. However, completely different types
of devices are now using the Internet Protocol (IP) to communicate, placing
mobile computing in a different perspective. Such devices include remote
controls, pagers, active badges, car equipment, various GPS-enabled devices,
and so on. A characteristic feature of all these devices is that they use wireless
communication. Mobile implies wireless so it seems (although there are
exceptions to the rules).

Second, in mobile computing the location of a device is assumed to change
over time. A changing location has its effects on many issues. For example, if
the location of a device changes regularly, so will perhaps the services that
are locally available. As a consequence, we may need to pay special attention
to dynamically discovering services, but also letting services announce their
presence. In a similar vein, we often also want to know where a device actually
is. This may mean that we need to know the actual geographical coordinates
of a device such as in tracking and tracing applications, but it may also require
that we are able to simply detect its network position (as in mobile IP [Perkins,
2010; Perkins et al., 2011].

Changing locations also has a profound effect on communication. To
illustrate, consider a (wireless) mobile ad hoc network, generally abbreviated
as a MANET. Suppose that two devices in a MANET have discovered each
other in the sense that they know each other’s network address. How do we
route messages between the two? Static routes are generally not sustainable
as nodes along the routing path can easily move out of their neighbor’s range,
invalidating the path. For large MANETs, using a priori set-up paths is not
a viable option. What we are dealing with here are so-called disruption-
tolerant networks: networks in which connectivity between two nodes can
simply not be guaranteed. Getting a message from one node to another may
then be problematic, to say the least.

The trick in such cases, is not to attempt to set up a communication path
from the source to the destination, but to rely on two principles. First, as we
will discuss in Section 4.4, using special flooding-based techniques will allow
a message to gradually spread through a part of the network, to eventually
reach the destination. Obviously, any type of flooding will impose redundant
communication, but this may be the price we have to pay. Second, in a
disruption-tolerant network, we let an intermediate node store a received
message until it encounters another node to which it can pass it on. In other
words, a node becomes a temporary carrier of a message, as sketched in
Figure 1.14. Eventually, the message should reach its destination.

It is not difficult to imagine that selectively passing messages to encoun-
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Figure 1.14: Passing messages in a (mobile) disruption-tolerant network.

tered nodes may help to ensure efficient delivery. For example, if nodes are
known to belong to a certain class, and the source and destination belong to
the same class, we may decide to pass messages only among nodes in that
class. Likewise, it may prove efficient to pass messages only to well-connected
nodes, that is, nodes who have been in range of many other nodes in the
recent past. An overview is provided by Spyropoulos et al. [2010].

Note 1.11 (Advanced: Social networks and mobility patterns)
Not surprisingly, mobile computing is tightly coupled to the whereabouts of
human beings. With the increasing interest in complex social networks [Vega-
Redondo, 2007; Jackson, 2008] and the explosion of the use of smartphones,
several groups are seeking to combine analysis of social behavior and information
dissemination in so-called pocket-switched networks [Hui et al., 2005]. The latter
are networks in which nodes are formed by people (or actually, their mobile
devices), and links are formed when two people encounter each other, allowing
their devices to exchange data.

The basic idea is to let information be spread using the ad hoc communications
between people. In doing so, it becomes important to understand the structure of
a social group. One of the first to examine how social awareness can be exploited
in mobile networks were Miklas et al. [2007]. In their approach, based on traces
on encounters between people, two people are characterized as either friends or
strangers. Friends interact frequently, where the number of recurring encounters
between strangers is low. The goal is to make sure that a message from Alice to
Bob is eventually delivered.

As it turns out, when Alice adopts a strategy by which she hands out the
message to each of her friends, and that each of those friends passes the message
to Bob as soon as he is encountered, can ensure that the message reaches Bob
with a delay exceeding approximately 10% of the best-attainable delay. Any other
strategy, like forwarding the message to only 1 or 2 friends, performs much worse.
Passing a message to a stranger has no significant effect. In other words, it makes
a huge difference if nodes take friend relationships into account, but even then it
is still necessary to judiciously adopt a forwarding strategy.
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For large groups of people, more sophisticated approaches are needed. In
the first place, it may happen that messages need to be sent between people in
different communities. What do we mean by a community? If we consider a
social network (where a vertex represents a person, and a link the fact that two
people have a social relation), then a community is roughly speaking a group of
vertices in which there are many links between its members and only few links
with vertices in other groups [Newman, 2010]. Unfortunately, many community-
detection algorithms require complete information on the social structure, making
them practically infeasible for optimizing communication in mobile networks.

Hui et al. [2007] propose a number of decentralized community detection
algorithms. In essence, these algorithms rely on letting a node i (1) detect the set
of nodes it regularly encounters, called its familiar set Fi, and (2) incrementally
expand its local community Ci, with Fi ⊆ Ci. Initially, Ci as well as Fi will be
empty, but gradually, Fi will grow, and with it, Ci. In the simplest case, a node j is
added to a community Ci as follows:

Node i adds j to Ci when
|Fj ∩ Ci|
|Fj|

> λ for some λ > 0

In other words, when the fraction of j’s familiar set substantially overlaps with
the community of i, then node i should add j to its community. Also, we have the
following for merging communities:

Merge two communities when |Ci ∩ Cj| > γ|Ci ∪ Cj| for some γ > 0

which means that two communities should be merged when they have a significant
number of members in common. (In their experiments, Hui et al. found that
setting λ = γ = 0.6 lead to good results.)

Knowing communities, in combination with the connectivity of a node in
either a community, or globally, can subsequently be used to efficiently forward
messages in a disruption-tolerant network, as explained by Hui et al. [2011].

Obviously, much of the performance of a mobile computing system depends
on how nodes move. In particular, in order to pre-assess the effectiveness of new
protocols or algorithms, having an idea on which mobility patterns are actually
realistic is important. For long, there was not much data on such patterns, but
recent experiments have changed that.

Various groups have started to collect statistics on human mobility, of which
the traces are used to drive simulations. In addition, traces have been used to
derive more realistic mobility models (see, e.g., Kim et al. [2006b]). However,
understanding human mobility patterns in general remains a difficult problem.
González et al. [2008] report on modeling efforts based on data collected from
100,000 cell-phone users during a six-month period. They observed that the
displacement behavior could be represented by the following, relatively simple
distribution:

P[∆r] = (∆r + ∆r0)
−β · e−∆r/κ

in which ∆r is the actual displacement and ∆r0 = 1.5km a constant initial dis-
placement. With β = 1.75 and κ = 400, this leads to the distribution shown in
Figure 1.15.
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Figure 1.15: The distribution of displacement of (mobile) cell-phone users.

We can conclude that people tend to stay put. In fact, further analysis revealed
that people tend to return to the same place after 24, 48, or 72 hours, clearly
showing that people tend to go the same places. In a follow-up study, Song
et al. [2010] could indeed show that human mobility is actually remarkably well
predictable.

Sensor networks

Our last example of pervasive systems is sensor networks. These networks in
many cases form part of the enabling technology for pervasiveness and we
see that many solutions for sensor networks return in pervasive applications.
What makes sensor networks interesting from a distributed system’s perspec-
tive is that they are more than just a collection of input devices. Instead, as
we shall see, sensor nodes often collaborate to efficiently process the sensed
data in an application-specific manner, making them very different from, for
example, traditional computer networks. Akyildiz et al. [2002] and Akyildiz
et al. [2005] provide an overview from a networking perspective. A more
systems-oriented introduction to sensor networks is given by Zhao and Guibas
[2004], but also Karl and Willig [2005] will show to be useful.

A sensor network generally consists of tens to hundreds or thousands of
relatively small nodes, each equipped with one or more sensing devices. In
addition, nodes can often act as actuators [Akyildiz and Kasimoglu, 2004],
a typical example being the automatic activation of sprinklers when a fire
has been detected. Many sensor networks use wireless communication, and
the nodes are often battery powered. Their limited resources, restricted
communication capabilities, and constrained power consumption demand
that efficiency is high on the list of design criteria.

When zooming into an individual node, we see that, conceptually, they
do not differ a lot from “normal” computers: above the hardware there is a
software layer akin to what traditional operating systems offer, including low-
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level network access, access to sensors and actuators, memory management,
and so on. Normally, support for specific services is included, such as
localization, local storage (think of additional flash devices), and convenient
communication facilities such as messaging and routing. However, similar to
other networked computer systems, additional support is needed to effectively
deploy sensor network applications. In distributed systems, this takes the form
of middleware. For sensor networks, instead of looking at middleware, it is
better to see what kind of programming support is provided, which has been
extensively surveyed by Mottola and Picco [2011].

One typical aspect in programming support is the scope provided by
communication primitives. This scope can vary between addressing the
physical neighborhood of a node, and providing primitives for systemwide
communication. In addition, it may also be possible to address a specific group
of nodes. Likewise, computations may be restricted to an individual node, a
group of nodes, or affect all nodes. To illustrate, Welsh and Mainland [2004]
use so-called abstract regions allowing a node to identify a neighborhood
from where it can, for example, gather information:

1 region = k_nearest_region.create(8);
2 reading = get_sensor_reading();
3 region.putvar(reading_key, reading);
4 max_id = region.reduce(OP_MAXID, reading_key);

In line 1, a node first creates a region of its eight nearest neighbors, after which
it fetches a value from its sensor(s). This reading is subsequently written to
the previously defined region to be defined using the key reading_key. In
line 4, the node checks whose sensor reading in the defined region was the
largest, which is returned in the variable max_id.

As another related example, consider a sensor network as implementing a
distributed database, which is, according to Mottola and Picco [2011], one of
four possible ways of accessing data. This database view is quite common and
easy to understand when realizing that many sensor networks are deployed
for measurement and surveillance applications [Bonnet et al., 2002]. In these
cases, an operator would like to extract information from (a part of) the
network by simply issuing queries such as “What is the northbound traffic
load on highway 1 as Santa Cruz?” Such queries resemble those of traditional
databases. In this case, the answer will probably need to be provided through
collaboration of many sensors along highway 1, while leaving other sensors
untouched.

To organize a sensor network as a distributed database, there are essentially
two extremes, as shown in Figure 1.16. First, sensors do not cooperate but
simply send their data to a centralized database located at the operator’s site.
The other extreme is to forward queries to relevant sensors and to let each
compute an answer, requiring the operator to aggregate the responses.

Neither of these solutions is very attractive. The first one requires that
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(a)

(b)

Figure 1.16: Organizing a sensor network database, while storing and pro-
cessing data (a) only at the operator’s site or (b) only at the sensors.

sensors send all their measured data through the network, which may waste
network resources and energy. The second solution may also be wasteful as
it discards the aggregation capabilities of sensors which would allow much
less data to be returned to the operator. What is needed are facilities for in-
network data processing, similar to the previous example of abstract regions.

In-network processing can be done in numerous ways. One obvious one is
to forward a query to all sensor nodes along a tree encompassing all nodes
and to subsequently aggregate the results as they are propagated back to the
root, where the initiator is located. Aggregation will take place where two
or more branches of the tree come together. As simple as this scheme may
sound, it introduces difficult questions:

• How do we (dynamically) set up an efficient tree in a sensor network?
• How does aggregation of results take place? Can it be controlled?
• What happens when network links fail?

These questions have been partly addressed in TinyDB, which implements
a declarative (database) interface to wireless sensor networks [Madden et al.,
2005]. In essence, TinyDB can use any tree-based routing algorithm. An
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intermediate node will collect and aggregate the results from its children,
along with its own findings, and send that toward the root. To make matters
efficient, queries span a period of time allowing for careful scheduling of
operations so that network resources and energy are optimally consumed.

However, when queries can be initiated from different points in the net-
work, using single-rooted trees such as in TinyDB may not be efficient enough.
As an alternative, sensor networks may be equipped with special nodes where
results are forwarded to, as well as the queries related to those results. To give
a simple example, queries and results related to temperature readings may
be collected at a different location than those related to humidity measure-
ments. This approach corresponds directly to the notion of publish/subscribe
systems.

Note 1.12 (Advanced: When energy starts to become critical)
As mentioned, many sensor networks need to operate on an energy budget
coming from the use of batteries or other limited power supplies. An approach to
reduce energy consumption, is to let nodes be active only part of the time. More
specifically, assume that a node is repeatedly active during Tactive time units, and
between these active periods, it is suspended for Tsuspended units. The fraction of
time that a node is active is known as its duty cycle τ, that is,

τ =
Tactive

Tactive + Tsuspended

Values for τ are typically in the order of 10− 30%, but when a network needs
to stay operational for periods exceeding many months, or even years, attaining
values as low as 1% are critical.

A problem with duty-cycled networks is that, in principle, nodes need to be
active at the same time for otherwise communication would simply not be possible.
Considering that while a node is suspended, only its local clock continues ticking,
and that these clocks are subject to drifts, waking up at the same time may be
problematic. This is particularly true for networks with very low duty cycles.

When a group of nodes are active at the same time, the nodes are said to
form a synchronized group. There are essentially two problems that need to be
addressed. First, we need to make sure that the nodes in a synchronized group
remain active at the same time. In practice, this turns out to be relatively simple
if each node communicates information on its current local time. Then, simple
local clock adjustments will do the trick. The second problem is more difficult,
namely how two different synchronized groups can be merged into one in which
all nodes are synchronized. Let us take a closer look at what we are facing. Most
of the following discussion is based on material by Voulgaris et al. [2016].

In order to have two groups be merged, we need to first ensure that one group
detects the other. Indeed, if their respective active periods are completely disjoint,
there is no hope that any node in one group can pick up a message from a node
in the other group. In an active detection method, a node will send a join message
during its suspended period. In other words, while it is suspended, it temporarily
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wakes up to elicit nodes in other groups to join. How big is the chance that
another node will pick up this message? Realize that we need to consider only the
case when τ < 0.5, for otherwise two active periods will always overlap, meaning
that two groups can easily detect each other’s presence. The probability Pda that a
join message can be picked up during another node’s active period, is equal to

Pda =
Tactive

Tsuspended
=

τ

1− τ

This means that for low values of τ, Pda is also very small.
In a passive detection method, a node skips the suspended state with (a very

low) probability Pdp, that is, it simply stays active during the Tsuspended time
units following its active period. During this time, it will be able to pick up any
messages sent by its neighbors, who are, by definition, member of a different
synchronized group. Experiments show that passive detection is inferior to active
detection.

Simply stating that two synchronized groups need to merge is not enough:
if A and B have discovered each other, which group will adapt the duty-cycle
settings of the other? A simple solution is to use a notion of cluster IDs. Each
node starts with a randomly chosen ID and effectively also a synchronized group
having only itself as member. After detecting another group B, all nodes in group
A join B if and only if the cluster ID of B is larger than that of A.

Synchronization can be improved considerably using so-called targeted join
messages. Whenever a node N receives a join message from a group A with a
lower cluster ID, it should obviously not join A. However, as N now knows when
the active period of A is, it can send a join message exactly during that period.
Obviously, the chance that a node from A will receive that message is very high,
allowing the nodes from A to join N’s group. In addition, when a node decides to
join another group, it can send a special message to its group members, giving
the opportunity to quickly join as well.

Figure 1.17: The speed by which different synchronized groups can
merge.

Figure 1.17 shows how quickly synchronized groups can merge using two
different strategies. The experiments are based on a 4000-node mobile network
using realistic mobility patterns. Nodes have a duty cycle of less than 1%. These
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experiments show that bringing even a large mobile, duty-cycled network to a
state in which all nodes are active at the same time is quite feasible. For further
information, see Voulgaris et al. [2016].

1.4 Summary

Distributed systems consist of autonomous computers that work together to
give the appearance of a single coherent system. This combination of inde-
pendent, yet coherent collective behavior is achieved by collecting application-
independent protocols into what is known as middleware: a software layer
logically placed between operating systems and distributed applications. Pro-
tocols include those for communication, transactions, service composition,
and perhaps most important, reliability.

Design goals for distributed systems include sharing resources and ensur-
ing openness. In addition, designers aim at hiding many of the intricacies
related to the distribution of processes, data, and control. However, this
distribution transparency not only comes at a performance price, in practical
situations it can never be fully achieved. The fact that trade-offs need to
be made between achieving various forms of distribution transparency is
inherent to the design of distributed systems, and can easily complicate their
understanding. One specific difficult design goal that does not always blend
well with achieving distribution transparency is scalability. This is particularly
true for geographical scalability, in which case hiding latencies and bandwidth
restrictions can turn out to be difficult. Likewise, administrative scalability
by which a system is designed to span multiple administrative domains, may
easily conflict goals for achieving distribution transparency.

Matters are further complicated by the fact that many developers initially
make assumptions about the underlying network that are fundamentally
wrong. Later, when assumptions are dropped, it may turn out to be difficult
to mask unwanted behavior. A typical example is assuming that network
latency is not significant. Other pitfalls include assuming that the network is
reliable, static, secure, and homogeneous.

Different types of distributed systems exist which can be classified as
being oriented toward supporting computations, information processing, and
pervasiveness. Distributed computing systems are typically deployed for
high-performance applications often originating from the field of parallel
computing. A field that emerged from parallel processing was initially grid
computing with a strong focus on worldwide sharing of resources, in turn
leading to what is now known as cloud computing. Cloud computing goes
beyond high-performance computing and also supports distributed systems
found in traditional office environments where we see databases playing an
important role. Typically, transaction processing systems are deployed in
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these environments. Finally, an emerging class of distributed systems is where
components are small, the system is composed in an ad hoc fashion, but
most of all is no longer managed through a system administrator. This last
class is typically represented by pervasive computing environments, including
mobile-computing systems as well as sensor-rich environments.
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Chapter 2

Architectures

Distributed systems are often complex pieces of software of which the compo-
nents are by definition dispersed across multiple machines. To master their
complexity, it is crucial that these systems are properly organized. There are
different ways on how to view the organization of a distributed system, but
an obvious one is to make a distinction between, on the one hand, the logical
organization of the collection of software components, and on the other hand
the actual physical realization.

The organization of distributed systems is mostly about the software
components that constitute the system. These software architectures tell us
how the various software components are to be organized and how they
should interact. In this chapter we will first pay attention to some commonly
applied architectural styles toward organizing (distributed) computer systems.

An important goal of distributed systems is to separate applications from
underlying platforms by providing a middleware layer. Adopting such a layer
is an important architectural decision, and its main purpose is to provide
distribution transparency. However, trade-offs need to be made to achieve
transparency, which has led to various techniques to adjust the middleware
to the needs of the applications that make use of it. We discuss some of the
more commonly applied techniques, as they affect the organization of the
middleware itself.

The actual realization of a distributed system requires that we instantiate
and place software components on real machines. There are many different
choices that can be made in doing so. The final instantiation of a software
architecture is also referred to as a system architecture. In this chapter we
will look into traditional centralized architectures in which a single server
implements most of the software components (and thus functionality), while
remote clients can access that server using simple communication means. In
addition, we consider decentralized peer-to-peer architectures in which all
nodes more or less play equal roles. Many real-world distributed systems are
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often organized in a hybrid fashion, combining elements from centralized and
decentralized architectures. We discuss a few typical examples.

We end this chapter by considering the organization of two widely applied
distributed systems: the NFS file-sharing system and the Web.

2.1 Architectural styles

We start our discussion on architectures by first considering the logical organi-
zation of a distributed system into software components, also referred to as its
software architecture [Bass et al., 2003]. Research on software architectures
has matured considerably and it is now commonly accepted that designing
or adopting an architecture is crucial for the successful development of large
software systems.

For our discussion, the notion of an architectural style is important. Such
a style is formulated in terms of components, the way that components are
connected to each other, the data exchanged between components, and finally
how these elements are jointly configured into a system. A component is
a modular unit with well-defined required and provided interfaces that is
replaceable within its environment [OMG, 2004]. That a component can be
replaced, and, in particular, while a system continues to operate, is important.
This is due to the fact that in many cases, it is not an option to shut down
a system for maintenance. At best, only parts of it may be put temporarily
out of order. Replacing a component can be done only if its interfaces remain
untouched.

A somewhat more difficult concept to grasp is that of a connector, which
is generally described as a mechanism that mediates communication, coor-
dination, or cooperation among components [Mehta et al., 2000; Shaw and
Clements, 1997]. For example, a connector can be formed by the facilities for
(remote) procedure calls, message passing, or streaming data. In other words,
a connector allows for the flow of control and data between components.

Using components and connectors, we can come to various configurations,
which, in turn, have been classified into architectural styles. Several styles
have by now been identified, of which the most important ones for distributed
systems are:

• Layered architectures
• Object-based architectures
• Resource-centered architectures
• Event-based architectures

In the following, we discuss each of these styles separately. We note in
advance that in most real-world distributed systems, many different styles are
combined. Notably following an approach by which a system is subdivided
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into several (logical) layers is such a universal principle that it is generally
combined with most other architectural styles.

Layered architectures

The basic idea for the layered style is simple: components are organized in
a layered fashion where a component at layer Lj can make a downcall to
a component at a lower-level layer Li (with i < j) and generally expects a
response. Only in exceptional cases will an upcall be made to a higher-level
component. The three common cases are shown in Figure 2.1.

(a) (b) (c)

Figure 2.1: (a) Pure layered organization. (b) Mixed layered organization.
(c) Layered organization with upcalls (adopted from [Krakowiak, 2009]).

Figure 2.1(a) shows a standard organization in which only downcalls to
the next lower layer are made. This organization is commonly deployed in
the case of network communication.

In many situations we also encounter the organization shown in Fig-
ure 2.1(b). Consider, for example, an application A that makes use of a library
LOS to interface to an operating system. At the same time, the application uses
a specialized mathematical library Lmath that has been implemented by also
making use of LOS. In this case, referring to Figure 2.1(b), A is implemented at
layer N − 1, Lmath at layer N − 2, and LOS which is common to both of them,
at layer N − 3.

Finally, a special situation is shown in Figure 2.1(c). In some cases, it
is convenient to have a lower layer do an upcall to its next higher layer. A
typical example is when an operating system signals the occurrence of an
event, to which end it calls a user-defined operation for which an application
had previously passed a reference (typically referred to as a handle).
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Figure 2.2: A layered communication-protocol stack, showing the difference
between a service, its interface, and the protocol it deploys.

Layered communication protocols

A well-known and ubiquitously applied layered architecture is that of so-
called communication-protocol stacks. We will concentrate here on the global
picture only and defer a detailed discussion to Section 4.1.

In communication-protocol stacks, each layer implements one or several
communication services allowing data to be sent from a destination to one
or several targets. To this end, each layer offers an interface specifying the
functions that can be called. In principle, the interface should completely
hide the actual implementation of a service. Another important concept
in the case of communication is that of a (communication) protocol, which
describes the rules that parties will follow in order to exchange information.
It is important to understand the difference between a service offered by a
layer, the interface by which that service is made available, and the protocol
that a layer implements to establish communication. This distinction is shown
in Figure 2.2.

To make this distinction clear, consider a reliable, connection-oriented
service, which is provided by many communication systems. In this case,
a communicating party first needs to set up a connection to another party
before the two can send and receive messages. Being reliable means that
strong guarantees will be given that sent messages will indeed be delivered to
the other side, even when there is a high risk that messages may be lost (as,
for example, may be the case when using a wireless medium). In addition,
such services generally also ensure that messages are delivered in the same
order as that they were sent.

This kind of service is realized in the Internet by means of the Transmis-
sion Control Protocol (TCP). The protocol specifies which messages are to
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be exchanged for setting up or tearing down a connection, what needs to
be done to preserve the ordering of transferred data, and what both parties
need to do to detect and correct data that was lost during transmission. The
service is made available in the form of a relatively simple programming
interface, containing calls to set up a connection, send and receive messages,
and to tear down the connection again. In fact, there are different interfaces
available, often dependent on operating system or programming language
used. Likewise, there are many different implementations of the protocol and
its interfaces. (All of the gory details can be found in [Stevens, 1994; Wright
and Stevens, 1995].)

Note 2.1 (Example: Two communicating parties)
To make this distinction between service, interface, and protocol more concrete,
consider the following two communicating parties, also known as a client and a
server, respectively, expressed in Python (note that some code has been removed
for clarity).

1 from socket import *
2 s = socket(AF_INET, SOCK_STREAM)
3 (conn, addr) = s.accept() # returns new socket and addr. client
4 while True: # forever
5 data = conn.recv(1024) # receive data from client
6 if not data: break # stop if client stopped
7 conn.send(str(data)+"*") # return sent data plus an "*"
8 conn.close() # close the connection

(a) A simple server

1 from socket import *
2 s = socket(AF_INET, SOCK_STREAM)
3 s.connect((HOST, PORT)) # connect to server (block until accepted)
4 s.send(’Hello, world’) # send some data
5 data = s.recv(1024) # receive the response
6 print data # print the result
7 s.close() # close the connection

(b) A client

Figure 2.3: Two communicating parties.

In this example, a server is created that makes use of a connection-oriented
service as offered by the socket library available in Python. This service allows
two communicating parties to reliably send and receive data over a connection.
The main functions available in its interface are:

• socket(): to create an object representing the connection
• accept(): a blocking call to wait for incoming connection requests; if

successful, the call returns a new socket for a separate connection
• connect(): to set up a connection to a specified party
• close(): to tear down a connection
• send(), recv(): to send and receive data over a connection, respectively
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The combination of constants AF_INET and SOCK_STREAM is used to specify that
the TCP protocol should be used in the communication between the two parties.
These two constants can be seen as part of the interface, whereas making use of
TCP is part of the offered service. How TCP is implemented, or for that matter any
part of the communication service is hidden completely from the applications.

Finally, also note that these two programs implicitly adhere to an application-
level protocol: apparently, if the client sends some data, the server will return it.
Indeed, it operates as an echo server where the server adds an asterisk to the data
sent by the client.

Application layering

Let us now turn our attention to the logical layering of applications. Consider-
ing that a large class of distributed applications is targeted toward supporting
user or application access to databases, many people have advocated a distinc-
tion between three logical levels, essentially following a layered architectural
style:

• The application-interface level
• The processing level
• The data level

In line with this layering, we see that applications can often be constructed
from roughly three different pieces: a part that handles interaction with a
user or some external application, a part that operates on a database or file
system, and a middle part that generally contains the core functionality of the
application. This middle part is logically placed at the processing level. In
contrast to user interfaces and databases, there are not many aspects common
to the processing level. Therefore, we shall give a number of examples to
make this level clearer.

As a first example, consider an Internet search engine. Ignoring all the ani-
mated banners, images, and other fancy window dressing, the user interface
of a search engine can be very simple: a user types in a string of keywords
and is subsequently presented with a list of titles of Web pages. The back
end is formed by a huge database of Web pages that have been prefetched
and indexed. The core of the search engine is a program that transforms the
user’s string of keywords into one or more database queries. It subsequently
ranks the results into a list, and transforms that list into a series of HTML
pages. This information retrieval part is typically placed at the processing
level. Figure 2.4 shows this organization.

As a second example, consider a decision support system for stock bro-
kerage. Analogous to a search engine, such a system can be divided into the
following three layers:

DS 3.02 downloaded by OLEXANDER.PERIG@GMAIL.COM



2.1. ARCHITECTURAL STYLES 61

Figure 2.4: The simplified organization of an Internet search engine into three
different layers.

• A front end implementing the user interface or offering a programming
interface to external applications

• A back end for accessing a database with the financial data
• The analysis programs between these two.

Analysis of financial data may require sophisticated methods and tech-
niques from statistics and artificial intelligence. In some cases, the core of
a financial decision support system may even need to be executed on high-
performance computers in order to achieve the throughput and responsiveness
that is expected from its users.

As a last example, consider a typical desktop package, consisting of a word
processor, a spreadsheet application, communication facilities, and so on. Such
“office” suites are generally integrated through a common user interface that
supports integrated document management, and operates on files from the
user’s home directory. (In an office environment, this home directory is often
placed on a remote file server.) In this example, the processing level consists of
a relatively large collection of programs, each having rather simple processing
capabilities.

The data level contains the programs that maintain the actual data on
which the applications operate. An important property of this level is that
data are often persistent, that is, even if no application is running, data will
be stored somewhere for next use. In its simplest form, the data level consists
of a file system, but it is also common to use a full-fledged database.

Besides merely storing data, the data level is generally also responsible
for keeping data consistent across different applications. When databases
are being used, maintaining consistency means that metadata such as table
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descriptions, entry constraints and application-specific metadata are also
stored at this level. For example, in the case of a bank, we may want to
generate a notification when a customer’s credit card debt reaches a certain
value. This type of information can be maintained through a database trigger
that activates a handler for that trigger at the appropriate moment.

Object-based and service-oriented architectures

A far more loose organization is followed in object-based architectures,
shown in Figure 2.5. In essence, each object corresponds to what we have
defined as a component, and these components are connected through a
procedure call mechanism. In the case of distributed systems, a procedure
call can also take place over a network, that is, the calling object need not be
executed on the same machine as the called object.

Figure 2.5: An object-based architectural style.

Object-based architectures are attractive because they provide a natural
way of encapsulating data (called an object’s state) and the operations that can
be performed on that data (which are referred to as an object’s methods) into
a single entity. The interface offered by an object conceals implementation
details, essentially meaning that we, in principle, can consider an object
completely independent of its environment. As with components, this also
means that if the interface is clearly defined and left otherwise untouched, an
object should be replaceable with one having exactly the same interface.

This separation between interfaces and the objects implementing these
interfaces allows us to place an interface at one machine, while the object itself
resides on another machine. This organization, which is shown in Figure 2.6
is commonly referred to as a distributed object.

When a client binds to a distributed object, an implementation of the
object’s interface, called a proxy, is then loaded into the client’s address space.
A proxy is analogous to a client stub in RPC systems. The only thing it does
is marshal method invocations into messages and unmarshal reply messages
to return the result of the method invocation to the client. The actual object
resides at a server machine, where it offers the same interface as it does on the
client machine. Incoming invocation requests are first passed to a server stub,
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Figure 2.6: Common organization of a remote object with client-side proxy.

which unmarshals them to make method invocations at the object’s interface
at the server. The server stub is also responsible for marshaling replies and
forwarding reply messages to the client-side proxy.

The server-side stub is often referred to as a skeleton as it provides the
bare means for letting the server middleware access the user-defined objects.
In practice, it often contains incomplete code in the form of a language-specific
class that needs to be further specialized by the developer.

A characteristic, but somewhat counterintuitive feature of most distributed
objects is that their state is not distributed: it resides at a single machine.
Only the interfaces implemented by the object are made available on other
machines. Such objects are also referred to as remote objects. In a general
distributed object, the state itself may be physically distributed across multiple
machines, but this distribution is also hidden from clients behind the object’s
interfaces.

One could argue that object-based architectures form the foundation of
encapsulating services into independent units. Encapsulation is the keyword
here: the service as a whole is realized as a self-contained entity, although it
can possibly make use of other services. By clearly separating various services
such that they can operate independently, we are paving the road toward
service-oriented architectures, generally abbreviated as SOAs.

In a service-oriented architecture, a distributed application or system is
essentially constructed as a composition of many different services. Not all
of these services may belong to the same administrative organization. We
already came across this phenomenon when discussing cloud computing: it
may very well be that an organization running its business application makes
use of storage services offered by a cloud provider. These storage services are

downloaded by OLEXANDER.PERIG@GMAIL.COM DS 3.02



64 CHAPTER 2. ARCHITECTURES

logically completely encapsulated into a single unit, of which an interface is
made available to customers.

Of course, storage is a rather basic service, but more sophisticated situa-
tions easily come to mind. Consider, for example, a Web shop selling goods
such as e-books. A simple implementation following the application layering
we discussed previously, may consist of an application for processing orders,
which, in turn, operates on a local database containing the e-books. Order
processing typically involves selecting items, registering and checking the
delivery channel (perhaps by making use of e-mail), but also making sure
that a payment takes place. The latter can be handled by a separate service,
run by a different organization, to which a purchasing customer is redirected
for the payment, after which the e-book organization is notified so that it can
complete the transaction.

In this way, we see that the problem of developing a distributed system is
partly one of service composition, and making sure that those services operate
in harmony. Indeed, this problem is completely analogous to the enterprise
application integration issues discussed in Section 1.3. Crucial is, and remains,
that each service offers a well-defined (programming) interface. In practice,
this also means that each service offers its own interface, in turn, possibly
making the composition of services far from trivial.

Resource-based architectures

As an increasing number of services became available over the Web and the
development of distributed systems through service composition became more
important, researchers started to rethink the architecture of mostly Web-based
distributed systems. One of the problems with service composition is that
connecting various components can easily turn into an integration nightmare.

As an alternative, one can also view a distributed system as a huge collec-
tion of resources that are individually managed by components. Resources
may be added or removed by (remote) applications, and likewise can be
retrieved or modified. This approach has now been widely adopted for
the Web and is known as Representational State Transfer (REST) [Fielding,
2000]. There are four key characteristics of what are known as RESTful
architectures [Pautasso et al., 2008]:

1. Resources are identified through a single naming scheme
2. All services offer the same interface, consisting of at most four operations,

as shown in Figure 2.7
3. Messages sent to or from a service are fully self-described
4. After executing an operation at a service, that component forgets every-

thing about the caller

The last property is also referred to as a stateless execution, a concept to
which we return in Section 3.4.
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Operation Description
PUT Create a new resource
GET Retrieve the state of a resource in some representation
DELETE Delete a resource
POST Modify a resource by transferring a new state

Figure 2.7: The four operations available in RESTful architectures.

To illustrate how RESTful can work in practice, consider a cloud storage
service, such as Amazon’s Simple Storage Service (Amazon S3). Amazon
S3, described in [Murty, 2008] supports only two resources: objects, which
are essentially the equivalent of files, and buckets, the equivalent of directo-
ries. There is no concept of placing buckets into buckets. An object named
ObjectName contained in bucket BucketName is referred to by means of the
following Uniform Resource Identifier (URI):

http://BucketName.s3.amazonaws.com/ObjectName

To create a bucket, or an object for that matter, an application would essentially
send a PUT request with the URI of the bucket/object. In principle, the protocol
that is used with the service is HTTP. In other words, it is just another HTTP
request, which will subsequently be correctly interpreted by S3. If the bucket
or object already exists, an HTTP error message is returned.

In a similar fashion, to know which objects are contained in a bucket, an
application would send a GET request with the URI of that bucket. S3 will
return a list of object names, again as an ordinary HTTP response.

The RESTful architecture has become popular because of its simplicity.
However, holy wars are being fought over whether RESTful services are
better than where services are specified by means of service-specific interfaces.
Pautasso et al. [2008] have compared the two approaches, and, as to be
expected, they both have their advantages and disadvantages. In particular,
the simplicity of RESTful architectures can easily prohibit easy solutions
to intricate communication schemes. One example is where distributed
transactions are needed, which generally requires that services keep track of
the state of execution. On the other hand, there are many examples in which
RESTful architectures perfectly match a simple integration scheme of services,
yet where the myriad of service interfaces will complicate matters.

Note 2.2 (Advanced: On interfaces)
Clearly, a service cannot be made easier or more difficult just because of the
particular interface it offers. A service offers functionality, and at best the way
that the service is accessed is determined by the interface. Indeed, one could
argue that the discussion on RESTful versus service-specific interfaces is much
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about access transparency. To better appreciate why so many people are paying
attention to this issue, let us zoom in to the Amazon S3 service, which offers a
REST interface as well as a more traditional interface (referred to as the SOAP
interface).

Bucket operations Object operations
ListAllMyBuckets PutObjectInline
CreateBucket PutObject
DeleteBucket CopyObject
ListBucket GetObject
GetBucketAccessControlPolicy GetObjectExtended
SetBucketAccessControlPolicy DeleteObject
GetBucketLoggingStatus GetObjectAccessControlPolicy
SetBucketLoggingStatus SetObjectAccessControlPolicy

Figure 2.8: The operations in Amazon’s S3 SOAP interface.

The SOAP interface consists of approximately 16 operations, listed in Figure 2.8.
However, if we were to access Amazon S3 using the Python boto library, we
would have close to 50 operations available. In contrast, the REST interface offers
only very few operations, essentially those listed in Figure 2.7. Where do these
differences come from? The answer is, of course, in the parameter space. In the
case of RESTful architectures, an application will need to provide all that it wants
through the parameters it passes by one of the operations. In Amazon’s SOAP
interface, the number of parameters per operation is generally limited, and this is
certainly the case if we were to use the Python boto library.

Sticking to principles (so that we can avoid the intricacies of real code), suppose
that we have an interface bucket that offers an operation create, requiring an
input string such as mybucket, for creating a bucket with name “mybucket.”
Normally, the operation would be called roughly as follows:

import bucket

bucket.create("mybucket")

However, in a RESTful architecture, the call would need to be essentially encoded
as a single string, such as

PUT "http://mybucket.s3.amazonsws.com/"

The difference is striking. For example, in the first case, many syntactical errors
can often already be caught during compile time, whereas in the second case,
checking needs to be deferred until runtime. Secondly, one can argue that
specifying the semantics of an operation is much easier with specific interfaces
than with ones that offer only generic operations. On the other hand, with generic
operations, changes are much easier to accommodate, as they would generally
involve changing the layout of strings that encode what is actually required.

Publish-subscribe architectures

As systems continue to grow and processes can more easily join or leave, it
becomes important to have an architecture in which dependencies between

DS 3.02 downloaded by OLEXANDER.PERIG@GMAIL.COM



2.1. ARCHITECTURAL STYLES 67

processes become as loose as possible. A large class of distributed systems
have adopted an architecture in which there is a strong separation between
processing and coordination. The idea is to view a system as a collection of
autonomously operating processes. In this model, coordination encompasses
the communication and cooperation between processes. It forms the glue
that binds the activities performed by processes into a whole [Gelernter and
Carriero, 1992].

Cabri et al. [2000] provide a taxonomy of coordination models that can
be applied equally to many types of distributed systems. Slightly adapting
their terminology, we make a distinction between models along two different
dimensions, temporal and referential, as shown in Figure 2.9.

Temporally Temporally
coupled decoupled

Referentially Direct Mailbox
coupled

Referentially Event- Shared
decoupled based data space

Figure 2.9: Examples of different forms of coordination.

When processes are temporally and referentially coupled, coordination
takes place in a direct way, referred to as direct coordination. The referential
coupling generally appears in the form of explicit referencing in communi-
cation. For example, a process can communicate only if it knows the name
or identifier of the other processes it wants to exchange information with.
Temporal coupling means that processes that are communicating will both
have to be up and running. In real life, talking over cell phones (and assuming
that a cell phone has only one owner), is an example of direct communication.

A different type of coordination occurs when processes are temporally
decoupled, but referentially coupled, which we refer to as mailbox coordina-
tion. In this case, there is no need for two communicating processes to be
executing at the same time in order to let communication take place. Instead,
communication takes place by putting messages in a (possibly shared) mail-
box. Because it is necessary to explicitly address the mailbox that will hold
the messages that are to be exchanged, there is a referential coupling.

The combination of referentially decoupled and temporally coupled sys-
tems form the group of models for event-based coordination. In referentially
decoupled systems, processes do not know each other explicitly. The only
thing a process can do is publish a notification describing the occurrence of an
event (e.g., that it wants to coordinate activities, or that it just produced some
interesting results). Assuming that notifications come in all sorts and kinds,
processes may subscribe to a specific kind of notification (see also [Mühl et al.,
2006]). In an ideal event-based coordination model, a published notification
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will be delivered exactly to those processes that have subscribed to it. However,
it is generally required that the subscriber is up-and-running at the time the
notification was published.

A well-known coordination model is the combination of referentially and
temporally decoupled processes, leading to what is known as a shared data
space. The key idea is that processes communicate entirely through tuples,
which are structured data records consisting of a number of fields, very similar
to a row in a database table. Processes can put any type of tuple into the
shared data space. In order to retrieve a tuple, a process provides a search
pattern that is matched against the tuples. Any tuple that matches is returned.

Shared data spaces are thus seen to implement an associative search
mechanism for tuples. When a process wants to extract a tuple from the data
space, it specifies (some of) the values of the fields it is interested in. Any
tuple that matches that specification is then removed from the data space and
passed to the process.

Shared data spaces are often combined with event-based coordination: a
process subscribes to certain tuples by providing a search pattern; when a
process inserts a tuple into the data space, matching subscribers are notified. In
both cases, we are dealing with a publish-subscribe architecture, and indeed,
the key characteristic feature is that processes have no explicit reference to
each other. The difference between a pure event-based architectural style, and
that of a shared data space is shown in Figure 2.10. We have also shown an
abstraction of the mechanism by which publishers and subscribers are matched,
known as an event bus.

(a) (b)

Figure 2.10: The (a) event-based and (b) shared data-space architectural style.

Note 2.3 (Example: Linda tuple spaces)
To make matters a bit more concrete, we take a closer look at Linda, a program-
ming model developed in the 1980s [Carriero and Gelernter, 1989]. The shared
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data space in Linda is known as a tuple space, which essentially supports three
operations:

• in(t): remove a tuple that matches the template t

• rd(t): obtain a copy of a tuple that matches the template t

• out(t): add the tuple t to the tuple space

Note that if a process would call out(t) twice in a row, we would find that two
copies of tuple t would have been stored. Formally, a tuple space is therefore
always modeled as a multiset. Both in and rd are blocking operations: the caller
will be blocked until a matching tuple is found, or has become available.

Consider a very simple microblog application in which messages are tagged
with the name of its poster and a topic, followed by a short string. Each message
is modeled as a tuple <string,string,string> where the first string names the
poster, the second string represents the topic, and the third one is the actual
content. Assuming that we have created a shared data space called MicroBlog,
Figure 2.11 shows how Alice and Bob can post messages to that space, and how
Chuck can pick a (randomly selected) message. We have omitted some code for
clarity. Note that neither Alice nor Bob knows who will read their postings.

1 blog = linda.universe._rd(("MicroBlog",linda.TupleSpace))[1]
2

3 blog._out(("bob","distsys","I am studying chap 2"))
4 blog._out(("bob","distsys","The linda example’s pretty simple"))
5 blog._out(("bob","gtcn","Cool book!"))

(a) Bob’s code for creating a microblog and posting two messages.

1 blog = linda.universe._rd(("MicroBlog",linda.TupleSpace))[1]
2

3 blog._out(("alice","gtcn","This graph theory stuff is not easy"))
4 blog._out(("alice","distsys","I like systems more than graphs"))

(b) Alice’s code for creating a microblog and posting two messages.

1 blog = linda.universe._rd(("MicroBlog",linda.TupleSpace))[1]
2

3 t1 = blog._rd(("bob","distsys",str))
4 t2 = blog._rd(("alice","gtcn",str))
5 t3 = blog._rd(("bob","gtcn",str))

(c) Chuck reading a message from Bob’s and Alice’s microblog.

Figure 2.11: A simple example of using a shared data space.

In the first line of each code fragment, a process looks up the tuple space
named “MicroBlog.” Bob posts three messages: two on topic distsys, and one on
gtcn. Alice posts two messages, one on each topic. Chuck, finally, reads three
messages: one from Bob on distsys and one on gtcn, and one from Alice on gtcn.

Obviously, there is a much room for improvement. For example, we should
ensure that Alice cannot post messages under Bob’s name. However, the important
issue to note now, is that by providing only tags, a reader such as Chuck will

downloaded by OLEXANDER.PERIG@GMAIL.COM DS 3.02



70 CHAPTER 2. ARCHITECTURES

be able to pick up messages without needing to directly reference the poster. In
particular, Chuck could also read a randomly selected message on topic distsys

through the statement

t = blog_rd((str,"distsys",str))

We leave it as an exercise to the reader to extend the code fragments such that a
next message will be selected instead of a random one.

An important aspect of publish-subscribe systems is that communication
takes place by describing the events that a subscriber is interested in. As a
consequence, naming plays a crucial role. We return to naming later, but for
now the important issue is that in many cases, data items are not explicitly
identified by senders and receivers.

Let us first assume that events are described by a series of attributes.
A notification describing an event is said to be published when it is made
available for other processes to read. To that end, a subscription needs to
be passed to the middleware, containing a description of the event that the
subscriber is interested in. Such a description typically consists of some
(attribute, value) pairs, which is common for so-called topic-based publish-
subscribe systems.

As an alternative, in content-based publish-subscribe systems, a sub-
scription may also consist of (attribute, range) pairs. In this case, the specified
attribute is expected to take on values within a specified range. Descriptions
can sometimes be given using all kinds of predicates formulated over the
attributes, very similar in nature to SQL-like queries in the case of relational
databases. Obviously, the more complex a description is, the more difficult it
will be to test whether an event matches a description.

We are now confronted with a situation in which subscriptions need to
be matched against notifications, as shown in Figure 2.12. In many cases, an
event actually corresponds to data becoming available. In that case, when
matching succeeds, there are two possible scenarios. In the first case, the
middleware may decide to forward the published notification, along with
the associated data, to its current set of subscribers, that is, processes with a
matching subscription. As an alternative, the middleware can also forward
only a notification at which point subscribers can execute a read operation to
retrieve the associated data item.

In those cases in which data associated with an event are immediately
forwarded to subscribers, the middleware will generally not offer storage
of data. Storage is either explicitly handled by a separate service, or is
the responsibility of subscribers. In other words, we have a referentially
decoupled, but temporally coupled system.

This situation is different when notifications are sent so that subscribers
need to explicitly read the associated data. Necessarily, the middleware will
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Figure 2.12: The principle of exchanging data items between publishers and
subscribers.

have to store data items. In these situations there are additional operations
for data management. It is also possible to attach a lease to a data item such
that when the lease expires that the data item is automatically deleted.

Events can easily complicate the processing of subscriptions. To illustrate,
consider a subscription such as “notify when room ZI.1060 is unoccupied and
the door is unlocked.” Typically, a distributed system supporting such sub-
scriptions can be implemented by placing independent sensors for monitoring
room occupancy (e.g., motion sensors) and those for registering the status
of a door lock. Following the approach sketched so far, we would need to
compose such primitive events into a publishable data item to which processes
can then subscribe. Event composition turns out to be a difficult task, notably
when the primitive events are generated from sources dispersed across the
distributed system.

Clearly, in publish-subscribe systems such as these, the crucial issue is the
efficient and scalable implementation of matching subscriptions to notifica-
tions. From the outside, the publish-subscribe architecture provides lots of
potential for building very large-scale distributed systems due to the strong
decoupling of processes. On the other hand, devising scalable implementa-
tions without losing this independence is not a trivial exercise, notably in the
case of content-based publish-subscribe systems.

2.2 Middleware organization

In the previous section we discussed a number of architectural styles that are
often used as general guidelines to build and organize distributed systems. Let
us now zoom into the actual organization of middleware, that is, independent
of the overall organization of a distributed system or application. In particular,
there are two important types of design patterns that are often applied to the
organization of middleware: wrappers and interceptors. Each targets different
problems, yet addresses the same goal for middleware: achieving openness
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(as we discussed in Section 1.2). However, it can be argued that the ultimate
openness is achieved when we can compose middleware at runtime. We
briefly discuss component-based construction as a popular means toward
what Parlavantzas and Coulson [2007] refer to as modifiable middleware.

Wrappers

When building a distributed system out of existing components, we immedi-
ately bump into a fundamental problem: the interfaces offered by the legacy
component are most likely not suitable for all applications. In Section 1.3 we
discussed how enterprise application integration could be established through
middleware as a communication facilitator, but there we still implicitly as-
sumed that, in the end, components could be accessed through their native
interfaces.

A wrapper or adapter is a special component that offers an interface
acceptable to a client application, of which the functions are transformed
into those available at the component. In essence, it solves the problem of
incompatible interfaces (see also [Gamma et al., 1994]).

Although originally narrowly defined in the context of object-oriented
programming, in the context of distributed systems wrappers are much more
than simple interface transformers. For example, an object adapter is a
component that allows applications to invoke remote objects, although those
objects may have been implemented as a combination of library functions
operating on the tables of a relational database.

As another example, reconsider Amazon’s S3 storage service. There are
now two types of interfaces available, one adhering to a RESTful architecture,
another following a more traditional approach. For the RESTful interface,
clients will be using the HTTP protocol, essentially communicating with a
traditional Web server which now acts as an adapter to the actual storage
service, by partly dissecting incoming requests and subsequently handing
them off to specialized servers internal to S3.

Wrappers have always played an important role in extending systems with
existing components. Extensibility, which is crucial for achieving openness,
used to be addressed by adding wrappers as needed. In other words, if
application A managed data that was needed by application B, one approach
would be to develop a wrapper specific for B so that it could have access to
A’s data. Clearly, this approach does not scale well: with N applications we
would, in theory, need to develop N × (N − 1) = O(N2) wrappers.

Again, facilitating a reduction of the number of wrappers is typically
done through middleware. One way of doing this is implementing a so-
called broker, which is logically a centralized component that handles all
the accesses between different applications. An often-used type is a message
broker of which we discuss the technicalities in Section 4.3. In the case of a
message broker, applications simply send requests to the broker containing
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(a) (b)

Figure 2.13: (a) Requiring each application to have a wrapper for each other
application. (b) Reducing the number of wrappers by making use of a broker.

information on what they need. The broker, having knowledge of all relevant
applications, contacts the appropriate applications, possibly combines and
transforms the responses and returns the result to the initial application. In
principle, because a broker offers a single interface to each application, we
now need at most 2N = O(N) wrappers instead of O(N2). This situation is
sketched in Figure 2.13.

Interceptors

Conceptually, an interceptor is nothing but a software construct that will
break the usual flow of control and allow other (application specific) code
to be executed. Interceptors are a primary means for adapting middleware
to the specific needs of an application. As such, they play an important
role in making middleware open. To make interceptors generic may require
a substantial implementation effort, as illustrated in Schmidt et al. [2000]
and it is unclear whether in such cases generality should be preferred over
restricted applicability and simplicity. Also, in many cases having only
limited interception facilities will improve management of the software and
the distributed system as a whole.

To make matters concrete, consider interception as supported in many
object-based distributed systems. The basic idea is simple: an object A can call
a method that belongs to an object B, while the latter resides on a different
machine than A. As we explain in detail later in the book, such a remote-object
invocation is carried out in three steps:

1. Object A is offered a local interface that is exactly the same as the inter-
face offered by object B. A calls the method available in that interface.

2. The call by A is transformed into a generic object invocation, made
possible through a general object-invocation interface offered by the
middleware at the machine where A resides.
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3. Finally, the generic object invocation is transformed into a message that
is sent through the transport-level network interface as offered by A’s
local operating system.

Figure 2.14: Using interceptors to handle remote-object invocations.

This scheme is shown in Figure 2.14. After the first step, the call B.doit(val)
is transformed into a generic call such as invoke(B, &doit, val) with a ref-
erence to B’s method and the parameters that go along with the call. Now
imagine that object B is replicated. In that case, each replica should actually
be invoked. This is a clear point where interception can help. What the
request-level interceptor will do, is simply call invoke(B, &doit, val) for
each of the replicas. The beauty of this all is that the object A need not be
aware of the replication of B, but also the object middleware need not have
special components that deal with this replicated call. Only the request-level
interceptor, which may be added to the middleware needs to know about B’s
replication.

In the end, a call to a remote object will have to be sent over the network.
In practice, this means that the messaging interface as offered by the local
operating system will need to be invoked. At that level, a message-level
interceptor may assist in transferring the invocation to the target object. For
example, imagine that the parameter val actually corresponds to a huge array
of data. In that case, it may be wise to fragment the data into smaller parts to
have it assembled again at the destination. Such a fragmentation may improve
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performance or reliability. Again, the middleware need not be aware of this
fragmentation; the lower-level interceptor will transparently handle the rest of
the communication with the local operating system.

Modifiable middleware

What wrappers and interceptors offer are means to extend and adapt the
middleware. The need for adaptation comes from the fact that the environment
in which distributed applications are executed changes continuously. Changes
include those resulting from mobility, a strong variance in the quality-of-
service of networks, failing hardware, and battery drainage, amongst others.
Rather than making applications responsible for reacting to changes, this task
is placed in the middleware. Moreover, as the size of a distributed system
increases, changing its parts can rarely be done by temporarily shutting it
down. What is needed is being able to make changes on-the-fly.

These strong influences from the environment have brought many de-
signers of middleware to consider the construction of adaptive software. We
follow Parlavantzas and Coulson [2007] in speaking of modifiable middleware
to express that middleware may not only need to be adaptive, but that we
should be able to purposefully modify it without bringing it down. In this
context, interceptors can be thought of offering a means to adapt the standard
flow of control. Replacing software components at runtime is an example
of modifying a system. And indeed, perhaps one of the most popular ap-
proaches toward modifiable middleware is that of dynamically constructing
middleware from components.

Component-based design focuses on supporting modifiability through
composition. A system may either be configured statically at design time,
or dynamically at runtime. The latter requires support for late binding,
a technique that has been successfully applied in programming language
environments, but also for operating systems where modules can be loaded
and unloaded at will. Research is now well underway to automatically select
the best implementation of a component during runtime [Yellin, 2003] but
again, the process remains complex for distributed systems, especially when
considering that replacement of one component requires to know exactly what
the effect of that replacement on other components will be. In many cases,
components are less independent as one may think.

The bottom line is that in order to accommodate dynamic changes to the
software that makes up middleware, we need at least basic support to load
and unload components at runtime. In addition, for each component explicit
specifications of the interfaces it offers, as well the interfaces it requires, are
needed. If state is maintained between calls to a component, then further
special measures are needed. By-and-large, it should be clear that organizing
middleware to be modifiable requires very special attention.
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2.3 System architecture

Now that we have briefly discussed some commonly applied architectural
styles, let us take a look at how many distributed systems are actually or-
ganized by considering where software components are placed. Deciding
on software components, their interaction, and their placement leads to an
instance of a software architecture, also known as a system architecture [Bass
et al., 2003]. We will discuss centralized and decentralized organizations, as
well as various hybrid forms.

Centralized organizations

Despite the lack of consensus on many distributed systems issues, there is
one issue that many researchers and practitioners agree upon: thinking in
terms of clients that request services from servers helps understanding and
managing the complexity of distributed systems [Saltzer and Kaashoek, 2009].
In the following, we first consider a simple layered organization, followed by
looking at multi-layered organizations.

Simple client-server architecture

In the basic client-server model, processes in a distributed system are divided
into two (possibly overlapping) groups. A server is a process implementing
a specific service, for example, a file system service or a database service. A
client is a process that requests a service from a server by sending it a request
and subsequently waiting for the server’s reply. This client-server interaction,
also known as request-reply behavior is shown in Figure 2.15 in the form of
a message sequence chart.

Figure 2.15: General interaction between a client and a server.

Communication between a client and a server can be implemented by
means of a simple connectionless protocol when the underlying network is
fairly reliable as in many local-area networks. In these cases, when a client
requests a service, it simply packages a message for the server, identifying the
service it wants, along with the necessary input data. The message is then
sent to the server. The latter, in turn, will always wait for an incoming request,
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subsequently process it, and package the results in a reply message that is
then sent to the client.

Using a connectionless protocol has the obvious advantage of being effi-
cient. As long as messages do not get lost or corrupted, the request/reply
protocol just sketched works fine. Unfortunately, making the protocol resistant
to occasional transmission failures is not trivial. The only thing we can do is
possibly let the client resend the request when no reply message comes in. The
problem, however, is that the client cannot detect whether the original request
message was lost, or that transmission of the reply failed. If the reply was lost,
then resending a request may result in performing the operation twice. If the
operation was something like “transfer $10,000 from my bank account,” then
clearly, it would have been better that we simply reported an error instead.
On the other hand, if the operation was “tell me how much money I have left,”
it would be perfectly acceptable to resend the request. When an operation
can be repeated multiple times without harm, it is said to be idempotent.
Since some requests are idempotent and others are not it should be clear that
there is no single solution for dealing with lost messages. We defer a detailed
discussion on handling transmission failures to Section 8.3.

As an alternative, many client-server systems use a reliable connection-
oriented protocol. Although this solution is not entirely appropriate in a
local-area network due to relatively low performance, it works perfectly fine
in wide-area systems in which communication is inherently unreliable. For
example, virtually all Internet application protocols are based on reliable
TCP/IP connections. In this case, whenever a client requests a service, it first
sets up a connection to the server before sending the request. The server
generally uses that same connection to send the reply message, after which
the connection is torn down. The trouble may be that setting up and tearing
down a connection is relatively costly, especially when the request and reply
messages are small.

The client-server model has been subject to many debates and controver-
sies over the years. One of the main issues was how to draw a clear distinction
between a client and a server. Not surprisingly, there is often no clear distinc-
tion. For example, a server for a distributed database may continuously act as
a client because it is forwarding requests to different file servers responsible
for implementing the database tables. In such a case, the database server itself
only processes the queries.

Multitiered Architectures

The distinction into three logical levels as discussed so far, suggests a number
of possibilities for physically distributing a client-server application across
several machines. The simplest organization is to have only two types of
machines:
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1. A client machine containing only the programs implementing (part of)
the user-interface level

2. A server machine containing the rest, that is, the programs implementing
the processing and data level

In this organization everything is handled by the server while the client is
essentially no more than a dumb terminal, possibly with only a convenient
graphical interface. There are, however, many other possibilities. As explained
in Section 2.1, many distributed applications are divided into the three layers
(1) user interface layer, (2) processing layer, and (3) data layer. One approach
for organizing clients and servers is then to distribute these layers across
different machines, as shown in Figure 2.16 (see also Umar [1997]). As
a first step, we make a distinction between only two kinds of machines:
client machines and server machines, leading to what is also referred to as a
(physically) two-tiered architecture.

(a) (b) (c) (d) (e)

Figure 2.16: Client-server organizations in a two-tiered architecture.

One possible organization is to have only the terminal-dependent part
of the user interface on the client machine, as shown in Figure 2.16(a), and
give the applications remote control over the presentation of their data. An
alternative is to place the entire user-interface software on the client side, as
shown in Figure 2.16(b). In such cases, we essentially divide the application
into a graphical front end, which communicates with the rest of the application
(residing at the server) through an application-specific protocol. In this model,
the front end (the client software) does no processing other than necessary for
presenting the application’s interface.

Continuing along this line of reasoning, we may also move part of the
application to the front end, as shown in Figure 2.16(c). An example where
this makes sense is where the application makes use of a form that needs to
be filled in entirely before it can be processed. The front end can then check
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the correctness and consistency of the form, and where necessary interact
with the user. Another example of the organization of Figure 2.16(c), is that of
a word processor in which the basic editing functions execute on the client
side where they operate on locally cached, or in-memory data, but where the
advanced support tools such as checking the spelling and grammar execute
on the server side.

In many client-server environments, the organizations shown in Fig-
ure 2.16(d) and Figure 2.16(e) are particularly popular. These organizations
are used where the client machine is a PC or workstation, connected through
a network to a distributed file system or database. Essentially, most of the
application is running on the client machine, but all operations on files or
database entries go to the server. For example, many banking applications
run on an end-user’s machine where the user prepares transactions and such.
Once finished, the application contacts the database on the bank’s server and
uploads the transactions for further processing. Figure 2.16(e) represents the
situation where the client’s local disk contains part of the data. For example,
when browsing the Web, a client can gradually build a huge cache on local
disk of most recent inspected Web pages.

Note 2.4 (More information: Is there a best organization?)
We note that there has been a strong trend to move away from the configurations
shown in Figure 2.16(d) and Figure 2.16(e) in those cases that client software is
placed at end-user machines. Instead, most of the processing and data storage
is handled at the server side. The reason for this is simple: although client
machines do a lot, they are also more problematic to manage. Having more
functionality on the client machine means that a wide range of end users will
need to be able to handle that software. This implies that more effort needs to
be spent on making software resilient to end-user behavior. In addition, client-
side software is dependent on the client’s underlying platform (i.e., operating
system and resources), which can easily mean that multiple versions will need
to be maintained. From a systems-management perspective, having what are
called fat clients is not optimal. Instead the thin clients as represented by the
organizations shown in Figure 2.16(a)–(c) are much easier, perhaps at the cost of
less sophisticated user interfaces and client-perceived performance.

Does this mean the end of fat clients? Not in the least. For one thing, there
are many applications for which a fat-client organization is often still the best. We
already mentioned office suites, but also many multimedia applications require
that processing is done on the client’s side. Second, with the advent of advanced
Web browsing technology, it is now much easier to dynamically place and manage
client-side software by simply uploading (the sometimes very sophisticated)
scripts. Combined with the fact that this type of client-side software runs in well-
defined commonly deployed environments, and thus that platform dependency
is much less of an issue, we see that the counter-argument of management
complexity is often no longer valid.
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Finally, note that moving away from fat clients does not imply that we no
longer need distributed systems. On the contrary, what we continue to see is
that server-side solutions are becoming increasingly more distributed as a single
server is being replaced by multiple servers running on different machines. Cloud
computing is a good example in this case: the complete server side is being
executed in data centers, and generally on multiple servers.

When distinguishing only client and server machines as we did so far, we
miss the point that a server may sometimes need to act as a client, as shown
in Figure 2.17, leading to a (physically) three-tiered architecture.

Figure 2.17: An example of a server acting as client.

In this architecture, traditionally programs that form part of the process-
ing layer are executed by a separate server, but may additionally be partly
distributed across the client and server machines. A typical example of where
a three-tiered architecture is used is in transaction processing. A separate
process, called the transaction processing monitor, coordinates all transactions
across possibly different data servers.

Another, but very different example were we often see a three-tiered
architecture is in the organization of Web sites. In this case, a Web server acts
as an entry point to a site, passing requests to an application server where the
actual processing takes place. This application server, in turn, interacts with a
database server. For example, an application server may be responsible for
running the code to inspect the available inventory of some goods as offered
by an electronic bookstore. To do so, it may need to interact with a database
containing the raw inventory data.

Decentralized organizations: peer-to-peer systems

Multitiered client-server architectures are a direct consequence of dividing
distributed applications into a user interface, processing components, and
data-management components. The different tiers correspond directly with
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the logical organization of applications. In many business environments,
distributed processing is equivalent to organizing a client-server application
as a multitiered architecture. We refer to this type of distribution as vertical
distribution. The characteristic feature of vertical distribution is that it is
achieved by placing logically different components on different machines. The
term is related to the concept of vertical fragmentation as used in distributed
relational databases, where it means that tables are split columnwise, and
subsequently distributed across multiple machines [Özsu and Valduriez, 2011].

Again, from a systems-management perspective, having a vertical distri-
bution can help: functions are logically and physically split across multiple
machines, where each machine is tailored to a specific group of functions.
However, vertical distribution is only one way of organizing client-server
applications. In modern architectures, it is often the distribution of the clients
and the servers that counts, which we refer to as horizontal distribution. In
this type of distribution, a client or server may be physically split up into
logically equivalent parts, but each part is operating on its own share of the
complete data set, thus balancing the load. In this section we will take a look
at a class of modern system architectures that support horizontal distribution,
known as peer-to-peer systems.

From a high-level perspective, the processes that constitute a peer-to-peer
system are all equal. This means that the functions that need to be carried
out are represented by every process that constitutes the distributed system.
As a consequence, much of the interaction between processes is symmetric:
each process will act as a client and a server at the same time (which is also
referred to as acting as a servant).

Given this symmetric behavior, peer-to-peer architectures evolve around
the question how to organize the processes in an overlay network [Tarkoma,
2010]: a network in which the nodes are formed by the processes and the links
represent the possible communication channels (which are often realized as
TCP connections). A node may not be able to communicate directly with an
arbitrary other node, but is required to send messages through the available
communication channels. Two types of overlay networks exist: those that are
structured and those that are not. These two types are surveyed extensively
in Lua et al. [2005] along with numerous examples. Buford and Yu [2010]
additionally includes an extensive list of various peer-to-peer systems. Aberer
et al. [2005] provide a reference architecture that allows for a more formal
comparison of the different types of peer-to-peer systems. A survey taken
from the perspective of content distribution is provided by Androutsellis-
Theotokis and Spinellis [2004]. Finally, Buford et al. [2009], Tarkoma [2010]
and Vu et al. [2010] go beyond the level of surveys and form adequate text
books for initial or further study.
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Structured peer-to-peer systems

As its name suggests, in a structured peer-to-peer system the nodes (i.e.,
processes) are organized in an overlay that adheres to a specific, deterministic
topology: a ring, a binary tree, a grid, etc. This topology is used to efficiently
look up data. Characteristic for structured peer-to-peer systems, is that they
are generally based on using a so-called semantic-free index. What this means
is that each data item that is to be maintained by the system, is uniquely
associated with a key, and that this key is subsequently used as an index. To
this end, it is common to use a hash function, so that we get:

key(data item) = hash(data item’s value).

The peer-to-peer system as a whole is now responsible for storing (key,value)
pairs. To this end, each node is assigned an identifier from the same set
of all possible hash values, and each node is made responsible for storing
data associated with a specific subset of keys. In essence, the system is
thus seen to implement a distributed hash table, generally abbreviated to a
DHT [Balakrishnan et al., 2003].

Following this approach now reduces the essence of structured peer-to-
peer systems to being able to look up a data item by means of its key. That
is, the system provides an efficient implementation of a function lookup that
maps a key to an existing node:

existing node = lookup(key).

This is where the topology of a structured peer-to-peer system plays a crucial
role. Any node can be asked to look up a given key, which then boils down to
efficiently routing that lookup request to the node responsible for storing the
data associated with the given key.

To clarify these matters, let us consider a simple peer-to-peer system with
a fixed number of nodes, organized into a hypercube. A hypercube is an
n-dimensional cube. The hypercube shown in Figure 2.18 is four-dimensional.
It can be thought of as two ordinary cubes, each with 8 vertices and 12 edges.
To expand the hypercube to five dimensions, we would add another set of
two interconnected cubes to the figure, connect the corresponding edges in
the two halves, and so on.

For this (admittedly naive) system, each data item is associated with one
of the 16 nodes. This can be achieved by hashing the value of a data item to a
key k ∈ {0, 1, 2, . . . , 24 − 1}. Now suppose that the node with identifier 0111
is requested to look up the data having key 14, corresponding to the binary
value 1110. In this example, we assume that the node with identifier 1110 is
responsible for storing all data items that have key 14. What node 0111 can
simply do, is forward the request to a neighbor that is closer to node 1110.
In this case, this is either node 0110 or node 1111. If it picks node 0110, that
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Figure 2.18: A simple peer-to-peer system organized as a four-dimensional
hypercube.

node will then forward the request directly to node 1110 from where the data
can be retrieved.

Note 2.5 (Example: The Chord system)

Figure 2.19: The organization of nodes and data items in Chord.

The previous example illustrates two things: (1) the use of a hashing function
to identify the node responsible for storing some data item, and (2) the routing
along the topology of a peer-to-peer system when looking up a data item given
its key. However, it is not a very realistic example, if only for the reason that we
assumed that the total set of nodes is fixed. Let us therefore consider a more
realistic example of a structured peer-to-peer system that is also used in practice.

In the Chord system [Stoica et al., 2003] the nodes are logically organized
in a ring such that a data item with an m-bit key k is mapped to the node with
the smallest (again, also m bit) identifier id ≥ k. This node is referred to as the
successor of key k and denoted as succ(k). Keys and identifiers are typically 128
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or 160 bits long. Figure 2.19 shows a much smaller Chord ring, where m = 5 and
with nine nodes {1, 4, 9, 11, 14, 18, 20, 21, 28}. The successor of key 7 is equal to
9. Likewise, succ(5) = 9, but also succ(9) = 9. In Chord, each node maintains
shortcuts to other nodes. A shortcut appears as a directed edge from one node
to another. How these shortcuts are constructed is explained in Chapter 5. The
construction is done in such a way that the length of the shortest path between
any pair of nodes is of order O(log N), where N is the total number of nodes.

To look up a key, a node will try to forward the request “as far as possible,” but
without passing it beyond the node responsible for that key. To clarify, suppose
that in our example Chord ring, node 9 is asked to look up the node responsible
for key 3 (which is node 4). Node 9 has four shortcuts: to nodes 11, 14, 18, and 28,
respectively. As node 28 is the farthest node 9 knows about and still preceding
the one responsible for key 3, it will get the lookup request. Node 28 has three
shortcuts: to nodes 1, 4, and 14, respectively. Note that node 28 has no knowledge
about the existence of nodes between nodes 1 and 4. For this reason, the best
what it can do is forward the request to node 1. The latter knows that its successor
in the ring is node 4, and thus that this is the node responsible for key 3, to which
it will subsequently forward the request.

Now suppose that a node, with the unique identifier u, wants to join a Chord
overlay. To that end, it contacts an arbitrary node and requests it to look up u,
that is, return the value v= succ(u). At that point, node u will simply need to
insert itself between the predecessor of v and v itself, thus becoming the new
predecessor of v. During this process, shortcuts from u to other nodes will be
established, but also some existing ones previously directed toward v will now be
adjusted to point to u (again, details are deferred until later chapters). Obviously,
any data item with key k stored at v but for which succ(k) is now equal to u is
transferred from v to u.

Leaving is just as simple: node u informs its departure to its predecessor and
successor, and transfers its data items to succ(u).

Unstructured peer-to-peer systems

Structured peer-to-peer systems attempt to maintain a specific, deterministic
overlay network. In contrast, in an unstructured peer-to-peer system each
node maintains an ad hoc list of neighbors. The resulting overlay resembles
what is known as a random graph: a graph in which an edge 〈u, v〉 between
two nodes u and v exists only with a certain probability P[〈u, v〉]. Ideally, this
probability is the same for all pairs of nodes, but in practice a wide range of
distributions is observed.

In an unstructured peer-to-peer system, when a node joins it often contacts
a well-known node to obtain a starting list of other peers in the system. This
list can then be used to find more peers, and perhaps ignore others, and so
on. In practice, a node generally changes its local list almost continuously.
For example, a node may discover that a neighbor is no longer responsive
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and that it needs to be replaced. There may be other reasons, which we will
describe shortly.

Unlike structured peer-to-peer systems, looking up data cannot follow a
predetermined route when lists of neighbors are constructed in an ad hoc
fashion. Instead, in an unstructured peer-to-peer systems we really need
to resort to searching for data [Risson and Moors, 2006]. Let us look at two
extremes and consider the case in which we are requested to search for specific
data (e.g., identified by keywords).

Flooding: In the case of flooding, an issuing node u simply passes a request
for a data item to all its neighbors. A request will be ignored when its
receiving node, say v, had seen it before. Otherwise, v searches locally
for the requested data item. If v has the required data, it can either
respond directly to the issuing node u, or send it back to the original
forwarder, who will then return it to its original forwarder, and so on. If
v does not have the requested data, it forwards the request to all of its
own neighbors.

Obviously, flooding can be very expensive, for which reason a request
often has an associated time-to-live or TTL value, giving the maximum
number of hops a request is allowed to be forwarded. Choosing the
right TTL value is crucial: too small means that a request will stay close
to the issuer and may thus not reach a node having the data. Too large
incurs high communication costs.

As an alternative to setting TTL values, a node can also start a search
with an initial TTL value of 1, meaning that it will first query only its
neighbors. If no, or not enough results are returned, the TTL is increased
and a new search is initiated.

Random walks: At the other end of the search spectrum, an issuing node u
can simply try to find a data item by asking a randomly chosen neighbor,
say v. If v does not have the data, it forwards the request to one of its
randomly chosen neighbors, and so on. The result is known as a random
walk [Gkantsidis et al., 2006; Lv et al., 2002]. Obviously, a random walk
imposes much less network traffic, yet it may take much longer before
a node is reached that has the requested data. To decrease the waiting
time, an issuer can simply start n random walks simultaneously. Indeed,
studies show that in this case, the time it takes before reaching a node
that has the data drops approximately by a factor n. Lv et al. [2002]
report that relatively small values of n, such as 16 or 64, turn out to be
effective.

A random walk also needs to be stopped. To this end, we can either again
use a TTL, or alternatively, when a node receives a lookup request, check
with the issuer whether forwarding the request to another randomly
selected neighbor is still needed.
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Note that neither method relies on a specific comparison technique to decide
when requested data has been found. For structured peer-to-peer systems,
we assumed the use of keys for comparison; for the two approaches just
described, any comparison technique would suffice.

Between flooding and random walks lie policy-based search methods.
For example, a node may decide to keep track of peers who responded
positively, effectively turning them into preferred neighbors for succeeding
queries. Likewise, we may want to restrict flooding to fewer neighbors, but in
any case give preference to neighbors having many neighbors themselves.

Note 2.6 (Advanced: Flooding versus random walks)
When giving the matter some thought, it may come as a surprise that people have
even considered a random walk as an alternative way to search. At first instance,
it would seem like a technique resembling the search for a needle in a haystack.
However, we need to realize that in practice we are dealing with replicated data,
and even for very small replication factors and different replication distributions,
studies show that deploying random walks is not only effective, it can also be
much more efficient in comparison to flooding.

To see why, we closely follow the model described in Lv et al. [2002] and
Cohen and Shenker [2002]. Assume there are a total of N nodes and that each data
item is replicated across r randomly chosen nodes. A search consists of repeatedly
selecting a node at random until the item is found. If P[k] is the probability that
the item is found after k attempts, we have

P[k] =
r
N
(1− r

N
)k−1.

Let the average search size S be the expected number of nodes that need to be
probed before finding the requested data item:

S =
N

∑
k=1

k ·P[k] =
N

∑
k=1

k · r
N
(1− r

N
)k−1 ≈ N/r for 1� r ≤ N.

By simply replicating every data item to each node, S = 1 and it is clear that a
random walk will always outperform flooding even for TTL values of 1. More
realistically, however, is to assume that r/N is relatively low, such as 0.1%,
meaning that the average search size would be approximately 1000 nodes.

To compare this to flooding, assume that each node, on average, forwards a
request to d randomly selected neighbors. After one step, the request will have
arrived at d nodes, each of who will forward it to another d− 1 nodes (assuming
that the node from where the request came is skipped), and so on. In other words,
after k steps, and taking into account that a node can receive the request more
than once, we will have reached (at most)

R(k) = d(d− 1)k−1

nodes. Various studies show that R(k) is a good estimate for the actual number of
nodes reached, as long as we have only a few number of flooding steps. Of these
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nodes, we can expect a fraction of r/N to have the requested data item, meaning
that when r

N · R(k) ≥ 1, we will most likely have found a node that has the data
item.

To illustrate, let r/N = 0.001 = 0.1%, which means that S ≈ 1000. With
flooding to, on average, d = 10 neighbors, we would require at least 4 flooding
steps, reaching some 7290 nodes, which is considerably more that the 1000 nodes
required when using a random walk. Only with d = 33 will we need to contact
approximately also 1000 nodes in k = 2 flooding steps and having r/N · R(k) ≥ 1.

The obvious drawback of deploying random walks, is that it may take much
longer before an answer is returned.

Hierarchically organized peer-to-peer networks

Notably in unstructured peer-to-peer systems, locating relevant data items
can become problematic as the network grows. The reason for this scalability
problem is simple: as there is no deterministic way of routing a lookup request
to a specific data item, essentially the only technique a node can resort to is
searching for the request by means of flooding or randomly walking through
the network. As an alternative many peer-to-peer systems have proposed to
make use of special nodes that maintain an index of data items.

There are other situations in which abandoning the symmetric nature
of peer-to-peer systems is sensible. Consider a collaboration of nodes that
offer resources to each other. For example, in a collaborative content delivery
network (CDN), nodes may offer storage for hosting copies of Web documents
allowing Web clients to access pages nearby, and thus to access them quickly.
What is needed is a means to find out where documents can be stored best.
In that case, making use of a broker that collects data on resource usage and
availability for a number of nodes that are in each other’s proximity will allow
to quickly select a node with sufficient resources.

Nodes such as those maintaining an index or acting as a broker are gener-
ally referred to as super peers. As the name suggests, super peers are often
also organized in a peer-to-peer network, leading to a hierarchical organiza-
tion as explained in Yang and Garcia-Molina [2003]. A simple example of such
an organization is shown in Figure 2.20. In this organization, every regular
peer, now referred to as a weak peer, is connected as a client to a super peer.
All communication from and to a weak peer proceeds through that peer’s
associated super peer.

In many cases, the association between a weak peer and its super peer
is fixed: whenever a weak peer joins the network, it attaches to one of the
super peers and remains attached until it leaves the network. Obviously, it is
expected that super peers are long-lived processes with high availability. To
compensate for potential unstable behavior of a super peer, backup schemes
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Figure 2.20: A hierarchical organization of nodes into a super-peer network.

can be deployed, such as pairing every super peer with another one and
requiring weak peers to attach to both.

Having a fixed association with a super peer may not always be the best
solution. For example, in the case of file-sharing networks, it may be better
for a weak peer to attach to a super peer that maintains an index of files
that the weak peer is currently interested in. In that case, chances are bigger
that when a weak peer is looking for a specific file, its super peer will know
where to find it. Garbacki et al. [2010] describe a relatively simple scheme in
which the association between weak peer and strong peer can change as weak
peers discover better super peers to associate with. In particular, a super peer
returning the result of a lookup operation is given preference over other super
peers.

As we have seen, peer-to-peer networks offer a flexible means for nodes
to join and leave the network. However, with super-peer networks a new
problem is introduced, namely how to select the nodes that are eligible to
become super peer. This problem is closely related to the leader-election
problem, which we discuss in Section 6.4.

Note 2.7 (Example: The Skype network)
To give a concrete example of a hierarchically organized peer-to-peer network,
let us take a closer look at one of the most successful ones: the Skype VOIP
network. Although there are no official publications on how Skype is organized,
Baset and Schulzrinne [2006] have experimentally analyzed the working of Skype
from which they deduced an architecture. Apart from how accurate their findings
are (Skype has evolved considerably since the time of the Baset and Schulzrinne
publication), it remains an interesting case study.

The Skype network is organized very similar to what is shown in Figure 2.20,
with one important difference: there is an additional centralized Skype login
server, to which every peer can communicate (i.e., weak as well as super peers).
Super peers (known as Skype super nodes) are crucial to the working of the
system as a whole. Besides the login server, there are a number of default Skype
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super peers that can be used to get started when a weak peer starts from scratch.
It appears that the address of each of these default super peers is hard-coded in
the Skype software. An address consists of an (IP address, port number)-pair.

Each weak peer has a local list of addresses of reachable super peers, called
its host cache. If none of the cached super peers is reachable, it tries to connect to
one of the default super peers. The host cache is designed to accommodate a few
hundred addresses. To connect to the Skype network, a weak peer is required to
establish a TCP connection with a super peer. This is important, notably when
a peer is operating behind a (NATed) firewall, as the super peer can assist in
actually contacting that peer.

Let us first consider the situation that one peer A wants to contact another
(weak) peer B for which it has a contact address. We need to distinguish three
cases, all related to the situation whether or not peers are behind (NATed) firewalls.

Both A and B are on the public Internet: Being on the public Internet means
that A and B can be directly contacted. In this case, a TCP connection is set
up between A and B which is used to exchange control packets. The actual
call takes place using UDP packets between negotiated ports at the caller
and callee, respectively.

A operates behind a firewall, while B is on the public Internet: In this case, A
will first set up a TCP connection to a super peer S, after which S will set
up a TCP connection to B. Again, the TCP connections are used to transfer
control packets between A and B (via S), after which the actual call will
take place through UDP and directly between A and B without flowing
through S. However, it seems that S is needed to discover the correct pair
of port numbers for the firewall at A to allow for UDP packet exchanges. In
principle, this should also be possible with assistance of B.

Both A and B operate behind a firewall: This is the most challenging situation,
certainly if we also assume that the firewalls restrict UDP traffic. In this case,
A will connect to an online super peer S through TCP, after which S will
set up a TCP connection to B. These connections are used for exchanging
control packets. For the actual call, another super peer is contacted that
will act as a relay R: A sets up a connection to R, and so will B. All voice
traffic is then subsequently forwarded over the two TCP connections, and
through R.

How do users find each other? As mentioned, the first thing a weak peer
needs to do is establish a TCP connection with a super peer. That super peer
is either found in the local host cache, or obtained through one of the default
super peers. In order to search for a specific user, a weak peer contacts its super
peer, which will return a number of other peers to ask. If that did not lead to any
results, the super peer returns another (this time longer) list of peers to which
the search request should be forwarded. This process is repeated until the user
is found or the requester concludes the user does not exist. Indeed, this can be
viewed as a form of policy-based search as we mentioned above. Finding a user
means that its address, or that of its associated super peer is returned. In principle,
if the searched user is online, a VOIP connection can then be established.
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Finally, the Skype login server is used to make sure that only registered users
can make use of the network. It also ensures that user IDs are unique, and handles
other administrative tasks that are difficult, if not practically impossible to handle
in a decentralized manner.

Hybrid Architectures

So far, we have focused on client-server architectures and a number of peer-to-
peer architectures. Many distributed systems combine architectural features,
as we already came across in super-peer networks. In this section we take
a look at some specific classes of distributed systems in which client-server
solutions are combined with decentralized architectures.

Edge-server systems

An important class of distributed systems that is organized according to
a hybrid architecture is formed by edge-server systems. These systems are
deployed on the Internet where servers are placed “at the edge” of the network.
This edge is formed by the boundary between enterprise networks and the
actual Internet, for example, as provided by an Internet Service Provider
(ISP). Likewise, where end users at home connect to the Internet through
their ISP, the ISP can be considered as residing at the edge of the Internet.
This leads to a general organization like the one shown in Figure 2.21.

Figure 2.21: Viewing the Internet as consisting of a collection of edge servers.

End users, or clients in general, connect to the Internet by means of an
edge server. The edge server’s main purpose is to serve content, possibly after
applying filtering and transcoding functions. More interesting is the fact that
a collection of edge servers can be used to optimize content and application
distribution. The basic model is that for a specific organization, one edge
server acts as an origin server from which all content originates. That server
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can use other edge servers for replicating Web pages and such [Leff and
Rayfield, 2004; Nayate et al., 2004; Rabinovich and Spastscheck, 2002].

This concept of edge-server systems is now often taken a step further:
taking cloud computing as implemented in a data center as the core, additional
servers at the edge of the network are used to assist in computations and
storage, essentially leading to distributed cloud systems. In the case of fog
computing, even end-user devices form part of the system and are (partly)
controlled by a cloud-service provider [Yi et al., 2015].

Collaborative distributed systems

Hybrid structures are notably deployed in collaborative distributed systems.
The main issue in many of these systems is to first get started, for which often
a traditional client-server scheme is deployed. Once a node has joined the
system, it can use a fully decentralized scheme for collaboration.

To make matters concrete, let us consider the widely popular BitTorrent
file-sharing system [Cohen, 2003]. BitTorrent is a peer-to-peer file downloading
system. Its principal working is shown in Figure 2.22. The basic idea is that
when an end user is looking for a file, he downloads chunks of the file from
other users until the downloaded chunks can be assembled together yielding
the complete file. An important design goal was to ensure collaboration.
In most file-sharing systems, a significant fraction of participants merely
download files but otherwise contribute close to nothing [Adar and Huberman,
2000; Saroiu et al., 2003; Yang et al., 2005], a phenomenon referred to as free
riding. To prevent this situation, in BitTorrent a file can be downloaded only
when the downloading client is providing content to someone else.

Figure 2.22: The principal working of BitTorrent [adapted with permission
from Pouwelse et al. [2005]].

To download a file, a user needs to access a global directory, which is
generally just one of a few well-known Web sites. Such a directory contains
references to what are called torrent files. A torrent file contains the informa-
tion that is needed to download a specific file. In particular, it contains a link
to what is known as a tracker, which is a server that is keeping an accurate
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account of active nodes that have (chunks of) the requested file. An active
node is one that is currently downloading the file as well. Obviously, there
will be many different trackers, although there will generally be only a single
tracker per file (or collection of files).

Once the nodes have been identified from where chunks can be down-
loaded, the downloading node effectively becomes active. At that point, it
will be forced to help others, for example by providing chunks of the file it
is downloading that others do not yet have. This enforcement comes from a
very simple rule: if node P notices that node Q is downloading more than it is
uploading, P can decide to decrease the rate at which it sends data to Q. This
scheme works well provided P has something to download from Q. For this
reason, nodes are often supplied with references to many other nodes putting
them in a better position to trade data.

Clearly, BitTorrent combines centralized with decentralized solutions. As
it turns out, the bottleneck of the system is, not surprisingly, formed by the
trackers. In an alternative implementation of BitTorrent, a node also joins
a separate structured peer-to-peer system (i.e., a DHT) to assist in tracking
file downloads. In effect, a central tracker’s load is now distributed across
the participating nodes, with each node acting as a tracker for a relatively
small set of torrent files. The original function of the tracker coordinating
the collaborative downloading of a file is retained. However, we note that in
many BitTorrent systems used today, the tracking functionality has actually
been minimized to a one-time provisioning of peers currently involved in
downloading the file. From that moment on, the newly participating peer
will communicate only with those peers and no longer with the initial tracker.
The initial tracker for the requested file is looked up in the DHT through a
so-called magnet link. We return to DHT-based lookups in Section 5.2.

Note 2.8 (Advanced: BitTorrent under the hood)
One of the acclaimed properties of BitTorrent is the enforced collaboration between
nodes: getting a file chunk requires providing one. In other words, there is a
natural incentive for BitTorrent clients to make data available to others, thus
circumventing the problems of free riding that other peer-to-peer systems have.
To understand how this mechanism works, let us delve a bit more into the
BitTorrent protocol.

When a peer A has found the tracker for a file F, the tracker returns a subset
of all the nodes currently involved in downloading F. The complete set of
downloading nodes for a specific file F is known as a swarm (for that file); the
subset of nodes from that swarm with whom A collaborates is called A’s neighbor
set NA. Note that if B is in NA, then A will be a member of NB: being a neighbor
is a symmetric relation. The neighbor set of a peer A is periodically updated by
contacting the tracker, or when a new peer B joins the swarm and the tracker
passes NA to B.

DS 3.02 downloaded by OLEXANDER.PERIG@GMAIL.COM



2.3. SYSTEM ARCHITECTURE 93

A node that has all chunks of F and continues to participate in its swarm is
known as a seeder; all others in the swarm are known as leechers.

As mentioned, each file is divided into a number of equally sized chunks,
called pieces in BitTorrent. A piece is typically 256 Kbyte, but other sizes are also
used. The unit of data transfer between two peers is that of a block, which is
typically 16 Kbyte. A node can upload a block only if it has the entire piece to
which that block belongs. A neighbor B belongs to the potential set PA of A, if it
has a block that A does not yet have, and vice versa. Again, if B ∈ PA and A ∈ PB,
then A and B are in a position that they can trade a block.

With this terminology, the downloading of a file can be described in terms of
three phases, as detailed by Rai et al. [2007]:

Bootstrap phase: A node A has just received its first piece, placing it in a position
to start trading blocks. This first piece is obtained through a mechanism
called optimistic unchoking, by which nodes from NA unselfishly provide
the blocks of a piece to get a newly arrived node started. If the potential set
PA of A is empty, A will have to wait until new neighbors are added to the
set who may have pieces to exchange.

Trading phase: In this phase, |PA| > 0, meaning that there is always a peer
with whom A can trade blocks. In practice, this is the phase in which the
downloading is highly efficient as enough nodes can be paired to exchange
data.

Last download phase: Now the size of the potential set has dropped to zero
again, so that node A is entirely dependent on newly arriving peers in its
neighbor set in order to get the last missing pieces. Note that the neighbor
set can change only by involving the tracker.

Figure 2.23: The development of the potential set size |P| relative to
the size |N| of the neighborhood as pieces are being downloaded in
BitTorrent.
Most descriptions of BitTorrent consider only the trading phase, which is

usually the longest and most efficient phase. Figure 2.23 shows how the three
phases develop in terms of the relative size of the potential set. We see clearly
that during the bootstrap phase, as well as the last download phase, the potential
set P is relatively small. Effectively, this means that it may take a while to get
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BitTorrent started, but also that completing a download may take a while for the
simple reason that it is difficult to find a trading partner.

To find a suitable trading peer, a node always selects a peer from its potential
set having the highest upload rate. Likewise, to speed up dissemination, a
node generally selects to hand out blocks of the rarest piece in the swarm first
before considering other pieces. In this way, we can expect a quick and uniform
dissemination of pieces throughout the swarm.

2.4 Example architectures

The Network File System

Many distributed files systems are organized along the lines of client-server
architectures, with Sun Microsystem’s Network File System (NFS) being one
of the most widely-deployed ones for Unix systems. Here, we concentrate on
NFSv3, the widely-used third version of NFS [Callaghan, 2000] and NFSv4,
the most recent, fourth version [Shepler et al., 2003]. We will discuss the
differences between them as well.

The basic idea behind NFS is that each file server provides a standardized
view of its local file system. In other words, it should not matter how that
local file system is implemented; each NFS server supports the same model.
This approach has been adopted for other distributed files systems as well.
NFS comes with a communication protocol that allows clients to access the
files stored on a server, thus allowing a heterogeneous collection of processes,
possibly running on different operating systems and machines, to share a
common file system.

The model underlying NFS and similar systems is that of a remote file
service. In this model, clients are offered transparent access to a file system
that is managed by a remote server. However, clients are normally unaware
of the actual location of files. Instead, they are offered an interface to a file
system that is similar to the interface offered by a conventional local file system.
In particular, the client is offered only an interface containing various file
operations, but the server is responsible for implementing those operations.
This model is therefore also referred to as the remote access model. It is
shown in Figure 2.24(a).

In contrast, in the upload/download model a client accesses a file locally
after having downloaded it from the server, as shown in Figure 2.24(b) When
the client is finished with the file, it is uploaded back to the server again so
that it can be used by another client. The Internet’s FTP service can be used
this way when a client downloads a complete file, modifies it, and then puts
it back.

NFS has been implemented for a large number of different operating
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Figure 2.24: (a) The remote access model. (b) The upload/download model.

systems, although the Unix versions are predominant. For virtually all modern
Unix systems, NFS is generally implemented following the layered architecture
shown in Figure 2.25.

Figure 2.25: The basic NFS architecture for Unix systems.

A client accesses the file system using the system calls provided by its local
operating system. However, the local Unix file system interface is replaced
by an interface to the Virtual File System (VFS), which by now is a de facto
standard for interfacing to different (distributed) file systems [Kleiman, 1986].
Virtually all modern operating systems provide VFS, and not doing so more
or less forces developers to largely reimplement huge parts of an operating
system when adopting a new file-system structure. With NFS, operations on
the VFS interface are either passed to a local file system, or passed to a separate
component known as the NFS client, which takes care of handling access
to files stored at a remote server. In NFS, all client-server communication is

downloaded by OLEXANDER.PERIG@GMAIL.COM DS 3.02



96 CHAPTER 2. ARCHITECTURES

done through so-called remote procedure calls (RPCs). An RPC is essentially
a standardized way to let a client on machine A make an ordinary call to
a procedure that is implemented on another machine B. We discuss RPCs
extensively in Chapter 4. The NFS client implements the NFS file system
operations as remote procedure calls to the server. Note that the operations
offered by the VFS interface can be different from those offered by the NFS
client. The whole idea of the VFS is to hide the differences between various
file systems.

On the server side, we see a similar organization. The NFS server is
responsible for handling incoming client requests. The RPC component at
the server converts incoming requests to regular VFS file operations that
are subsequently passed to the VFS layer. Again, the VFS is responsible for
implementing a local file system in which the actual files are stored.

An important advantage of this scheme is that NFS is largely independent
of local file systems. In principle, it really does not matter whether the
operating system at the client or server implements a Unix file system, a
Windows file system, or even an old MS-DOS file system. The only important
issue is that these file systems are compliant with the file system model offered
by NFS. For example, MS-DOS with its short file names cannot be used to
implement an NFS server in a fully transparent way.

Note 2.9 (More information: The NFS file system model)
Figure 2.26 shows the general file operations supported by NFS versions 3 and
4, respectively. The create operation is used to create a file, but has somewhat
different meanings in NFSv3 and NFSv4. In version 3, the operation is used for
creating regular files. Special files are created using separate operations. The link

operation is used to create hard links. Symlink is used to create symbolic links.
Mkdir is used to create subdirectories. Special files, such as device files, sockets,
and named pipes are created by means of the mknod operation.

This situation is changed completely in NFSv4, where create is used for
creating nonregular files, which include symbolic links, directories, and special
files. Hard links are still created using a separate link operation, but regular files
are created by means of the open operation, which is new to NFS and is a major
deviation from the approach to file handling in older versions. Up until version 4,
NFS was designed to allow its file servers to be what is known as stateless: once
a request has been completed, the server will forget about the client and the
operation it had requested. For reasons we discuss later, this design criterion
has been abandoned in NFSv4, in which it is assumed that servers will generally
maintain state between operations on the same file.

The operation rename is used to change the name of an existing file the same
as in Unix.

Files are deleted by means of the remove operation. In version 4, this operation
is used to remove any kind of file. In previous versions, a separate rmdir operation
was needed to remove a subdirectory. A file is removed by its name and has the
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effect that the number of hard links to it is decreased by one. If the number of
links drops to zero, the file may be destroyed.

Operation v3 v4 Description
create Yes No Create a regular file
create No Yes Create a nonregular file
link Yes Yes Create a hard link to a file
symlink Yes No Create a symbolic link to a file
mkdir Yes No Create a subdirectory in a given directory
mknod Yes No Create a special file
rename Yes Yes Change the name of a file
remove Yes Yes Remove a file from a file system
rmdir Yes No Remove an empty subdirectory from a directory
open No Yes Open a file
close No Yes Close a file
lookup Yes Yes Look up a file by means of a file name
readdir Yes Yes Read the entries in a directory
readlink Yes Yes Read the path name stored in a symbolic link
getattr Yes Yes Get the attribute values for a file
setattr Yes Yes Set one or more attribute values for a file
read Yes Yes Read the data contained in a file
write Yes Yes Write data to a file

Figure 2.26: An incomplete list of NFS file system operations.

Version 4 allows clients to open and close (regular) files. Opening a nonexisting
file has the side effect that a new file is created. To open a file, a client provides a
name, along with various values for attributes. For example, a client may specify
that a file should be opened for write access. After a file has been successfully
opened, a client can access that file by means of its file handle. That handle is also
used to close the file, by which the client tells the server that it will no longer need
to have access to the file. The server, in turn, can release any state it maintained
to provide that client access to the file.

The lookup operation is used to look up a file handle for a given path name.
In NFSv3, the lookup operation will not resolve a name beyond what is called
a mount point (which is essentially a place in a naming system that connects to
another naming system, to which we return Chapter 5). For example, assume
that the name /remote/vu refers to a mount point in a naming graph. When
resolving the name /remote/vu/mbox, the lookup operation in NFSv3 will return
the file handle for the mount point /remote/vu along with the remainder of the
path name (i.e., mbox). The client is then required to explicitly mount the file
system that is needed to complete the name lookup. A file system in this context
is the collection of files, attributes, directories, and data blocks that are jointly
implemented as a logical block device [Tanenbaum and Woodhull, 2006].

In version 4, matters have been simplified. In this case, lookup will attempt
to resolve the entire name, even if this means crossing mount points. Note
that this approach is possible only if a file system has already been mounted at
mount points. The client is able to detect that a mount point has been crossed
by inspecting the file system identifier that is later returned when the lookup
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completes.
There is a separate operation readdir to read the entries in a directory. This

operation returns a list of ((name, file handle)), pairs along with attribute values
that the client requested. The client can also specify how many entries should be
returned. The operation returns an offset that can be used in a subsequent call to
readdir in order to read the next series of entries.

Operation readlink is used to read the data associated with a symbolic link.
Normally, this data corresponds to a path name that can be subsequently looked
up. Note that the lookup operation cannot handle symbolic links. Instead, when
a symbolic link is reached, name resolution stops and the client is required to first
call readlink to find out where name resolution should continue.

Files have various attributes associated with them. Again, there are important
differences between NFS version 3 and 4. Typical attributes include the type of
the file (telling whether we are dealing with a directory, a symbolic link, a special
file, etc.), the file length, the identifier of the file system that contains the file, and
the last time the file was modified. File attributes can be read and set using the
operations getattr and setattr, respectively.

Finally, there are operations for reading data from a file, and writing data to a
file. Reading data by means of the operation read is completely straightforward.
The client specifies the offset and the number of bytes to be read. The client is
returned the actual number of bytes that have been read, along with additional
status information (e.g., whether the end-of-file has been reached).

Writing data to a file is done using the write operation. The client again
specifies the position in the file where writing should start, the number of bytes
to be written, and the data. In addition, it can instruct the server to ensure that all
data are to be written to stable storage (we discussed stable storage in Chapter 8).
NFS servers are required to support storage devices that can survive power supply
failures, operating system failures, and hardware failures.

The Web

The architecture of Web-based distributed systems is not fundamentally dif-
ferent from other distributed systems. However, it is interesting to see how
the initial idea of supporting distributed documents has evolved since its
inception in 1990s. Documents turned from being purely static and pas-
sive to dynamically generated content. Furthermore, in recent years, many
organizations have begun supporting services instead of just documents.

Simple Web-based systems

Many Web-based systems are still organized as relatively simple client-server
architectures. The core of a Web site is formed by a process that has access to a
local file system storing documents. The simplest way to refer to a document is
by means of a reference called a Uniform Resource Locator (URL). It specifies
where a document is located by embedding the DNS name of its associated
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server along with a file name by which the server can look up the document
in its local file system. Furthermore, a URL specifies the application-level
protocol for transferring the document across the network.

A client interacts with Web servers through a browser, which is responsible
for properly displaying a document. Also, a browser accepts input from a
user mostly by letting the user select a reference to another document, which
it then subsequently fetches and displays. The communication between a
browser and Web server is standardized: they both adhere to the HyperText
Transfer Protocol (HTTP). This leads to the overall organization shown in
Figure 2.27.

Figure 2.27: The overall organization of a traditional Web site.

Let us zoom in a bit into what a document actually is. Perhaps the simplest
form is a standard text file. In that case, the server and browser have barely
anything to do: the server copies the file from the local file system and
transfers it to the browser. The latter, in turn, merely displays the content of
the file ad verbatim without further ado.

More interesting are Web documents that have been marked up, which is
usually done in the HyperText Markup Language, or simply HTML. In that
case, the document includes various instructions expressing how its content
should be displayed, similar to what one can expect from any decent word-
processing system (although those instructions are normally hidden from the
end user). For example, instructing text to be emphasized is done by the
following markup:

<emph>Emphasize this text</emph>
There are many more of such markup instructions. The point is that the
browser understands these instructions and will act accordingly when dis-
playing the text.

Documents can contain much more than just markup instructions. In
particular, they can have complete programs embedded of which Javascript is
the one most often deployed. In this case, the browser is warned that there is
some code to execute as in:
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<script type=’’text/javascript’’>....</script>
and as long as the browser as an appropriate embedded interpreter for the
specified language, everything between “<script>” and “</script>” will be
executed as any other other program. The main benefit of including scripts
is that it allows for much better interaction with the end user, including
sending information back to the server. (The latter, by the way, has always
been supported in HTML through forms.)

Much more can be said about Web documents, but this is not the place to
do so. A good introduction on how to build Web-based applications can be
found in [Sebesta, 2006].

Multitiered architectures

The Web started out as the relatively simple two-tiered client-server system
shown in Figure 2.27. By now, this simple architecture has been extended to
support much more sophisticated means of documents. In fact, one could
justafiably argue that the term “document” is no longer appropriate. For
one, most things that we get to see in our browser has been generated on the
spot as the result of sending a request to a Web server. Content is stored in
a database at the server’s side, along with client-side scripts and such, to be
composed on-the-fly into a document which is then subsequently sent to the
client’s browser. Documents have thus become completely dynamic.

One of the first enhancements to the basic architecture was support for
simple user interaction by means of the Common Gateway Interface or sim-
ply CGI. CGI defines a standard way by which a Web server can execute a
program taking user data as input. Usually, user data come from an HTML
form; it specifies the program that is to be executed at the server side, along
with parameter values that are filled in by the user. Once the form has been
completed, the program’s name and collected parameter values are sent to
the server, as shown in Figure 2.28.

Figure 2.28: The principle of using server-side CGI programs.

When the server sees the request, it starts the program named in the
request and passes it the parameter values. At that point, the program simply
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does its work and generally returns the results in the form of a document that
is sent back to the user’s browser to be displayed.

CGI programs can be as sophisticated as a developer wants. For example,
as shown in Figure 2.28 many programs operate on a database local to the
Web server. After processing the data, the program generates an HTML
document and returns that document to the server. The server will then pass
the document to the client. An interesting observation is that to the server,
it appears as if it is asking the CGI program to fetch a document. In other
words, the server does nothing but delegate the fetching of a document to an
external program.

The main task of a server used to be handling client requests by simply
fetching documents. With CGI programs, fetching a document could be
delegated in such a way that the server would remain unaware of whether
a document had been generated on the fly, or actually read from the local
file system. Note that we have just described a two-tiered organization of
server-side software.

However, servers nowadays do much more than just fetching documents.
One of the most important enhancements is that servers can also process a
document before passing it to the client. In particular, a document may contain
a server-side script, which is executed by the server when the document has
been fetched locally. The result of executing a script is sent along with the
rest of the document to the client. The script itself is not sent. In other words,
using a server-side script changes a document by essentially replacing the
script with the results of its execution. To make matters concrete, take a look
at a very simple example of dynamically generating a document. Assume a
file is stored at the server with the following content:

<strong> <?php echo $_SERVER[’REMOTE_ADDR’]; ?> </strong>

The server will examine the file and subsequently process the PHP code (be-
tween “<?php” and “?>”) replacing the code with the address of the requesting
client. Much more sophisticated settings are possible, such as accessing a
local database and subsequently fetching content from that database to be
combined with other dynamically generated content.

2.5 Summary

Distributed systems can be organized in many different ways. We can make
a distinction between software architecture and system architecture. The
latter considers where the components that constitute a distributed system
are placed across the various machines. The former is more concerned about
the logical organization of the software: how do components interact, in what
ways can they be structured, how can they be made independent, and so on.

A keyword when talking about architectures is architectural style. A
style reflects the basic principle that is followed in organizing the interaction
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between the software components comprising a distributed system. Important
styles include layering, object-based styles, resource-based styles, and styles
in which handling events are prominent.

There are many different organizations of distributed systems. An impor-
tant class is where machines are divided into clients and servers. A client
sends a request to a server, who will then produce a result that is returned to
the client. The client-server architecture reflects the traditional way of modu-
larizing software in which a module calls the functions available in another
module. By placing different components on different machines, we obtain a
natural physical distribution of functions across a collection of machines.

Client-server architectures are often highly centralized. In decentralized
architectures we often see an equal role played by the processes that constitute
a distributed system, also known as peer-to-peer systems. In peer-to-peer
systems, the processes are organized into an overlay network, which is a
logical network in which every process has a local list of other peers that
it can communicate with. The overlay network can be structured, in which
case deterministic schemes can be deployed for routing messages between
processes. In unstructured networks, the list of peers is more or less random,
implying that search algorithms need to be deployed for locating data or other
processes.

In hybrid architectures, elements from centralized and decentralized or-
ganizations are combined. A centralized component is often used to handle
initial requests, for example to redirect a client to a replica server, which, in
turn, may be part of a peer-to-peer network as is the case in BitTorrent-based
systems.
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Chapter 3

Processes

In this chapter, we take a closer look at how the different types of processes
play a crucial role in distributed systems. The concept of a process originates
from the field of operating systems where it is generally defined as a program
in execution. From an operating-system perspective, the management and
scheduling of processes are perhaps the most important issues to deal with.
However, when it comes to distributed systems, other issues turn out to be
equally or more important.

We start with extensively discussing threads and their role in distributed
systems. As it turns out, threads play a crucial role in obtaining performance
in multicore and multiprocessor environments, but also help in structuring
clients and servers. There are many cases where we see threads being replaced
by processes and using the underlying operating system for guaranteeing
protection and facilitating communication. Nevertheless, when performance
is at stake, threads continue to play an important role.

In recent years, the concept of virtualization has regained much popu-
larity. Virtualization allows an application, and possibly also its complete
environment including the operating system, to run concurrently with other
applications, but highly independent of the underlying hardware and plat-
forms, leading to a high degree of portability. Moreover, virtualization helps
in isolating failures caused by errors or security problems. It is an important
concept for distributed systems, and we pay attention to it in a separate
section.

Client-server organizations are important in distributed systems. In this
chapter, we take a closer look at typical organizations of both clients and
servers. We also pay attention to general design issues for servers, including
those typically used in object-based distributed systems. A widely used Web
server is Apache, to which we pay separate attention. The organization of
server clusters remains important, especially when they need to collaborately
provide the illusion of a single system. we will discuss examples of how to
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achieve this perspective, including wide-area servers like PlanetLab.
An important issue, especially in wide-area distributed systems, is moving

processes between different machines. Process migration or more specifically,
code migration, can help in achieving scalability, but can also help to dynami-
cally configure clients and servers. What is actually meant by code migration
and what its implications are is also discussed in this chapter.

3.1 Threads

Although processes form a building block in distributed systems, practice
indicates that the granularity of processes as provided by the operating
systems on which distributed systems are built is not sufficient. Instead, it
turns out that having a finer granularity in the form of multiple threads of
control per process makes it much easier to build distributed applications
and to get better performance. In this section, we take a closer look at the
role of threads in distributed systems and explain why they are so important.
More on threads and how they can be used to build applications can be found
in [Lewis and Berg, 1998; Stevens, 1999; Robbins and Robbins, 2003]. Herlihy
and Shavit [2008] is highly recommended to learn more about multithreaded
concurrent programming in general.

Introduction to threads

To understand the role of threads in distributed systems, it is important to un-
derstand what a process is, and how processes and threads relate. To execute
a program, an operating system creates a number of virtual processors, each
one for running a different program. To keep track of these virtual processors,
the operating system has a process table, containing entries to store CPU
register values, memory maps, open files, accounting information, privileges,
etc. Jointly, these entries form a process context.

A process context can be viewed as the software analog of the hardware’s
processor context. The latter consists of the minimal information that is
automatically stored by the hardware to handle an interrupt, and to later
return to where the CPU left off. The processor context contains at least the
program counter, but sometimes also other register values such as the stack
pointer.

A process is often defined as a program in execution, that is, a program
that is currently being executed on one of the operating system’s virtual
processors. An important issue is that the operating system takes great care
to ensure that independent processes cannot maliciously or inadvertently
affect the correctness of each other’s behavior. In other words, the fact
that multiple processes may be concurrently sharing the same CPU and
other hardware resources is made transparent. Usually, the operating system
requires hardware support to enforce this separation.
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This concurrency transparency comes at a price. For example, each time a
process is created, the operating system must create a complete independent
address space. Allocation can mean initializing memory segments by, for
example, zeroing a data segment, copying the associated program into a text
segment, and setting up a stack for temporary data. Likewise, switching the
CPU between two processes may require some effort as well. Apart from
saving the data as currently stored in various registers (including the program
counter and stack pointer), the operating system will also have to modify
registers of the memory management unit (MMU) and invalidate address
translation caches such as in the translation lookaside buffer (TLB). In addition,
if the operating system supports more processes than it can simultaneously
hold in main memory, it may have to swap processes between main memory
and disk before the actual switch can take place.

Like a process, a thread executes its own piece of code, independently
from other threads. However, in contrast to processes, no attempt is made
to achieve a high degree of concurrency transparency if this would result in
performance degradation. Therefore, a thread system generally maintains only
the minimum information to allow a CPU to be shared by several threads. In
particular, a thread context often consists of nothing more than the processor
context, along with some other information for thread management. For
example, a thread system may keep track of the fact that a thread is currently
blocked on a mutex variable, so as not to select it for execution. Information
that is not strictly necessary to manage multiple threads is generally ignored.
For this reason, protecting data against inappropriate access by threads within
a single process is left entirely to application developers. We thus see that a
processor context is contained in a thread context, and that, in turn, a thread
context is contained in a process context.

There are two important implications of deploying threads as we just
sketched. First of all, the performance of a multithreaded application need
hardly ever be worse than that of its single-threaded counterpart. In fact,
in many cases, multithreading even leads to a performance gain. Second,
because threads are not automatically protected against each other the way
processes are, development of multithreaded applications requires additional
intellectual effort. Proper design and keeping things simple, as usual, help a
lot. Unfortunately, current practice does not demonstrate that this principle is
equally well understood.

Thread usage in nondistributed systems

Before discussing the role of threads in distributed systems, let us first consider
their usage in traditional, nondistributed systems. There are several benefits
to multithreaded processes that have increased the popularity of using thread
systems.

downloaded by OLEXANDER.PERIG@GMAIL.COM DS 3.02



106 CHAPTER 3. PROCESSES

The most important benefit comes from the fact that in a single-threaded
process, whenever a blocking system call is executed, the process as a whole is
blocked. To illustrate, consider an application such as a spreadsheet program,
and assume that a user continuously and interactively wants to change values.
An important property of a spreadsheet program is that it maintains the func-
tional dependencies between different cells, often from different spreadsheets.
Therefore, whenever a cell is modified, all dependent cells are automatically
updated. When a user changes the value in a single cell, such a modification
can trigger a large series of computations. If there is only a single thread
of control, computation cannot proceed while the program is waiting for
input. Likewise, it is not easy to provide input while dependencies are being
calculated. The easy solution is to have at least two threads of control: one for
handling interaction with the user and one for updating the spreadsheet. In
the meantime, a third thread could be used for backing up the spreadsheet to
disk while the other two are doing their work.

Another advantage of multithreading is that it becomes possible to exploit
parallelism when executing the program on a multiprocessor or multicore
system. In that case, each thread is assigned to a different CPU or core while
shared data are stored in shared main memory. When properly designed,
such parallelism can be transparent: the process will run equally well on a
uniprocessor system, albeit slower. Multithreading for parallelism is becoming
increasingly important with the availability of relatively cheap multiprocessor
and multicore computers. Such computer systems are typically used for
running servers in client-server applications, but are by now also extensively
used in devices such as smartphones.

Multithreading is also useful in the context of large applications. Such
applications are often developed as a collection of cooperating programs,
each to be executed by a separate process. This approach is typical for a
Unix environment. Cooperation between programs is implemented by means
of interprocess communication (IPC) mechanisms. For Unix systems, these
mechanisms typically include (named) pipes, message queues, and shared
memory segments (see also Stevens and Rago [2005]). The major drawback of
all IPC mechanisms is that communication often requires relatively extensive
context switching, shown at three different points in Figure 3.1.

Because IPC requires kernel intervention, a process will generally first
have to switch from user mode to kernel mode, shown as S1 in Figure 3.1.
This requires changing the memory map in the MMU, as well as flushing the
TLB. Within the kernel, a process context switch takes place (S2 in the figure),
after which the other party can be activated by switching from kernel mode to
user mode again (S3 in Figure 3.1). The latter switch again requires changing
the MMU map and flushing the TLB.

Instead of using processes, an application can also be constructed such
that different parts are executed by separate threads. Communication between
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Figure 3.1: Context switching as the result of IPC.

those parts is entirely dealt with by using shared data. Thread switching can
sometimes be done entirely in user space, although in other implementations,
the kernel is aware of threads and schedules them. The effect can be a dramatic
improvement in performance.

Finally, there is also a pure software engineering reason to use threads:
many applications are simply easier to structure as a collection of cooperating
threads. Think of applications that need to perform several (more or less
independent) tasks, like our spreadsheet example discussed previously.

Note 3.1 (Advanced: The cost of a context switch)
There have been many studies on measuring the performance effects of context
switches. As in so many cases with measuring computer systems, finding the
ground truth is not easy. Tsafrir [2007] notes that handling clock ticks has become
more or less ubiquitous in operating systems, making it an excellent candidate
to measure overheads. A clock handler is activated once every T milliseconds
by means of a clock interrupt. Common values for T range between 0.5 and
20 milliseconds, corresponding to interrupt frequencies of 2000 Hz and 50 Hz,
respectively. The handler typically assists in realizing various timing and CPU
usage services, sends alarm signals, and assists in preempting running tasks
for fair CPU sharing. By simply varying the frequency by which the hardware
generates an interrupt, one can easily get an impression of the incurred overhead.

To measure the performance effects of an interrupt, a distinction is made
between direct overhead and indirect overhead. The direct overhead consists of
the time it takes to do the actual context switch along with the time it takes for
the handler to do its work and subsequently switching back to the interrupted
task. The indirect overhead is everything else, and is mainly caused by cache
perturbations (to which we will return shortly). For various Intel processors,
Tsafrir [2007] found that the time to switch context is in the order of 0.5–1
microsecond, and that the handler itself takes in the order of 0.5–7 microseconds
to do its work, depending strongly on the implementation.
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However, it turns out that the direct overhead is not really that influential. In
a complimentary study, Liu and Solihin [2010] make clear that context switching
can greatly perturbate the cache resulting in a loss of performance in comparison
to the situation before an interrupt occurred. In fact, for the simple case of clock
interrupts, Tsafrir [2007] measured an indirect overhead of approximately 80%.
To understand what is going on, consider the data organizations as sketched in
Figure 3.2. Assume the cache is organized such that a least-recently used block of
data is removed from the cache when room is needed for a fresh data block.

(a) (b) (c)

Figure 3.2: The organization of the cache when dealing with interrupts:
(a) before the context switch, (b) after the context switch, and (c) after
accessing block D. (Adapted from Liu and Solihin [2010].)

Figure 3.2(a) shows the situation before the interrupt occurs. After the inter-
rupt has been handled, block D may have been evicted from the cache, leaving a
hole as shown in Figure 3.2(b). Accessing block D will copy it back into the cache,
possibly evicting block C, and so on. In other words, even a simple interrupt may
cause a considerable, and relatively long-lasting reorganization of the cache, in
turn, affecting the overall performance of an application.

Thread implementation

Threads are often provided in the form of a thread package. Such a package
contains operations to create and destroy threads as well as operations on
synchronization variables such as mutexes and condition variables. There are
basically two approaches to implement a thread package. The first approach
is to construct a thread library that is executed entirely in user space. The
second approach is to have the kernel be aware of threads and schedule them.

A user-level thread library has a number of advantages. First, it is cheap
to create and destroy threads. Because all thread administration is kept in the
user’s address space, the price of creating a thread is primarily determined
by the cost for allocating memory to set up a thread stack. Analogously,
destroying a thread mainly involves freeing memory for the stack, which is
no longer used. Both operations are cheap.

A second advantage of user-level threads is that switching thread context
can often be done in just a few instructions. Basically, only the values of
the CPU registers need to be stored and subsequently reloaded with the
previously stored values of the thread to which it is being switched. There is
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no need to change memory maps, flush the TLB, do CPU accounting, and so
on. Switching thread context is done when two threads need to synchronize,
for example, when entering a section of shared data. However, as discussed in
Note 3.1, much of the overhead of context switching is caused by perturbating
memory caches.

A major drawback of user-level threads comes from deploying the many-
to-one threading model: multiple threads are mapped to a single schedulable
entity. As a consequence, the invocation of a blocking system call will immedi-
ately block the entire process to which the thread belongs, and thus also all the
other threads in that process. As we explained, threads are particularly useful
to structure large applications into parts that could be logically executed at
the same time. In that case, blocking on I/O should not prevent other parts to
be executed in the meantime. For such applications, user-level threads are of
no help.

These problems can be mostly circumvented by implementing threads in
the operating system’s kernel, leading to what is known as the one-to-one
threading model in which every thread is a schedulable entity. The price to
pay is that every thread operation (creation, deletion, synchronization, etc.),
will have to be carried out by the kernel, requiring a system call. Switching
thread contexts may now become as expensive as switching process contexts.
However, in light of the fact that the performance of context switching is gen-
erally dictated by ineffective use of memory caches, and not by the distinction
between the many-to-one or one-to-one threading model, many operating
systems now offer the latter model, if only for its simplicity.

Note 3.2 (Advanced: Lightweight processes)
An alternative to the two threading extremes is a hybrid form of user-level and
kernel-level threads, a so-called many-to-many threading model. The model is
implemented in the form of lightweight processes (LWP). An LWP runs in the
context of a single (heavy-weight) process, and there can be several LWPs per
process. In addition to having LWPs, a system also offers a user-level thread
package, offering applications the usual operations for creating and destroying
threads. In addition, the package provides facilities for thread synchronization,
such as mutexes and condition variables. The important issue is that the thread
package is implemented entirely in user space. In other words, all operations on
threads are carried out without intervention of the kernel.

The thread package can be shared by multiple LWPs, as shown in Figure 3.3.
This means that each LWP can be running its own (user-level) thread. Mul-
tithreaded applications are constructed by creating threads, and subsequently
assigning each thread to an LWP. Assigning a thread to an LWP is normally
implicit and hidden from the programmer.

The combination of (user-level) threads and LWPs works as follows. The
thread package has a single routine to schedule the next thread. When creating
an LWP (which is done by means of a system call), the LWP is given its own stack,
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and is instructed to execute the scheduling routine in search of a thread to execute.
If there are several LWPs, then each of them executes the scheduler. The thread
table, which is used to keep track of the current set of threads, is thus shared by
the LWPs. Protecting this table to guarantee mutually exclusive access is done by
means of mutexes that are implemented entirely in user space. In other words,
synchronization between LWPs does not require any kernel support.

Figure 3.3: Combining kernel-level processes and user-level threads.

When an LWP finds a runnable thread, it switches context to that thread.
Meanwhile, other LWPs may be looking for other runnable threads as well. If a
thread needs to block on a mutex or condition variable, it does the necessary ad-
ministration and eventually calls the scheduling routine. When another runnable
thread has been found, a context switch is made to that thread. The beauty of all
this is that the LWP executing the thread need not be informed: the context switch
is implemented completely in user space and appears to the LWP as normal
program code.

Now let us see what happens when a thread does a blocking system call. In
that case, execution changes from user mode to kernel mode, but still continues
in the context of the current LWP. At the point where the current LWP can no
longer continue, the operating system may decide to switch context to another
LWP, which also implies that a context switch is made back to user mode. The
selected LWP will simply continue where it had previously left off.

There are several advantages to using LWPs in combination with a user-
level thread package. First, creating, destroying, and synchronizing threads is
relatively cheap and involves no kernel intervention at all. Second, provided
that a process has enough LWPs, a blocking system call will not suspend the
entire process. Third, there is no need for an application to know about the
LWPs. All it sees are user-level threads. Fourth, LWPs can be easily used in
multiprocessing environments by executing different LWPs on different CPUs.
This multiprocessing can be hidden entirely from the application. The only
drawback of lightweight processes in combination with user-level threads is that
we still need to create and destroy LWPs, which is just as expensive as with
kernel-level threads. However, creating and destroying LWPs needs to be done
only occasionally, and is often fully controlled by the operating system.

An alternative, but similar approach to lightweight processes, is to make use
of scheduler activations [Anderson et al., 1991]. The most essential difference

DS 3.02 downloaded by OLEXANDER.PERIG@GMAIL.COM



3.1. THREADS 111

between scheduler activations and LWPs is that when a thread blocks on a
system call, the kernel does an upcall to the thread package, effectively calling
the scheduler routine to select the next runnable thread. The same procedure
is repeated when a thread is unblocked. The advantage of this approach is that
it saves management of LWPs by the kernel. However, the use of upcalls is
considered less elegant, as it violates the structure of layered systems, in which
calls only to the next lower-level layer are permitted.

Because of the intricacies involved in deploying a many-to-many threading
model, and the relatively low performance gain (which is now understood to be
dominated by caching behavior), the simple one-to-one threading model is often
preferred.

As a final note, it is important to realize that using threads is one way
of organizing simultaneous and concurrent executions within an application.
In practice, we often see that applications are constructed as a collection of
concurrent processes, jointly making use of the interprocess facilities offered by
an operating system (see also [Robbins and Robbins, 2003; Stevens, 1999]). A
good example of this approach is the organization of the Apache Web server,
which, by default, starts with a handful of processes for handling incoming
requests. Each process forms a single-threaded instantiation of the server,
yet is capable of communicating with other instances through fairly standard
means.

As argued by Srinivasan [2010], using processes instead of threads has
the important advantage of separating the data space: each process works on
its own part of data and is protected from interference from others through
the operating system. The advantage of this separation should not be un-
derestimated: thread programming is considered to be notoriously difficult
because the developer is fully responsible for managing concurrent access
to shared data. Using processes, data spaces, in the end, are protected by
hardware support. If a process attempts to access data outside its allocated
memory, the hardware will raise an exception, which is then further processed
by the operating system. No such support is available for threads concurrently
operating within the same process.

Threads in distributed systems

An important property of threads is that they can provide a convenient means
of allowing blocking system calls without blocking the entire process in which
the thread is running. This property makes threads particularly attractive to
use in distributed systems as it makes it much easier to express communication
in the form of maintaining multiple logical connections at the same time. We
illustrate this point by taking a closer look at multithreaded clients and servers,
respectively.
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Multithreaded clients

To establish a high degree of distribution transparency, distributed systems
that operate in wide-area networks may need to conceal long interprocess
message propagation times. The round-trip delay in a wide-area network can
easily be in the order of hundreds of milliseconds, or sometimes even seconds.

The usual way to hide communication latencies is to initiate communica-
tion and immediately proceed with something else. A typical example where
this happens is in Web browsers. In many cases, a Web document consists of
an HTML file containing plain text along with a collection of images, icons,
etc. To fetch each element of a Web document, the browser has to set up a
TCP/IP connection, read the incoming data, and pass it to a display compo-
nent. Setting up a connection as well as reading incoming data are inherently
blocking operations. When dealing with long-haul communication, we also
have the disadvantage that the time for each operation to complete may be
relatively long.

A Web browser often starts with fetching the HTML page and subsequently
displays it. To hide communication latencies as much as possible, some
browsers start displaying data while it is still coming in. While the text is
made available to the user, including the facilities for scrolling and such, the
browser continues with fetching other files that make up the page, such as
the images. The latter are displayed as they are brought in. The user need
thus not wait until all the components of the entire page are fetched before
the page is made available.

In effect, it is seen that the Web browser is doing a number of tasks
simultaneously. As it turns out, developing the browser as a multithreaded
client simplifies matters considerably. As soon as the main HTML file has
been fetched, separate threads can be activated to take care of fetching the
other parts. Each thread sets up a separate connection to the server and pulls
in the data. Setting up a connection and reading data from the server can
be programmed using the standard (blocking) system calls, assuming that
a blocking call does not suspend the entire process. As is also illustrated
in [Stevens, 1998], the code for each thread is the same and, above all, simple.
Meanwhile, the user notices only delays in the display of images and such,
but can otherwise browse through the document.

There is another important benefit to using multithreaded Web browsers
in which several connections can be opened simultaneously. In the previous
example, several connections were set up to the same server. If that server is
heavily loaded, or just plain slow, no real performance improvements will be
noticed compared to pulling in the files that make up the page strictly one
after the other.

However, in many cases, Web servers have been replicated across multiple
machines, where each server provides exactly the same set of Web documents.
The replicated servers are located at the same site, and are known under the
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same name. When a request for a Web page comes in, the request is forwarded
to one of the servers, often using a round-robin strategy or some other load-
balancing technique. When using a multithreaded client, connections may
be set up to different replicas, allowing data to be transferred in parallel,
effectively establishing that the entire Web document is fully displayed in a
much shorter time than with a nonreplicated server. This approach is possible
only if the client can handle truly parallel streams of incoming data. Threads
are ideal for this purpose.

Note 3.3 (Advanced: Exploiting client-side threads for performance)
Although there are obvious opportunities for using threads to reach high perfor-
mance, it is interesting to see whether multithreading is effectively exploited. In a
study to see to what extent multiple threads put a multicore processor to work,
Blake et al. [2010] looked at the execution of various applications on modern
architectures. Browsers, like many other client-side applications, are interactive
by nature for which reason the expected processor idle time may be quite high.
In order to properly measure to what extent a multicore processor is being used,
Blake et al. used a metric known as thread-level parallelism (TLP). Let ci denote
the fraction of time that exactly i threads are being executed simultaneously.
Thread-level parallelism is then defined as:

TLP =
∑N

i=1 i · ci
1− c0

where N is the maximum number of threads that (can) execute at the same
time. In their study, a typical Web browser had a TLP value between 1.5 and 2.5,
meaning that in order to effectively exploit parallelism, the client machine should
have two or three cores, or likewise, 2–3 processors.

These results are interesting when considering that modern Web browsers
create hundreds of threads, and that tens of threads are active at the same time
(note that an active thread is not necessarily running; it may be blocked waiting for
an I/O request to complete). We thus see that multithreading is used to organize
an application, but that this multithreading is not leading to dramatic performance
improvements through hardware exploitation. That browsers can be effectively
designed for exploiting parallelism is shown, for example, by Meyerovich and
Bodik [2010]. By adapting existing algorithms, the authors manage to establish
several-fold speedups.

Multithreaded servers

Although there are important benefits to multithreaded clients, the main use
of multithreading in distributed systems is found at the server side. Practice
shows that multithreading not only simplifies server code considerably, but
also makes it much easier to develop servers that exploit parallelism to attain
high performance, even on uniprocessor systems. However, with modern
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multicore processors, multithreading for parallelism is an obvious path to
follow.

To understand the benefits of threads for writing server code, consider the
organization of a file server that occasionally has to block waiting for the disk.
The file server normally waits for an incoming request for a file operation,
subsequently carries out the request, and then sends back the reply. One
possible, and particularly popular organization is shown in Figure 3.4. Here
one thread, the dispatcher, reads incoming requests for a file operation. The
requests are sent by clients to a well-known end point for this server. After
examining the request, the server chooses an idle (i.e., blocked) worker thread
and hands it the request.

Figure 3.4: A multithreaded server organized in a dispatcher/worker model.

The worker proceeds by performing a blocking read on the local file system,
which may cause the thread to be suspended until the data are fetched from
disk. If the thread is suspended, another thread is selected to be executed. For
example, the dispatcher may be selected to acquire more work. Alternatively,
another worker thread can be selected that is now ready to run.

Now consider how the file server might have been written in the absence of
threads. One possibility is to have it operate as a single thread. The main loop
of the file server gets a request, examines it, and carries it out to completion
before getting the next one. While waiting for the disk, the server is idle and
does not process any other requests. Consequently, requests from other clients
cannot be handled. In addition, if the file server is running on a dedicated
machine, as is commonly the case, the CPU is simply idle while the file server
is waiting for the disk. The net result is that many fewer requests per time
unit can be processed. Thus threads gain considerable performance, but each
thread is programmed sequentially, in the usual way.

So far we have seen two possible designs: a multithreaded file server
and a single-threaded file server. A third alternative is to run the server as
a big single-threaded finite-state machine. When a request comes in, the
one and only thread examines it. If it can be satisfied from the in-memory
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cache, fine, but if not, the thread must access the disk. However, instead
of issuing a blocking disk operation, the thread schedules an asynchronous
(i.e., nonblocking) disk operation for which it will be later interrupted by the
operating system. To make this work, the thread will record the status of the
request (namely, that it has a pending disk operation), and continues to see if
there were any other incoming requests that require its attention.

Once a pending disk operation has been completed, the operating system
will notify the thread, who will then, in due time, look up the status of the
associated request and continue processing it. Eventually, a response will be
sent to the originating client, again using a nonblocking call to send a message
over the network.

In this design, the “sequential process” model that we had in the first
two cases is lost. Every time the thread needs to do a blocking operation, it
needs to record exactly where it was in processing the request, possibly also
storing additional state. Once that has been done, it can start the operation
and continue with other work. Other work means processing newly arrived
requests, or postprocessing requests for which a previously started operation
has completed. Of course, if there is no work to be done, the thread may
indeed block. In effect, we are simulating the behavior of multiple threads
and their respective stacks the hard way. The process is being operated as
a finite-state machine that gets an event and then reacts to it, depending on
what is in it.

Model Characteristics
Multithreading Parallelism, blocking system calls
Single-threaded process No parallelism, blocking system calls
Finite-state machine Parallelism, nonblocking system calls

Figure 3.5: Three ways to construct a server.

It should now be clear what threads have to offer. They make it possible to
retain the idea of sequential processes that make blocking system calls and still
achieve parallelism. Blocking system calls make programming easier as they
appear as just normal procedure calls. In addition, multiple threads allow for
parallelism and thus performance improvement. The single-threaded server
retains the ease and simplicity of blocking system calls, but may severely
hinder performance in terms of number of requests that can be handled
per time unit. The finite-state machine approach achieves high performance
through parallelism, but uses nonblocking calls, which is generally hard to
program and thus to maintain. These models are summarized in Figure 3.5.

Again, note that instead of using threads, we can also use multiple pro-
cesses to organize a server (leading to the situation that we actually have a
multiprocess server). The advantage is that the operating system can offer
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more protection against accidental access to shared data. However, if pro-
cesses need to communicate a lot, we may see a noticeable adverse affect on
performance in comparison to using threads.

3.2 Virtualization

Threads and processes can be seen as a way to do more things at the same
time. In effect, they allow us to build (pieces of) programs that appear to be
executed simultaneously. On a single-processor computer, this simultaneous
execution is, of course, an illusion. As there is only a single CPU, only an
instruction from a single thread or process will be executed at a time. By
rapidly switching between threads and processes, the illusion of parallelism
is created.

This separation between having a single CPU and being able to pretend
there are more can be extended to other resources as well, leading to what
is known as resource virtualization. This virtualization has been applied for
many decades, but has received renewed interest as (distributed) computer
systems have become more commonplace and complex, leading to the sit-
uation that application software is mostly always outliving its underlying
systems software and hardware.

Principle of virtualization

In practice, every (distributed) computer system offers a programming in-
terface to higher-level software, as shown in Figure 3.6(a). There are many
different types of interfaces, ranging from the basic instruction set as offered
by a CPU to the vast collection of application programming interfaces that are
shipped with many current middleware systems. In its essence, virtualization
deals with extending or replacing an existing interface so as to mimic the
behavior of another system, as shown in Figure 3.6(b). We will come to discuss
technical details on virtualization shortly, but let us first concentrate on why
virtualization is important.

Virtualization and distributed systems

One of the most important reasons for introducing virtualization back in the
1970s, was to allow legacy software to run on expensive mainframe hardware.
The software not only included various applications, but in fact also the
operating systems they were developed for. This approach toward supporting
legacy software has been successfully applied on the IBM 370 mainframes (and
their successors) that offered a virtual machine to which different operating
systems had been ported.

As hardware became cheaper, computers became more powerful, and the
number of different operating system flavors was reducing, virtualization
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(a) (b)

Figure 3.6: (a) General organization between a program, interface, and system.
(b) General organization of virtualizing system A on top of B.

became less of an issue. However, matters have changed again since the
late 1990s. First, while hardware and low-level systems software change
reasonably fast, software at higher levels of abstraction (e.g., middleware and
applications), are often much more stable. In other words, we are facing
the situation that legacy software cannot be maintained in the same pace as
the platforms it relies on. Virtualization can help here by porting the legacy
interfaces to the new platforms and thus immediately opening up the latter
for large classes of existing programs.

Note 3.4 (Discussion: Stable software?)
Although there is indeed a lot of legacy software that can benefit from stable
interfaces to rapidly changing underlying hardware, it is a mistake to believe that
the software for widely available services hardly changes. With the increasing
shift toward server-side computing in the form of software-as-a-service (SaaS),
much software can be maintained for a relatively homogeneous platform, owned
entirely by the organization offering the associated service. As a consequence,
maintaining software products can be much easier, as there is much lesser need
to distribute changes to potentially millions of customers. In fact, changes may
rapidly succeed each other following changes in available hardware and platform,
but without any client actually noticing downtimes [Barroso and Hölze, 2009].

Equally important is the fact that networking has become completely
pervasive. It is hard to imagine that a modern computer is not connected to
a network. In practice, this connectivity requires that system administrators
maintain a large and heterogeneous collection of server computers, each
one running very different applications, which can be accessed by clients.
At the same time the various resources should be easily accessible to these
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applications. Virtualization can help a lot: the diversity of platforms and
machines can be reduced by essentially letting each application run on its
own virtual machine, possibly including the related libraries and operating
system, which, in turn, run on a common platform.

This last type of virtualization provides a high degree of portability and
flexibility. For example, in order to realize content delivery networks that
can easily support replication of dynamic content, Awadallah and Rosenblum
[2002] have argued that management becomes much easier if edge servers
would support virtualization, allowing a complete site, including its environ-
ment to be dynamically copied. These arguments are still valid, and indeed,
portability is perhaps the most important reason why virtualization plays
such a key role in many distributed systems.

Types of virtualization

There are many different ways in which virtualization can be realized. An
overview of these various approaches is described by Smith and Nair [2005a].
To understand the differences in virtualization, it is important to realize that
computer systems generally offer four different types of interfaces, at three
different levels:

1. An interface between the hardware and software, referred to as the in-
struction set architecture (ISA), forming the set of machine instructions.
This set is divided into two subsets:

• Privileged instructions, which are allowed to be executed only by
the operating system.

• General instructions, which can be executed by any program.

2. An interface consisting of system calls as offered by an operating system.
3. An interface consisting of library calls, generally forming what is known

as an application programming interface (API). In many cases, the
aforementioned system calls are hidden by an API.

These different types are shown in Figure 3.7. The essence of virtualization is
to mimic the behavior of these interfaces.

Virtualization can take place in two different ways. First, we can build a
runtime system that essentially provides an abstract instruction set that is to
be used for executing applications. Instructions can be interpreted (as is the
case for the Java runtime environment), but could also be emulated as is done
for running Windows applications on Unix platforms. Note that in the latter
case, the emulator will also have to mimic the behavior of system calls, which
has proven to be generally far from trivial. This type of virtualization, shown
in Figure 3.8(a), leads to what Smith and Nair [2005a] call a process virtual
machine, stressing that virtualization is only for a single process.
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Figure 3.7: Various interfaces offered by computer systems.

(a) (b) (c)

Figure 3.8: (a) A process virtual machine. (b) A native virtual machine monitor.
(c) A hosted virtual machine monitor.

An alternative approach toward virtualization, shown in Figure 3.8(b),
is to provide a system that is implemented as a layer shielding the original
hardware, but offering the complete instruction set of that same (or other
hardware) as an interface. This leads to what is known as a native virtual
machine monitor. It is called native because it is implemented directly on
top of the underlying hardware. Note that the interface offered by a virtual
machine monitor can be offered simultaneously to different programs. As
a result, it is now possible to have multiple, and different guest operating
systems run independently and concurrently on the same platform.

A native virtual machine monitor will have to provide and regulate access
to various resources, like external storage and networks. Like any operating
system, this implies that it will have to implement device drivers for those
resources. Rather than doing all this effort anew, a hosted virtual machine
monitor will run on top of a trusted host operating system as shown in
Figure 3.8(c). In this case, the virtual machine monitor can make use of existing
facilities provided by that host operating system. It will generally have to be
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given special privileges instead of running as a user-level application. Using
a hosted virtual machine monitor is highly popular in modern distributed
systems such as data centers and clouds.

As argued by Rosenblum and Garfinkel [2005], virtual machines are be-
coming increasingly important in the context of reliability and security for
(distributed) systems. As they allow for the isolation of a complete application
and its environment, a failure caused by an error or security attack need no
longer affect a complete machine. In addition, as we also mentioned before,
portability is greatly improved as virtual machines provide a further decou-
pling between hardware and software, allowing a complete environment to be
moved from one machine to another. We return to migration in Section 3.5.

Note 3.5 (Advanced: On the performance of virtual machines)
Virtual machines perform surprisingly well. In fact, many studies show that
modern virtual machines perform close to running applications directly on the
host operating system. Let us take a closer look at what is going under the hood
of virtual machines. A detailed and comprehensive account of virtual machines is
provided by Smith and Nair [2005b].

Figure 3.9: Applications, guest operating system, virtual machine monitor,
and host operating system on a single hardware platform.

Part of the answer to performance issue is shown in Figure 3.9, which forms
an extension of Figure 3.8(c): a large part of the code constituting a virtual
machine monitor, guest operating system, and application is running natively on
the underlying hardware. In particular, all general (i.e., unprivileged) machine
instructions are directly executed by the underlying machine instead of being
interpreted or emulated.

This approach is not new and is founded on research by Popek and Goldberg
[1974] who formalized the requirements for the efficient execution of virtual
machines. In a nutshell, Popek and Goldberg assumed that the underlying
machine provided at least two modes of operation (system and user mode), that
a subset of the instructions could be executed only in system mode, and that
memory addressing was relative (i.e., a physical address was obtained by adding
a relative address to an offset found in a relocation register). A distinction was
further made between two types of instructions. A privileged instruction is an
instruction that is characterized by the fact that if and only if executed in user
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mode, it causes a trap to the operating system. Nonprivileged instructions are
all other instructions.

Given these formal assumptions, Popek and Goldberg defined two classes
of special instructions. A control-sensitive instruction is one that may affect
the configuration of a machine. A typical example is an instruction that affects
the memory layout, for example, by changing the memory offset as stored in a
relocation register. Another example are instructions that affect the interrupt table
containing pointers to interrupt handlers.

A behavior-sensitive instruction is one whose effect is partially determined
by the context in which it is executed. For example, Intel x86 processors have
instructions that may, or may not affect certain registers depending on whether
that instruction is executed in system mode or user mode. An example given
in [Smith and Nair, 2005b] is that of the POPF instruction, which may set an
interrupt-enabled flag, but only when executed in system mode.

We now have the following important result:

For any conventional computer, a virtual machine monitor may be con-
structed if the set of sensitive instructions for that computer is a subset of
the set of privileged instructions.

What this says is that as long as sensitive instructions are caught when executed
in user mode, we can safely run all nonsensitive instructions natively on the
underlying hardware. This also means that when designing instruction sets, if
we take care that the above requirement is met, we will not be unnecessarily
obstructing efficient virtualization of that instruction set.

Unfortunately, not all instruction sets have privileged-only sensitive instruc-
tions, including perhaps the most popular one, namely the Intel x86 instruction set.
As it turns out, this set has 17 sensitive instructions that are not privileged [Robin
and Irvine, 2000]. In other words, each of these instructions can be executed in
user mode without causing a trap to the operating system, yet affect the way
that the operating system is managing its resources. In these cases, there are
essentially two solutions.

The first solution is to emulate all instructions. Of course, this would have
a serious adverse effect on performance. To circumvent problems, an approach
implemented in VMWare [Sugerman et al., 2001], is to scan the executable and
to insert code around the nonprivileged sensitive instructions to divert control
to the virtual machine monitor. There, appropriate emulation will take place, for
example, by considering the context in which the instruction was to be executed.
The effect is that full virtualization can take place, meaning that execution can
take place without changing the guest operating system, nor the application itself.

An alternative solution is to apply paravirtualization, which requires the
guest operating system to be modified. In particular, the guest operating system is
modified such that all side effects of running nonprivileged sensitive instructions
in user mode, which would normally be executed in system mode, are dealt
with. For example, code can be rewritten such that these instructions simply no
longer occur, or if they do, that their semantics are the same regardless whether
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being executed in user or system mode. Paravirtualization has been adopted by
Xen [Barham et al., 2003; Chisnall, 2007].

Application of virtual machines to distributed systems

From the perspective of distributed systems, the most important application of
virtualization lies in cloud computing. As we already mentioned in Section 1.3,
cloud providers offer roughly three different types of services:

• Infrastructure-as-a-Service (IaaS) covering the basic infrastructure
• Platform-as-a-Service (PaaS) covering system-level services
• Software-as-a-Service (SaaS) containing actual applications

Virtualization plays a key role in IaaS. Instead of renting out a physical
machine, a cloud provider will rent out a virtual machine (monitor) that
may, or may not, be sharing a physical machine with other customers. The
beauty of virtualization is that it allows for almost complete isolation between
customers, who will indeed have the illusion that they have just rented a
dedicated physical machine. Isolation is, however, never complete, if only
for the fact that the actual physical resources are shared, in turn leading to
observable lower performance.

To make matters concrete, let us consider the Amazon Elastic Compute
Cloud, or simply EC2. EC2 allows one to create an environment consisting
of several networked virtual servers, thus jointly forming the basis of a
distributed system. To make life easy, there is a (large) number of pre-
configured machine images available, referred to as Amazon Machine Images,
or simply AMIs. An AMI is an installable software package consisting of an
operating-system kernel along with a number of services. An example of a
simple, basic AMI is a LAMP image, consisting of a Linux kernel, the Apache
Web server, a MySQL database system, and PHP libraries. More elaborate
images containing additional software are also available, as well as images
based on other Unix kernels or Windows. In this sense, an AMI is essentially
the same as a boot disk (although there are few important differences to which
we return shortly).

An EC2 customer needs to select an AMI, possibly after adapting or
configuring one. An AMI can then be launched resulting in what is called an
EC2 instance: the actual virtual machine that can be used to host a customer’s
applications. An important issue is that a customer will hardly ever know
exactly where an instance is actually being executed. Obviously, it is running
on a single physical machine, but where that machine is located remains
hidden. The closest one can get to pinpointing the location where an instance
should run is by selecting one of a few regions provided by Amazon (US,
South America, Europe, Asia).
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To communicate, each instance obtains two IP addresses: a private one that
can be used for internal communication between different instances, making
use of EC2’s internal networking facilities, and a public IP address allowing
any Internet clients to contact an instance. The public address is mapped to the
private one using standard Network Address Translation (NAT) technology.
A simple way to manage an instance is to make use of an SSH connection, for
which Amazon provides the means for generating the appropriate keys.

The EC2 environment in which an instance is executed provides different
levels of the following services:

• CPU: allows to select the number and type of cores, including GPUs
• Memory: defines how much main memory is allocated to an instance
• Storage: defines how much local storage is allocated
• Platform: distinguishes between 32-bit or 64-bit architectures
• Networking: sets the bandwidth capacity that can be used

In addition, extra resources can be requested such as an additional networking
interface. The local storage that comes with an instance is transient: when the
instance stops, all the data stored locally is lost. In order to prevent data loss,
a customer will need to explicitly save data to persistent store, for example,
by making use of Amazon’s Simple Storage Service (S3). An alternative is
to attach a storage device that is mapped to Amazon’s Elastic Block Store
(Amazon EBS). Again, this is yet another service, but one that can be used
in the form of a virtual block device that is simply mounted as one would
mount an additional hard disk. When an instance is stopped, all data that
was stored on EBS will persist. And just as one would expect, an EBS device
can be (re)mounted to any other instance as well.

It should be clear by now that, without having gone into any significant
level of detail, the IaaS as offered by EC2 allows a customer to create a (po-
tentially large) number of virtual machines, each configured with resources
as needed, and capable of exchanging messages through an IP network. In
addition, these virtual machines can be accessed from anywhere over the
Internet (provided a client has the proper credentials). As such, Amazon
EC2, like many other IaaS providers, offers the means to configure a com-
plete distributed system consisting of networked virtual servers and running
customer-supplied distributed applications. At the same time, those cus-
tomers will not need to maintain any physical machine, which by itself is
often already a huge gain as we will encounter at several occasions throughout
this text. One can indeed argue that virtualization lies at the core of modern
cloud computing.
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3.3 Clients

In the previous chapters we discussed the client-server model, the roles of
clients and servers, and the ways they interact. Let us now take a closer look
at the anatomy of clients and servers, respectively. We start in this section
with a discussion of clients. Servers are discussed in the next section.

Networked user interfaces

A major task of client machines is to provide the means for users to interact
with remote servers. There are roughly two ways in which this interaction
can be supported. First, for each remote service the client machine will have a
separate counterpart that can contact the service over the network. A typical
example is a calendar running on a user’s smartphone that needs to synchro-
nize with a remote, possibly shared calendar. In this case, an application-level
protocol will handle the synchronization, as shown in Figure 3.10(a).

(a)

(b)

Figure 3.10: (a) A networked application with its own protocol. (b) A general
solution to allow access to remote applications.

A second solution is to provide direct access to remote services by offer-
ing only a convenient user interface. Effectively, this means that the client
machine is used only as a terminal with no need for local storage, leading
to an application-neutral solution as shown in Figure 3.10(b). In the case of
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networked user interfaces, everything is processed and stored at the server.
This thin-client approach has received much attention with the increase of
Internet connectivity and the use of mobile devices. Thin-client solutions are
also popular as they ease the task of system management.

Example: The X window system

Perhaps one of the oldest and still widely used networked user interfaces is the
X Window System. The X Window System, generally referred to simply as X,
is used to control bit-mapped terminals, which include a monitor, keyboard,
and a pointing device such as a mouse. Next to supporting traditional
terminals as can be found with desktop computers and workstations, X also
supports modern devices such a touchscreens on tablets and smartphones. In
a sense, X can be viewed as that part of an operating system that controls the
terminal. The heart of the system is formed by what we shall call the X kernel.
It contains all the terminal-specific device drivers, and as such, is generally
highly hardware dependent.

The X kernel offers a relatively low-level interface for controlling the
screen, but also for capturing events from the keyboard and mouse. This
interface is made available to applications as a library called Xlib. This general
organization is shown in Figure 3.11. Note that Xlib is hardly ever used directly
by applications, which instead deploy easier to use toolkits implemented on
top of Xlib.

Figure 3.11: The basic organization of the X Window System.

The interesting aspect of X is that the X kernel and the X applications need
not necessarily reside on the same machine. In particular, X provides the X
protocol, which is an application-level communication protocol by which an
instance of Xlib can exchange data and events with an X kernel. For example,
Xlib can send requests to the X kernel for creating or killing a window, setting
colors, and defining the type of cursor to display, among many other requests.
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In turn, the X kernel will react to local events such as keyboard and mouse
input by sending event packets back to Xlib.

Several applications can communicate at the same time with the X kernel.
There is one specific application that is given special rights, known as the
window manager. This application can dictate the “look and feel” of the
display as it appears to the user. For example, the window manager can
prescribe how each window is decorated with extra buttons, how windows
are to be placed on the display, and so on. Other applications will have to
adhere to these rules. In practice, this means that much of the interaction
between an application and an X terminal is redirected through a window
manager.

It is interesting to note how the X window system actually fits into client-
server computing. From what we have described so far, it should be clear
that the X kernel receives requests to manipulate the display. It gets these
requests from (possibly remote) applications. In this sense, the X kernel acts
as a server, while the applications play the role of clients. This terminology
has been adopted by X, and although strictly speaking it is correct, it can
easily lead to confusion.

Thin-client network computing

Obviously, applications manipulate a display using the specific display com-
mands as offered by X. These commands are generally sent over the network
where they are subsequently executed by the X kernel. By its nature, ap-
plications written for X should preferably separate application logic from
user-interface commands. Unfortunately, this is often not the case. As re-
ported by Lai and Nieh [2002] it turns out that much of the application logic
and user interaction are tightly coupled, meaning that an application will send
many requests to the X kernel for which it will expect a response before being
able to make a next step. This synchronous behavior may adversely affect
performance when operating over a wide-area network with long latencies.

There are several solutions to this problem. One is to re-engineer the
implementation of the X protocol, as is done with NX [Pinzari, 2003]. An
important part of this work concentrates on bandwidth reduction by reducing
the size of X messages. To this end, messages are considered to consist of a
fixed part, which is treated as an identifier, and a variable part. In many cases,
multiple messages will have the same identifier in which case they will often
contain similar data. This property can be used to send only the differences
between messages having the same identifier. By having the sender and
receiver maintain identifiers, decoding at the receiver can be readily applied.
Bandwidth reductions up to a factor 1000 have been reported, which allows X
to also run through low-bandwidth links of only 9600 kbps.

As an alternative to using X, researchers and practitioners have also sought
to let an application completely control the remote display, that is, up the
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pixel level. Changes in the bitmap are then sent over the network to the
display, where they are immediately transferred to the local frame buffer.
A well-known example of this approach is Virtual Network Computing
(VNC) [Richardson et al., 1998], which has been around ever since the late
1990s. Obviously, letting the application control the display requires sophis-
ticated encoding techniques in order to prevent bandwidth availability to
become a problem. For example, consider displaying a video stream at a rate
of 30 frames per second on a simple 320 × 240 screen. If each pixel is encoded
by 24 bits, then without an efficient encoding scheme, we would need a band-
width of approximately 53 Mbps. In practice, various encoding techniques
are used, yet choosing the best one is generally application dependent.

The drawback of sending raw pixel data in comparison to higher-level
protocols such as X is that it is impossible to make any use of application
semantics, as these are effectively lost at that level. Baratto et al. [2005] propose
a different technique. In their solution, referred to as THINC, they provide a
few high-level display commands that operate at the level of the video device
drivers. These commands are thus device dependent, more powerful than
raw pixel operations, but less powerful compared to what a protocol such as
X offers. The result is that display servers can be much simpler, which is good
for CPU usage, while at the same time application-dependent optimizations
can be used to reduce bandwidth and synchronization.

Client-side software for distribution transparency

Client software comprises more than just user interfaces. In many cases, parts
of the processing and data level in a client-server application are executed on
the client side as well. A special class is formed by embedded client software,
such as for automatic teller machines (ATMs), cash registers, barcode readers,
TV set-top boxes, etc. In these cases, the user interface is a relatively small part
of the client software, in contrast to the local processing and communication
facilities.

Besides the user interface and other application-related software, client soft-
ware comprises components for achieving distribution transparency. Ideally,
a client should not be aware that it is communicating with remote processes.
In contrast, distribution is often less transparent to servers for reasons of
performance and correctness.

Access transparency is generally handled through the generation of a
client stub from an interface definition of what the server has to offer. The
stub provides the same interface as the one available at the server, but hides
the possible differences in machine architectures, as well as the actual commu-
nication. The client stub transforms local calls to messages that are sent to the
server, and vice versa transforms messages from the server to return values as
one would expect when calling an ordinary procedure.
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There are different ways to handle location, migration, and relocation
transparency. Using a convenient naming system is crucial. In many cases,
cooperation with client-side software is also important. For example, when a
client is already bound to a server, the client can be directly informed when
the server changes location. In this case, the client’s middleware can hide
the server’s current network location from the user, and also transparently
rebind to the server if necessary. At worst, the client’s application may notice
a temporary loss of performance.

In a similar way, many distributed systems implement replication trans-
parency by means of client-side solutions. For example, imagine a distributed
system with replicated servers, Such replication can be achieved by forward-
ing a request to each replica, as shown in Figure 3.12. Client-side software
can transparently collect all responses and pass a single response to the client
application.

Figure 3.12: Transparent replication of a server using a client-side solution.

Regarding failure transparency, masking communication failures with
a server is typically done through client middleware. For example, client
middleware can be configured to repeatedly attempt to connect to a server, or
perhaps try another server after several attempts. There are even situations
in which the client middleware returns data it had cached during a previous
session, as is sometimes done by Web browsers that fail to connect to a server.

Finally, concurrency transparency can be handled through special interme-
diate servers, notably transaction monitors, and requires less support from
client software.

3.4 Servers

Let us now take a closer look at the organization of servers. In the following
pages, we first concentrate on a number of general design issues for servers,
followed by a discussion on server clusters.
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General design issues

A server is a process implementing a specific service on behalf of a collection
of clients. In essence, each server is organized in the same way: it waits for an
incoming request from a client and subsequently ensures that the request is
taken care of, after which it waits for the next incoming request.

Concurrent versus iterative servers

There are several ways to organize servers. In the case of an iterative server,
the server itself handles the request and, if necessary, returns a response to the
requesting client. A concurrent server does not handle the request itself, but
passes it to a separate thread or another process, after which it immediately
waits for the next incoming request. A multithreaded server is an example of
a concurrent server. An alternative implementation of a concurrent server is to
fork a new process for each new incoming request. This approach is followed
in many Unix systems. The thread or process that handles the request is
responsible for returning a response to the requesting client.

Contacting a server: end points

Another issue is where clients contact a server. In all cases, clients send
requests to an end point, also called a port, at the machine where the server
is running. Each server listens to a specific end point. How do clients know
the end point of a service? One approach is to globally assign end points for
well-known services. For example, servers that handle Internet FTP requests
always listen to TCP port 21. Likewise, an HTTP server for the World Wide
Web will always listen to TCP port 80. These end points have been assigned
by the Internet Assigned Numbers Authority (IANA), and are documented
in [Reynolds and Postel, 1994]. With assigned end points, the client needs to
find only the network address of the machine where the server is running.
Name services can be used for that purpose.

There are many services that do not require a preassigned end point.
For example, a time-of-day server may use an end point that is dynamically
assigned to it by its local operating system. In that case, a client will first
have to look up the end point. One solution is to have a special daemon
running on each machine that runs servers. The daemon keeps track of the
current end point of each service implemented by a co-located server. The
daemon itself listens to a well-known end point. A client will first contact the
daemon, request the end point, and then contact the specific server, as shown
in Figure 3.13(a).

It is common to associate an end point with a specific service. However,
actually implementing each service by means of a separate server may be
a waste of resources. For example, in a typical Unix system, it is common
to have lots of servers running simultaneously, with most of them passively
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(a)

(b)

Figure 3.13: (a) Client-to-server binding using a daemon. (b) Client-to-server
binding using a superserver.

waiting until a client request comes in. Instead of having to keep track of so
many passive processes, it is often more efficient to have a single superserver
listening to each end point associated with a specific service, as shown in
Figure 3.13(b). For example, the inetd daemon in Unix listens to a number of
well-known ports for Internet services. When a request comes in, the daemon
forks a process to handle it. That process will exit when finished.

Interrupting a server

Another issue that needs to be taken into account when designing a server is
whether and how a server can be interrupted. For example, consider a user
who has just decided to upload a huge file to an FTP server. Then, suddenly
realizing that it is the wrong file, he wants to interrupt the server to cancel
further data transmission. There are several ways to do this. One approach
that works only too well in the current Internet (and is sometimes the only
alternative) is for the user to abruptly exit the client application (which will
automatically break the connection to the server), immediately restart it, and
pretend nothing happened. The server will eventually tear down the old
connection, thinking the client has probably crashed.

A much better approach for handling communication interrupts is to
develop the client and server such that it is possible to send out-of-band
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data, which is data that is to be processed by the server before any other data
from that client. One solution is to let the server listen to a separate control
end point to which the client sends out-of-band data, while at the same time
listening (with a lower priority) to the end point through which the normal
data passes. Another solution is to send out-of-band data across the same
connection through which the client is sending the original request. In TCP,
for example, it is possible to transmit urgent data. When urgent data are
received at the server, the latter is interrupted (e.g., through a signal in Unix
systems), after which it can inspect the data and handle them accordingly.

Stateless versus stateful servers

A final, important design issue, is whether or not the server is stateless. A
stateless server does not keep information on the state of its clients, and can
change its own state without having to inform any client [Birman, 2012]. A
Web server, for example, is stateless. It merely responds to incoming HTTP
requests, which can be either for uploading a file to the server or (most often)
for fetching a file. When the request has been processed, the Web server
forgets the client completely. Likewise, the collection of files that a Web server
manages (possibly in cooperation with a file server), can be changed without
clients having to be informed.

Note that in many stateless designs, the server actually does maintain
information on its clients, but crucial is the fact that if this information is
lost, it will not lead to a disruption of the service offered by the server. For
example, a Web server generally logs all client requests. This information is
useful, for example, to decide whether certain documents should be replicated,
and where they should be replicated to. Clearly, there is no penalty other than
perhaps in the form of suboptimal performance if the log is lost.

A particular form of a stateless design is where the server maintains what
is known as soft state. In this case, the server promises to maintain state on
behalf of the client, but only for a limited time. After that time has expired,
the server falls back to default behavior, thereby discarding any information it
kept on account of the associated client. An example of this type of state is
a server promising to keep a client informed about updates, but only for a
limited time. After that, the client is required to poll the server for updates.
Soft-state approaches originate from protocol design in computer networks,
but can be equally applied to server design [Clark, 1989; Lui et al., 2004].

In contrast, a stateful server generally maintains persistent information
on its clients. This means that the information needs to be explicitly deleted
by the server. A typical example is a file server that allows a client to keep
a local copy of a file, even for performing update operations. Such a server
would maintain a table containing (client, file) entries. Such a table allows the
server to keep track of which client currently has the update permissions on
which file, and thus possibly also the most recent version of that file.
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This approach can improve the performance of read and write operations
as perceived by the client. Performance improvement over stateless servers
is often an important benefit of stateful designs. However, the example also
illustrates the major drawback of stateful servers. If the server crashes, it has
to recover its table of (client, file) entries, or otherwise it cannot guarantee
that it has processed the most recent updates on a file. In general, a stateful
server needs to recover its entire state as it was just before the crash. Enabling
recovery can introduce considerable complexity, as we discuss in Chapter 8.
In a stateless design, no special measures need to be taken at all for a crashed
server to recover. It simply starts running again, and waits for client requests
to come in.

Ling et al. [2004] argue that one should actually make a distinction between
(temporary) session state and permanent state. The example above is typical
for session state: it is associated with a series of operations by a single user
and should be maintained for a some time, but not indefinitely. As it turns
out, session state is often maintained in three-tiered client-server architectures,
where the application server actually needs to access a database server through
a series of queries before being able to respond to the requesting client. The
issue here is that no real harm is done if session state is lost, provided that
the client can simply re-issue the original request. This observation allows for
simpler and less reliable storage of state.

What remains for permanent state is typically information maintained
in databases, such as customer information, keys associated with purchased
software, etc. However, for most distributed systems, maintaining session state
already implies a stateful design requiring special measures when failures do
happen and making explicit assumptions about the durability of state stored
at the server. We will return to these matters extensively when discussing
fault tolerance.

When designing a server, the choice for a stateless or stateful design should
not affect the services provided by the server. For example, if files have to
be opened before they can be read from, or written to, then a stateless server
should one way or the other mimic this behavior. A common solution is that
the server responds to a read or write request by first opening the referred
file, then does the actual read or write operation, and immediately closes the
file again.

In other cases, a server may want to keep a record on a client’s behavior so
that it can more effectively respond to its requests. For example, Web servers
sometimes offer the possibility to immediately direct a client to his favorite
pages. This approach is possible only if the server has history information on
that client. When the server cannot maintain state, a common solution is then
to let the client send along additional information on its previous accesses.
In the case of the Web, this information is often transparently stored by the
client’s browser in what is called a cookie, which is a small piece of data
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containing client-specific information that is of interest to the server. Cookies
are never executed by a browser; they are merely stored.

The first time a client accesses a server, the latter sends a cookie along with
the requested Web pages back to the browser, after which the browser safely
tucks the cookie away. Each subsequent time the client accesses the server, its
cookie for that server is sent along with the request.

Object servers

Let us take a look at the general organization of object servers needed for
distributed objects. The important difference between a general object server
and other (more traditional) servers is that an object server by itself does not
provide a specific service. Specific services are implemented by the objects
that reside in the server. Essentially, the server provides only the means to
invoke local objects, based on requests from remote clients. As a consequence,
it is relatively easy to change services by simply adding and removing objects.

An object server thus acts as a place where objects live. An object consists
of two parts: data representing its state and the code for executing its methods.
Whether or not these parts are separated, or whether method implementations
are shared by multiple objects, depends on the object server. Also, there are
differences in the way an object server invokes its objects. For example, in
a multithreaded server, each object may be assigned a separate thread, or a
separate thread may be used for each invocation request. These and other
issues are discussed next.

For an object to be invoked, the object server needs to know which code to
execute, on which data it should operate, whether it should start a separate
thread to take care of the invocation, and so on. A simple approach is to
assume that all objects look alike and that there is only one way to invoke
an object. Unfortunately, such an approach is generally inflexible and often
unnecessarily constrains developers of distributed objects.

A much better approach is for a server to support different policies. Con-
sider, for example, a transient object: an object that exists only as long as
its server exists, but possibly for a shorter period of time. An in-memory,
read-only copy of a file could typically be implemented as a transient object.
Likewise, a calculator could also be implemented as a transient object. A
reasonable policy is to create a transient object at the first invocation request
and to destroy it as soon as no clients are bound to it anymore.

The advantage of this approach is that a transient object will need a server’s
resources only as long as the object is really needed. The drawback is that
an invocation may take some time to complete, because the object needs to
be created first. Therefore, an alternative policy is sometimes to create all
transient objects at the time the server is initialized, at the cost of consuming
resources even when no client is making use of the object.
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In a similar fashion, a server could follow the policy that each of its objects
is placed in a memory segment of its own. In other words, objects share neither
code nor data. Such a policy may be necessary when an object implementation
does not separate code and data, or when objects need to be separated for
security reasons. In the latter case, the server will need to provide special
measures, or require support from the underlying operating system, to ensure
that segment boundaries are not violated.

The alternative approach is to let objects at least share their code. For
example, a database containing objects that belong to the same class can be
efficiently implemented by loading the class implementation only once into
the server. When a request for an object invocation comes in, the server need
only fetch that object’s state and execute the requested method.

Likewise, there are many different policies with respect to threading. The
simplest approach is to implement the server with only a single thread of
control. Alternatively, the server may have several threads, one for each of
its objects. Whenever an invocation request comes in for an object, the server
passes the request to the thread responsible for that object. If the thread is
currently busy, the request is temporarily queued.

The advantage of this approach is that objects are automatically protected
against concurrent access: all invocations are serialized through the single
thread associated with the object. Neat and simple. Of course, it is also possi-
ble to use a separate thread for each invocation request, requiring that objects
should have already been protected against concurrent access. Independent
of using a thread per object or thread per method is the choice of whether
threads are created on demand or the server maintains a pool of threads.
Generally there is no single best policy. Which one to use depends on whether
threads are available, how much performance matters, and similar factors.

Decisions on how to invoke an object are commonly referred to as activa-
tion policies, to emphasize that in many cases the object itself must first be
brought into the server’s address space (i.e., activated) before it can actually
be invoked. What is needed then is a mechanism to group objects per policy.
Such a mechanism is sometimes called an object adapter, or alternatively
an object wrapper. An object adapter can best be thought of as software
implementing a specific activation policy. The main issue, however, is that
object adapters come as generic components to assist developers of distributed
objects, and which need only to be configured for a specific policy.

An object adapter has one or more objects under its control. Because a
server should be capable of simultaneously supporting objects that require
different activation policies, several object adapters may reside in the same
server. When an invocation request is delivered to the server, the request is
first dispatched to the appropriate object adapter, as shown in Figure 3.14.

An important observation is that object adapters are unaware of the specific
interfaces of the objects they control. Otherwise, they could never be generic.
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Figure 3.14: An object server supporting different activation policies.

The only issue that is important to an object adapter is that it can extract an
object reference from an invocation request, and subsequently dispatch the
request to the referenced object, but now following a specific activation policy.
As is also illustrated in Figure 3.14 rather than passing the request directly
to the object, an adapter hands an invocation request to the server-side stub
of that object. The stub, also called a skeleton, is normally generated from
the interface definitions of the object, unmarshals the request and invokes the
appropriate method.

An object adapter can support different activation policies by simply
configuring it at runtime. For example, in CORBA-compliant systems [OMG,
2001], it is possible to specify whether an object should continue to exist after
its associated adapter has stopped. Likewise, an adapter can be configured
to generate object identifiers, or to let the application provide one. As a
final example, an adapter can be configured to operate in single-threaded or
multithreaded mode as we explained above.

Note that although in Figure 3.14 we have spoken about objects, we
have said nothing about what these objects actually are. In particular, it
should be stressed that as part of the implementation of such an object the
server may (indirectly) access databases or call special library routines. The
implementation details are hidden for the object adapter who communicates
only with a skeleton. As such, the actual implementation may have nothing
to do with what we often see with language-level (i.e., compile-time) objects.
For this reason, a different terminology is generally adopted. A servant is the
general term for a piece of code that forms the implementation of an object.
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Note 3.6 (Example: The Ice runtime system)
Let us briefly consider the Ice distributed-object system, which has been partly
developed in response to the intricacies of commercial object-based distributed
systems [Henning, 2004]. An object server in Ice is nothing but an ordinary
process that simply starts with initializing the Ice runtime system (RTS). The
basis of the runtime environment is formed by what is called a communicator. A
communicator is a component that manages a number of basic resources, of which
the most important one is formed by a pool of threads. Likewise, it will have
associated dynamically allocated memory, and so on. In addition, a communicator
provides the means for configuring the environment. For example, it is possible
to specify maximum message lengths, maximum invocation retries, and so on.

Normally, an object server would have only a single communicator. However,
when different applications need to be fully separated and protected from each
other, a separate communicator (with possibly a different configuration) can be
created within the same process. At the very least, such an approach would
separate the different thread pools so that if one application has consumed all its
threads, then this would not affect the other application.

A communicator can also be used to create an object adapter, such as shown
in Figure 3.15. We note that the code is simplified and incomplete. More examples
and detailed information on Ice can be found in Henning and Spruiell [2005].

main(int argc, char* argv[]) {
Ice::Communicator ic;
Ice::ObjectAdapter adapter;
Ice::Object object;

ic = Ice::initialize(argc, argv);
adapter = ic->createObjectAdapterWithEnd Points( "MyAdapter","tcp -p 10000");
object = new MyObject;
adapter->add(object, objectID);
adapter->activate();
ic->waitForShutdown();

}

Figure 3.15: Example of creating an object server in Ice.

In this example, we start with creating and initializing the runtime environ-
ment. When that is done, an object adapter is created. In this case, it is instructed
to listen for incoming TCP connections on port 10000. Note that the adapter
is created in the context of the just created communicator. We are now in the
position to create an object and to subsequently add that object to the adapter.
Finally, the adapter is activated, meaning that, under the hood, a thread is activated
that will start listening for incoming requests.

This code does not yet show much differentiation in activation policies. Poli-
cies can be changed by modifying the properties of an adapter. One family of
properties is related to maintaining an adapter-specific set of threads that are used
for handling incoming requests. For example, one can specify that there should
always be only one thread, effectively serializing all accesses to objects that have
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been added to the adapter.
Again, note that we have not specified MyObject. Like before, this could be a

simple C++ object, but also one that accesses databases and other external services
that jointly implement an object. By registering MyObject with an adapter, such
implementation details are completely hidden from clients, who now believe that
they are invoking a remote object.

In the example above, an object is created as part of the application, after
which it is added to an adapter. Effectively, this means that an adapter may need
to support many objects at the same time, leading to potential scalability problems.
An alternative solution is to dynamically load objects into memory when they are
needed. To do this, Ice provides support for special objects known as locators. A
locator is called when the adapter receives an incoming request for an object that
has not been explicitly added. In that case, the request is forwarded to the locator,
whose job is to further handle the request.

To make matters more concrete, suppose a locator is handed a request for an
object of which the locator knows that its state is stored in a relational database
system. Of course, there is no magic here: the locator has been programmed
explicitly to handle such requests. In this case, the object’s identifier may corre-
spond to the key of a record in which that state is stored. The locator will then
simply do a lookup on that key, fetch the state, and will then be able to further
process the request.

There can be more than one locator added to an adapter. In that case, the
adapter would keep track of which object identifiers would belong to the same
locator. Using multiple locators allows supporting many objects by a single
adapter. Of course, objects (or rather their state) would need to be loaded at
runtime, but this dynamic behavior would possibly make the server itself relatively
simple.

Note 3.7 (Example: Enterprise Java Beans)
The Java programming language and associated model has formed the founda-
tion for numerous distributed systems and applications. Its popularity can be
attributed to the straightforward support for object orientation, combined with
the inherent support for remote method invocation. Java provides a high degree
of access transparency, making it easier to use than, for example, the combination
of C with remote procedure calling.

Ever since its introduction, there has been a strong incentive to provide
facilities that would ease the development of distributed applications. These
facilities go well beyond language support, requiring a runtime environment that
supports traditional multitiered client-server architectures. To this end, much
work has been put into the development of (Enterprise) Java Beans (EJB).

An EJB is essentially a Java object that is hosted by a special server offering
different ways for remote clients to invoke that object. Crucial is that this server
provides the support to separate application functionality from systems-oriented
functionality. The latter includes functions for looking up objects, storing objects,
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letting objects be part of a transaction, and so on. How to develop EJBs is described
in detail by Schildt [2010].

Figure 3.16: General architecture of an EJB server.

With this separation in mind, EJBs can be pictured as shown in Figure 3.16.
The important issue is that an EJB is embedded inside a container which effectively
provides interfaces to underlying services that are implemented by the application
server. The container can more or less automatically bind the EJB to these services,
meaning that the correct references are readily available to a programmer. Typical
services include those for remote method invocation (RMI), database access
(JDBC), naming (JNDI), and messaging (JMS). Making use of these services is
more or less automated, but does require that the programmer makes a distinction
between four kinds of EJBs:

1. Stateless session beans
2. Stateful session beans
3. Entity beans
4. Message-driven beans

As its name suggests, a stateless session bean is an object that is invoked
once, does its work, after which it discards any information it needed to perform
the service it offered to a client. For example, a stateless session bean could be
used to implement a service that lists the top-ranked books. In this case, the bean
would typically consist of an SQL query that is submitted to a database. The
results would be put into a special format that the client can handle, after which
its work would have been completed and the listed books discarded.

In contrast, a stateful session bean maintains client-related state. The canoni-
cal example is a bean implementing an electronic shopping cart. In this case, a
client would typically be able to put things in a cart, remove items, and use the
cart to go to an electronic checkout. The bean, in turn, would typically access
databases for getting current prices and information on the number of items still
in stock. However, its lifetime would still be limited, which is why it is referred to
as a session bean: when the client is finished (possibly having invoked the object
several times), the bean will automatically be destroyed.

An entity bean can be considered to be a long-lived persistent object. As
such, an entity bean will generally be stored in a database, and likewise, will
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often also be part of transactions. Typically, entity beans store information that
may be needed a next time a specific client accesses the server. In settings for
electronic commerce, an entity bean can be used to record customer information,
for example, shipping address, billing address, credit card information, and so on.
In these cases, when a client logs in, his associated entity bean will be restored
and used for further processing.

Finally, message-driven beans are used to program objects that should react
to incoming messages (and likewise, be able to send messages). Message-driven
beans cannot be invoked directly by a client, but rather fit into a publish-subscribe
way of communication. What it boils down to is that a message-driven bean
is automatically called by the server when a specific message m is received, to
which the server (or rather an application it is hosting) had previously subscribed,
i.e., stated that it wanted to be notified when such a message arrives. The bean
contains application code for handling the message, after which the server simply
discards it. Message-driven beans are thus seen to be stateless.

Example: The Apache Web server

An interesting example of a server that balances the separation between
policies and mechanisms is the Apache Web server. It is also an extremely
popular server, estimated to be used to host approximately 50% of all Web sites.
Apache is a complex piece of software, and with the numerous enhancements
to the types of documents that are now offered in the Web, it is important that
the server is highly configurable and extensible, and at the same time largely
independent of specific platforms.

Making the server platform independent is realized by essentially provid-
ing its own basic runtime environment, which is then subsequently imple-
mented for different operating systems. This runtime environment, known
as the Apache Portable Runtime (APR), is a library that provides a platform-
independent interface for file handling, networking, locking, threads, and so
on. When extending Apache, portability is largely guaranteed provided that
only calls to the APR are made and that calls to platform-specific libraries are
avoided.

From a certain perspective, Apache can be considered as a completely gen-
eral server tailored to produce a response to an incoming request. Of course,
there are all kinds of hidden dependencies and assumptions by which Apache
turns out to be primarily suited for handling requests for Web documents.
For example, as we mentioned, Web browsers and servers use HTTP as their
communication protocol. HTTP is virtually always implemented on top of
TCP, for which reason the core of Apache assumes that all incoming requests
adhere to a TCP-based connection-oriented way of communication. Requests
based on UDP cannot be handled without modifying the Apache core.

However, the Apache core makes few assumptions on how incoming
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requests should be handled. Its overall organization is shown in Figure 3.17.
Fundamental to this organization is the concept of a hook, which is nothing
but a placeholder for a specific group of functions. The Apache core assumes
that requests are processed in a number of phases, each phase consisting of a
few hooks. Each hook thus represents a group of similar actions that need to
be executed as part of processing a request.

Figure 3.17: The general organization of the Apache Web server.

For example, there is a hook to translate a URL to a local file name. Such a
translation will almost certainly need to be done when processing a request.
Likewise, there is a hook for writing information to a log, a hook for checking
a client’s identification, a hook for checking access rights, and a hook for
checking which MIME type the request is related to (e.g., to make sure that
the request can be properly handled). As shown in Figure 3.17, the hooks
are processed in a predetermined order. It is here that we explicitly see
that Apache enforces a specific flow of control concerning the processing of
requests.

The functions associated with a hook are all provided by separate modules.
Although, in principle, a developer could change the set of hooks that will
be processed by Apache, it is far more common to write modules contain-
ing the functions that need to be called as part of processing the standard
hooks provided by unmodified Apache. The underlying principle is fairly
straightforward. Every hook can contain a set of functions that each should
match a specific function prototype (i.e., list of parameters and return type).
A module developer will write functions for specific hooks. When compiling
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Apache, the developer specifies which function should be added to which
hook. The latter is shown in Figure 3.17 as the various links between functions
and hooks.

Because there may be tens of modules, each hook will generally contain
several functions. Normally, modules are considered to be mutual indepen-
dent, so that functions in the same hook will be executed in some arbitrary
order. However, Apache can also handle module dependencies by letting
a developer specify an ordering in which functions from different modules
should be processed. By and large, the result is a Web server that is ex-
tremely versatile. Detailed information on configuring Apache, as well as an
introduction to how it can be extended is found in [Laurie and Laurie, 2002].

Server clusters

In Chapter 1, we briefly discussed cluster computing as one of the many
appearances of distributed systems. We now take a closer look at the organiza-
tion of server clusters, along with the salient design issues. We first consider
common server clusters that are organized in local-area networks. A special
group is formed by wide-area server clusters, which we subsequently discuss.

Local-area clusters

Simply put, a server cluster is nothing else but a collection of machines
connected through a network, where each machine runs one or more servers.
The server clusters that we consider here, are the ones in which the machines
are connected through a local-area network, often offering high bandwidth
and low latency.

General organization In many cases, a server cluster is logically organized
into three tiers, as shown in Figure 3.18. The first tier consists of a (logical)
switch through which client requests are routed. Such a switch can vary
widely. For example, transport-layer switches accept incoming TCP connection
requests and pass requests on to one of servers in the cluster. A completely
different example is a Web server that accepts incoming HTTP requests, but
that partly passes requests to application servers for further processing only
to later collect results from those servers and return an HTTP response.

As in any multitiered client-server architecture, many server clusters also
contain servers dedicated to application processing. In cluster computing,
these are typically servers running on high-performance hardware dedicated
to delivering compute power. However, in the case of enterprise server
clusters, it may be the case that applications need only run on relatively
low-end machines, as the required compute power is not the bottleneck, but
access to storage is.
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Figure 3.18: The general organization of a three-tiered server cluster.

This brings us the third tier, which consists of data-processing servers,
notably file and database servers. Again, depending on the usage of the server
cluster, these servers may be running on specialized machines, configured for
high-speed disk access and having large server-side data caches.

Of course, not all server clusters will follow this strict separation. It is
frequently the case that each machine is equipped with its own local storage,
often integrating application and data processing in a single server leading to
a two-tiered architecture. For example, when dealing with streaming media
by means of a server cluster, it is common to deploy a two-tiered system
architecture, where each machine acts as a dedicated media server [Steinmetz
and Nahrstedt, 2004].

When a server cluster offers multiple services, it may happen that different
machines run different application servers. As a consequence, the switch will
have to be able to distinguish services or otherwise it cannot forward requests
to the proper machines. As a consequence, we may find that certain machines
are temporarily idle, while others are receiving an overload of requests. What
would be useful is to temporarily migrate services to idle machines. A solution
is to use virtual machines allowing a relatively easy migration of code to real
machines.

Request dispatching Let us now take a closer look at the first tier, consisting
of the switch, also known as the front end. An important design goal for
server clusters is to hide the fact that there are multiple servers. In other
words, client applications running on remote machines should have no need
to know anything about the internal organization of the cluster. This access
transparency is invariably offered by means of a single access point, in turn
implemented through some kind of hardware switch such as a dedicated
machine.
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The switch forms the entry point for the server cluster, offering a single
network address. For scalability and availability, a server cluster may have
multiple access points, where each access point is then realized by a separate
dedicated machine. We consider only the case of a single access point.

A standard way of accessing a server cluster is to set up a TCP connection
over which application-level requests are then sent as part of a session. A
session ends by tearing down the connection. In the case of transport-layer
switches, the switch accepts incoming TCP connection requests, and hands
off such connections to one of the servers. There are essentially two ways how
the switch can operate [Cardellini et al., 2002].

In the first case, the client sets up a TCP connection such that all requests
and responses pass through the switch. The switch, in turn, will set up a TCP
connection with a selected server and pass client requests to that server, and
also accept server responses (which it will pass on to the client). In effect,
the switch sits in the middle of a TCP connection between the client and a
selected server, rewriting the source and destination addresses when passing
TCP segments. This approach is a form of network address translation
(NAT) [Srisuresh and Holdrege, 1999].

Alternatively, the switch can actually hand off the connection to a selected
server such that all responses are directly communicated to the client without
passing through the server [Hunt et al., 1997; Pai et al., 1998]. The principle
working of what is commonly known as TCP handoff is shown in Figure 3.19.

Figure 3.19: The principle of TCP handoff.

When the switch receives a TCP connection request, it first identifies the
best server for handling that request, and forwards the request packet to
that server. The server, in turn, will send an acknowledgment back to the
requesting client, but inserting the switch’s IP address as the source field of
the header of the IP packet carrying the TCP segment. Note that this address
rewriting is necessary for the client to continue executing the TCP protocol: it
is expecting an answer back from the switch, not from some arbitrary server
it has never heard of before. Clearly, a TCP-handoff implementation requires
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operating-system level modifications. TCP handoff is especially effective when
responses are much larger than requests, as in the case of Web servers.

It can already be seen that the switch can play an important role in dis-
tributing the load among the various servers. By deciding where to forward a
request to, the switch also decides which server is to handle further processing
of the request. The simplest load-balancing policy that the switch can follow
is round robin: each time it picks the next server from its list to forward a
request to. Of course, the switch will have to keep track to which server it
handed off a TCP connection, at least until that connection is torn down. As
it turns out, maintaining this state and handing off subsequent TCP segments
belonging to the same TCP connection, may actually slow down the switch.

More advanced server selection criteria can be deployed as well. For
example, assume multiple services are offered by the server cluster. If the
switch can distinguish those services when a request comes in, it can then take
informed decisions on where to forward the request to. This server selection
can still take place at the transport level, provided services are distinguished
by means of a port number. In the case of transport-level switches, as we have
discussed so far, decisions on where to forward an incoming request is based
on transport-level information only. One step further is to have the switch
actually inspect the payload of the incoming request. This content-aware
request distribution can be applied only if it is known what that payload
looks like. For example, in the case of Web servers, the switch can expect an
HTTP request, based on which it can then decide who is to process it.

Note 3.8 (Advanced: Efficient content-aware request distribution)
Obviously, the design of the switch is crucial, as it can easily become a bottleneck
with all traffic passing through it. Transport-level switches are generally very
efficient. However, content-aware switches operating at the level of the application
layer that inspect the payload of an incoming request, may actually need to do a
lot of processing.

Content-aware request distribution has several advantages. For example, if
the switch always forwards requests for the same file to the same server, that
server may be able to effectively cache the file resulting in higher response times.
Likewise, we may decide to distribute a set of files to specific servers, making a
distinction, for example, between streaming media files, images, text files, but
also perhaps actual databases. Being able to make such a distinction will allow to
install dedicated servers in the second tier.

Ideally, the switch would be as efficient as a normal transport-level switch, yet
have the functionality for content-aware distribution. Aron et al. [2000] propose a
scheme by which the work for inspecting the payload of an incoming request is
distributed across several servers, and combine this distribution with transport-
level switching. The switch now has two tasks. First, when a request initially
comes in, it must decide which server will handle the rest of the communication
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with the client. Second, the switch should forward the client’s TCP messages
associated with the handed-off TCP connection.

Figure 3.20: Content-aware request distribution deploying TCP handoff.

These two tasks can be distributed as shown in Figure 3.20. When a request
comes in, the first thing the switch does is pass it on to an arbitrary distributor,
which is running on one of the servers. The distributor’s main job is to manage
the TCP handoff. In turn, the distributor passes the request to a dispatcher, which
inspects the payload to decide on the best application server. Once that server has
been selected, the initial distributor will do the administration to hand off the TCP
connection: it communicates with the selected server to accept the connection,
and eventually informs the switch to which server it should subsequently forward
the associated TCP segments.

Wide-area clusters

A characteristic feature of local-area server clusters is that they are owned
by a single organization. Deploying clusters across a wide-area network
has traditionally been quite cumbersome as one had to generally deal with
multiple administrative organizations such as ISPs (Internet Service Providers).
With the advent of cloud computing, matters have changed and we are now
witnessing an increase of wide-area distributed systems in which servers (or
server clusters) are spread across the Internet. The problems related to having
to deal with multiple organizations are effectively circumvented by making
use of the facilities of a single cloud provider.

Cloud providers like Amazon and Google manage several data centers
placed at different locations worldwide. As such, they can offer an end user
the ability to build a wide-area distributed system consisting of a potentially
large collection of networked virtual machines, scattered across the Internet.
An important reason for wanting such distributed systems is to provide
locality: offering data and services that are close to clients. An example where
such locality is important is streaming media: the closer a video server is
located to a client, the easier it becomes to provide high-quality streams.

Note that if wide-area locality is not critical, it may suffice, or even be
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better, to place virtual machines in a single data center, so that interprocess
communication can benefit from low-latency local networks. The price to pay
may be higher latencies between clients and the service running in a remote
data center.

Request dispatching If wide-area locality is an issue, then request dispatch-
ing becomes important: if a client accesses a service, its request should be
forwarded to a nearby server, that is, a server that will allow communication
with that client to be fast. Deciding which server should handle the client’s
request is an issue of redirection policy [Sivasubramanian et al., 2004b]. If we
assume that a client will initially contact a request dispatcher analogous to
the switch in our discussion of local-area clusters, then that dispatcher will
have to estimate the latency between the client and several servers. How such
an estimation can be made is discussed in Section 6.5.

Once a server has been selected, the dispatcher will have to inform the
client. Several redirection mechanisms are possible. A popular one is when
the dispatcher is actually a DNS name server. Internet or Web-based services
are often looked up in the Domain Name System (DNS). A client provides
a domain name such as service.organization.org to a local DNS server, which
eventually returns an IP address of the associated service, possibly after
having contacted other DNS servers. When sending its request to look up a
name, a client also sends its own IP address (DNS requests are sent as UDP
packets). In other words, the DNS server will also know the client’s IP address
which it can then subsequently use to select the best server for that client, and
returning a close-by IP address.

Unfortunately, this scheme is not perfect for two reasons. First, rather than
sending the client’s IP address, what happens is that the local DNS server that
is contacted by the client acts as a proxy for that client. In other words, not
the client’s IP address, but that of the local DNS server is used to identify the
location of the client. Mao et al. [2002] have shown that there may be a huge
additional communication cost, as the local DNS server is often not that local.

Secondly, depending on the scheme that is used for resolving a domain
name, it may even be the case that the address of the local DNS server is not
even being used. Instead, it may happen that the DNS server that is deciding
on which IP address to return, may be fooled by the fact that the requester
is yet another DNS server acting as an intermediate between the original
client and the deciding DNS server. In those case, locality awareness has been
completely lost.

Despite that DNS-based redirection may not always be very accurate, it
is widely deployed if only for the fact that it is relatively easy to implement
and also transparent to the client. In addition, there is no need to rely on
location-aware client-side software.
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Note 3.9 (Advanced: An alternative for organizing wide-area server clusters)
As we mentioned, most server clusters offer a single access point. When that point
fails, the cluster becomes unavailable. To eliminate this potential problem, several
access points can be provided, of which the addresses are made publicly available.
The Domain Name System (DNS) can return several addresses, all belonging
to the same host name, using a simple round-robin strategy. This approach still
requires clients to make several attempts if one of the addresses fails. Moreover,
this does not solve the problem of requiring static access points.

Having stability, like a long-living access point, is a desirable feature from a
client’s and a server’s perspective. On the other hand, it is also desirable to have
a high degree of flexibility in configuring a server cluster, including the switch.
This observation has lead to a design of a distributed server which effectively is
nothing but a possibly dynamically changing set of machines, with also possibly
varying access points, but which nevertheless appears to the outside world as a
single, powerful machine. Szymaniak et al. [2007] provide the design of such a
distributed server. We describe it briefly here.

The basic idea behind a distributed server is that clients benefit from a robust,
high-performing, stable server. These properties can often be provided by high-
end mainframes, of which some have an acclaimed mean time between failure of
more than 40 years. However, by grouping simpler machines transparently into a
cluster, and not relying on the availability of a single machine, it may be possible
to achieve a better degree of stability than by each component individually. For
example, such a cluster could be dynamically configured from end-user machines,
as in the case of a collaborative distributed system. Note also that many data
centers are making use of relatively cheap and simple machines [Barroso and
Hölze, 2009].

Let us concentrate on how a stable access point can be achieved in such a
system. The main idea is to make use of available networking services, notably
mobility support for IP version 6 (MIPv6). In MIPv6, a mobile node is assumed
to have a home network where it normally resides and for which it has an
associated stable address, known as its home address (HoA). This home network
has a special router attached, known as the home agent, which will take care
of traffic to the mobile node when it is away. To this end, when a mobile node
attaches to a foreign network, it will receive a temporary care-of address (CoA)
where it can be reached. This care-of address is reported to the node’s home
agent who will then see to it that all traffic is forwarded to the mobile node. Note
that applications communicating with the mobile node will see only the address
associated with the node’s home network. They will never see the care-of address.

This principle can be used to offer a stable address of a distributed server.
In this case, a single unique contact address is initially assigned to the server
cluster. The contact address will be the server’s life-time address to be used in all
communication with the outside world. At any time, one node in the distributed
server will operate as an access point using that contact address, but this role
can easily be taken over by another node. What happens is that the access point
records its own address as the care-of address at the home agent associated with
the distributed server. At that point, all traffic will be directed to the access point,

downloaded by OLEXANDER.PERIG@GMAIL.COM DS 3.02



148 CHAPTER 3. PROCESSES

who will then take care of distributing requests among the currently participating
nodes. If the access point fails, a simple fail-over mechanism comes into place by
which another access point reports a new care-of address.

This simple configuration would make the home agent as well as the access
point a potential bottleneck as all traffic would flow through these two machines.
This situation can be avoided by using an MIPv6 feature known as route opti-
mization. Route optimization works as follows. Whenever a mobile node with
home address HA reports its current care-of address, say CA, the home agent can
forward CA to a client. The latter will then locally store the pair (HA,CA). From
that moment on, communication will be directly forwarded to CA. Although
the application at the client side can still use the home address, the underlying
support software for MIPv6 will translate that address to CA and use that instead.

Figure 3.21: Route optimization in a distributed server.

Route optimization can be used to make different clients believe they are
communicating with a single server, where, in fact, each client is communicating
with a different member node of the distributed server, as shown in Figure 3.21.
To this end, when an access point of a distributed server forwards a request from
client C1 to, say node S1 (with address CA1), it passes enough information to S1
to let it initiate the route optimization procedure by which eventually the client
is made to believe that the care-of address is CA1. This will allow C1 to store
the pair (HA,CA1). During this procedure, the access point (as well as the home
agent) tunnel most of the traffic between C1 and S1. This will prevent the home
agent from believing that the care-of address has changed, so that it will continue
to communicate with the access point.

Of course, while this route optimization procedure is taking place, requests
from other clients may still come in. These remain in a pending state at the
access point until they can be forwarded. The request from another client C2

may then be forwarded to member node S2 (with address CA2), allowing the
latter to let client C2 store the pair HA,CA2). As a result, different clients will be
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directly communicating with different members of the distributed server, where
each client application still has the illusion that this server has address HA. The
home agent continues to communicate with the access point talking to the contact
address.

Case study: PlanetLab

Let us now take a closer look at a somewhat unusual cluster server. PlanetLab
is a collaborative distributed system in which different organizations each
donate one or more computers, adding up to a total of hundreds of nodes.
Together, these computers form a 1-tier server cluster, where access, processing,
and storage can all take place on each node individually. Management of
PlanetLab is by necessity almost entirely distributed.

General organization In PlanetLab, a participating organization donates
one or more nodes (i.e., computers) that are subsequently shared among all
PlanetLab users. Each node is organized as shown in Figure 3.22. There
are two important components [Bavier et al., 2004; Peterson et al., 2006].
The first one is the virtual machine monitor (VMM), which is an enhanced
Linux operating system. The enhancements mainly comprise adjustments
for supporting the second component, namely (Linux) Vservers. For now, a
Vserver can best be thought of as a separate environment in which a group of
processes run. We return to Vservers below.

Figure 3.22: The basic organization of a PlanetLab node.

The Linux VMM ensures that Vservers are separated: processes in different
Vservers are executed concurrently and independently, each making use only
of the software packages and programs available in their own environment.
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The isolation between processes in different Vservers is strict. For example,
two processes in different Vservers may have the same user ID, but this does
not imply that they stem from the same user. This separation considerably
eases supporting users from different organizations that want to use PlanetLab
as, for example, a testbed to experiment with completely different distributed
systems and applications.

To support such experimentations, PlanetLab uses slices, each slice being
a set of Vservers, each Vserver running on a different node, as illustrated
in Figure 3.23. A slice can thus be thought of as a virtual server cluster,
implemented by means of a collection of virtual machines.

Figure 3.23: The principle of a PlanetLab slice, showing sets of associated
Vservers across different nodes.

Central to managing PlanetLab resources is the node manager. Each node
has such a manager, implemented by means of a separate Vserver, whose only
task is to create other Vservers on the node it manages and to control resource
allocation. To create a new slice, each node will also run a slice creation
service (SCS), which, in turn, can contact the node manager requesting it to
create a Vserver and to allocate resources. The node manager itself cannot
be contacted directly over a network, allowing it to concentrate only on local
resource management. In turn, the SCS will not accept slice-creation requests
from just anybody. Only specific slice authorities are eligible for requesting
the creation of a slice. Each slice authority will have access rights to a collection
of nodes. The simplest model is that there is only a single, centralized slice
authority that is allowed to request slice creation on all nodes. In practice, we
see that this slice authority is the one used to get a user up-and-running on
PlanetLab.

Keeping track of resources is done by means of a resource specification,
or rspec for short. An rspec specifies a time interval during which certain
resources have been allocated. Resources include disk space, file descriptors,
inbound and outbound network bandwidth, transport-level end points, main
memory, and CPU usage. An rspec is identified through a globally unique
128-bit identifier known as a resource capability (rcap). Given an rcap, the
node manager can look up the associated rspec in a local table.
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Resources are bound to slices. In other words, in order to make use of
resources, it is necessary to create a slice. Each slice is associated with a
service provider, which can best be seen as an entity having an account
on PlanetLab. Every slice can then be identified by a (principal_id, slice_tag)
pair, where the principal_id identifies the provider and slice_tag is an identifier
chosen by the provider.

Vservers Let us now turn our attention to PlanetLab’s Vservers, which have
been described and evaluated by Soltesz et al. [2007]. A Vserver is organized
according to what is called a container-based approach. The main difference
with traditional virtual machines as those discussed in Section 3.2, is that they
rely on a single, shared operating-system kernel. This also means that resource
management is mostly done only by the underlying operating system and not
by any of the Vservers. The primary task of a Vserver is therefore to merely
support a group of processes and keep that group isolated from processes
running under the jurisdiction of another Vserver. Indeed, a Vserver forms an
isolated container for a group of processes and their allocated resources. By
now, containers have become quite popular for offering cloud services.

This isolation is technically established by the underlying VMM, for which
purpose the Linux operating system has been adapted. One of the most
salient adaptations concerns the separation of independent name spaces. For
example, to create the illusion that a Vserver is really a single machine, the
Unix process init traditionally always gets process ID 1 (with its parent having
ID 0). Obviously, the Linux VMM will already have such a process running,
yet it needs to create another init process for every Vserver. Those processes
will each also get process ID 1, while the kernel keeps track of a mapping
between such a virtual process ID and the real, actually assigned process ID.
Other examples of consistent naming across Vservers easily come to mind.

Likewise, isolation is also established by providing each Vserver with
its own set of libraries, yet using the directory structure that those libraries
expect, that is, with directories named /dev, /home, /proc, /usr, and so on
(which is also depicted in Figure 3.22). In principle, such a separated name
space can be achieved using the standard chroot command, effectively giving
each Vserver its own root directory. However, special measures are needed at
kernel level to prevent unauthorized access of one Vserver to the directory
tree of another Vserver, as explained by Soltesz et al. [2007].

An important advantage of the container-based approach toward virtual-
ization in comparison to running separate guest operating systems, is that
resource allocation can generally be much simpler. In particular, it is possible
to overbook resources by allowing for dynamic resource allocation, just as is
done with allocating resources to normal processes. Normally, when using
a guest operating system, the guest will have to be allocated a fixed amount
of resources in advance (notably main memory). When considering that the
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nodes provided by participating PlanetLab organizations are required to have
only few GByte of main memory, it is not hard to imagine that memory
may be a scarce resource. It is therefore necessary to dynamically allocate
memory to allow tens of virtual machines to be running at the same time
on a single node. Vservers are ideal for this type of resource management;
operating systems are much harder to support in such cases. Of course, this
cannot prevent a Vserver from using too much memory on a busy node. The
PlanetLab policy in that case is simple: the Vserver hogging memory when
swap space is almost filled, is reset.

3.5 Code migration

So far, we have been mainly concerned with distributed systems in which
communication is limited to passing data. However, there are situations
in which passing programs, sometimes even while they are being executed,
simplifies the design of a distributed system. In this section, we take a detailed
look at what code migration actually is. We start by considering different
approaches to code migration, followed by a discussion on how to deal with
the local resources that a migrating program uses. A particularly hard problem
is migrating code in heterogeneous systems, which is also discussed.

Reasons for migrating code

Traditionally, code migration in distributed systems took place in the form
of process migration in which an entire process was moved from one node
to another [Milojicic et al., 2000]. Moving a running process to a different
machine is a costly and intricate task, and there had better be a good reason
for doing so. That reason has always been performance. The basic idea is
that overall system performance can be improved if processes are moved from
heavily loaded to lightly loaded machines. Load is often expressed in terms
of the CPU queue length or CPU utilization, but other performance indicators
are used as well. When completing their survey, Milojicic et al. had already
come to the conclusion that process migration was no longer a viable option
for improving distributed systems.

However, instead of offloading machines, we can now witness that code
is moved to make sure that a machine is sufficiently loaded. In particular,
migrating complete virtual machines with their suite of applications to lightly
loaded machines in order to minimize the total number of nodes being used
is common practice in optimizing energy usage in data centers. Interestingly
enough, although migrating virtual machines may require more resources,
the task itself is far less intricate than migrating a process, as we discuss in
Note 3.11.

In general, load-distribution algorithms by which decisions are made con-
cerning the allocation and redistribution of tasks with respect to a set of
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machines, play an important role in compute-intensive systems. However, in
many modern distributed systems, optimizing computing capacity is less an
issue than, for example, trying to minimize communication. Moreover, due to
the heterogeneity of the underlying platforms and computer networks, per-
formance improvement through code migration is often based on qualitative
reasoning instead of mathematical models.

Consider, as an example, a client-server system in which the server man-
ages a huge database. If a client application needs to perform many database
operations involving large quantities of data, it may be better to ship part
of the client application to the server and send only the results across the
network. Otherwise, the network may be swamped with the transfer of data
from the server to the client. In this case, code migration is based on the
assumption that it generally makes sense to process data close to where those
data reside.

This same reason can be used for migrating parts of the server to the client.
For example, in many interactive database applications, clients need to fill in
forms that are subsequently translated into a series of database operations.
Processing the form at the client side, and sending only the completed form
to the server, can sometimes avoid that a relatively large number of small
messages need to cross the network. The result is that the client perceives
better performance, while at the same time the server spends less time on
form processing and communication. In the case of smartphones, moving
code to be executed at the handheld instead of the server may be the only
viable solution to obtain acceptable performance, both for the client and the
server (see Kumar et al. [2013] for a survey on offloading computations).

Support for code migration can also help improve performance by ex-
ploiting parallelism, but without the usual intricacies related to parallel pro-
gramming. A typical example is searching for information in the Web. It is
relatively simple to implement a search query in the form of a small mobile
program, called a mobile agent, that moves from site to site. By making
several copies of such a program, and sending each off to different sites, we
may be able to achieve a linear speed-up compared to using just a single
program instance. However, Carzaniga et al. [2007] conclude that mobile
agents have never become successful because they did not really offer an
obvious advantage over other technologies. Moreover, and crucial, it turned
out to be virtually impossible to let this type of mobile code operate in a
secure way.

Besides improving performance, there are other reasons for supporting
code migration as well. The most important one is that of flexibility. The
traditional approach to building distributed applications is to partition the
application into different parts, and decide in advance where each part should
be executed. This approach, for example, has lead to different multitiered
client-server applications discussed in Section 2.3.
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However, if code can move between different machines, it becomes possible
to dynamically configure distributed systems. For example, suppose a server
implements a standardized interface to a file system. To allow remote clients
to access the file system, the server makes use of a proprietary protocol.
Normally, the client-side implementation of the file system interface, which is
based on that protocol, would need to be linked with the client application.
This approach requires that the software be readily available to the client at
the time the client application is being developed.

An alternative is to let the server provide the client’s implementation no
sooner than is strictly necessary, that is, when the client binds to the server.
At that point, the client dynamically downloads the implementation, goes
through the necessary initialization steps, and subsequently invokes the server.
This principle is shown in Figure 3.24 (we note that the code repository is
generally located as part of the server). This model of dynamically moving
code from a remote site does require that the protocol for downloading and
initializing code is standardized. Also, it is necessary that the downloaded
code can be executed on the client’s machine. Typically, scripts that run in
a virtual machine embedded in, for example, a Web browser, will do the
trick. Arguably, this form of code migration has been key to the success of
the dynamic Web. These and other solutions are discussed below and in later
chapters.

Figure 3.24: The principle of dynamically configuring a client to communicate
with a server.

The important advantage of this model of dynamically downloading client-
side software is that clients need not have all the software preinstalled to talk
to servers. Instead, the software can be moved in as necessary, and likewise,
discarded when no longer needed. Another advantage is that as long as
interfaces are standardized, we can change the client-server protocol and its
implementation as often as we like. Changes will not affect existing client
applications that rely on the server.

There are, of course, also disadvantages. The most serious one, which
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we discuss in Chapter 9, has to do with security. Blindly trusting that the
downloaded code implements only the advertised interface while accessing
your unprotected hard disk and does not send the juiciest parts to heaven-
knows-who may not always be such a good idea. Fortunately, it is well
understood how to protect the client against malicious, downloaded code.

Note 3.10 (More information: Moving away from thin-client computing?)
By now, there is much more insight and expertise concerning transparent and
safe dynamic migration of code to clients. As a result, the trend that we described
in Note 2.4 of moving toward thin-client computing because managing client-
side software often turned out to be cumbersome, has been partly reverted.
By dynamically migrating client-side software, yet keeping the management of
that software entirely at the server side (or rather, at its owner), having “richer”
client-side software has become practically feasible.

Note 3.11 (Advanced: Models for code migration)
Although code migration suggests that we move only code between machines,
the term actually covers a much richer area. Traditionally, communication in
distributed systems is concerned with exchanging data between processes. Code
migration in the broadest sense deals with moving programs between machines,
with the intention to have those programs be executed at the target. In some cases,
as in process migration, the execution status of a program, pending signals, and
other parts of the environment must be moved as well.

To get a better understanding of the different models for code migration, we
use a framework proposed by Fuggetta et al. [1998]. In this framework, a process
consists of three segments. The code segment is the part that contains the set
of instructions that make up the program that is being executed. The resource
segment contains references to external resources needed by the process, such as
files, printers, devices, other processes, and so on. Finally, an execution segment
is used to store the current execution state of a process, consisting of private data,
the stack, and, of course, the program counter.

A further distinction can be made between sender-initiated and receiver-
initiated migration. In sender-initiated migration, migration is initiated at the
machine where the code currently resides or is being executed. Typically, sender-
initiated migration is done when uploading programs to a compute server. An-
other example is sending a query, or batch of queries, to a remote database server.
In receiver-initiated migration, the initiative for code migration is taken by the
target machine. Java applets are an example of this approach.

Receiver-initiated migration is simpler than sender-initiated migration. In
many cases, code migration occurs between a client and a server, where the client
takes the initiative for migration. Securely uploading code to a server, as is done
in sender-initiated migration, often requires that the client has previously been
registered and authenticated at that server. In other words, the server is required
to know all its clients, the reason being is that the client will presumably want
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access to the server’s resources such as its disk. Protecting such resources is
essential. In contrast, downloading code as in the receiver-initiated case, can often
be done anonymously. Moreover, the server is generally not interested in the
client’s resources. Instead, code migration to the client is done only for improving
client-side performance. To that end, only a limited number of resources need to
be protected, such as memory and network connections. We return to secure code
migration extensively in Chapter 9.
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Figure 3.25: Four different paradigms for code mobility.

This brings us to four different paradigms for code mobility, as shown in
Figure 3.25. Following Fuggetta et al. [1998], we make a distinction between sim-
ple client-server computing, remote evaluation, code-on-demand, and mobile
agents. Figure 3.25 shows the situation at respectively the client and the server,
before and after execution of the mobile code.

In the case of client-server computing, the code, execution state, and resource
segment are all located at the server, and after execution, only the execution state
at the server is generally modified. This state modification is denoted by means
of an asterisk. With the sender-initiated remote evaluation, the client migrates
code to the server where that code is executed and leading to a modification of
the execution state at the server. Code-on-demand is a receiver-initiated scheme
by which the client obtains code from the server with its execution modifying
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the client-side execution state and operating on the client’s resources. Finally,
mobile agents typically follow a sender-initiated approach, moving code as well
as execution state from the client to the server, operating on both the client’s as
well as the server’s resources. The execution of a mobile agent will generally lead
to modification of the associated execution state.

The bare minimum for code migration is to provide only weak mobility. In
this model, it is possible to transfer only the code segment, along with perhaps
some initialization data. A characteristic feature of weak mobility is that a
transferred program is always started anew. This is what happens, for example,
with Java applets, which start from the same initial state. In other words, no
history from where the migrated code left off at a previous location is maintained
by the underlying middleware. If such history needs to be preserved, it will have
to be encoded as part of the mobile application itself. The benefit of weak mobility
is its simplicity, as it requires only that the target machine can execute the code
segment. In essence, this boils down to making the code portable. We return to
these matters when discussing migration in heterogeneous systems.

In contrast to weak mobility, in systems that support strong mobility the
execution segment can be transferred as well. The characteristic feature of strong
mobility is that a running process can be stopped, subsequently moved to another
machine, and then resume execution exactly where it left off. Clearly, strong
mobility is much more general than weak mobility, but also much more difficult
to implement. In particular, when migrating a process, the execution segment
generally also contains data that is highly dependent on a specific implementation
of the underlying operating system. For example, it may rely on information
normally found in the operating system’s process table. As a consequence,
migrating to a different operating system, even one that belongs to the same
family as the source, may cause a lot of headaches.

In the case of weak mobility, it also makes a difference if the migrated code
is executed by the target process, or whether a separate process is started. For
example, Java applets are simply downloaded by a Web browser and are executed
in the browser’s address space. The benefit of this approach is that there is no
need to start a separate process, thereby avoiding interprocess communication
at the target machine. The main drawback, obviously, is that the target process
needs to be protected against malicious or inadvertent code executions, which
may be reason enough to isolate the migrated code in a separate process.

Instead of moving a running process, also referred to as process migration,
strong mobility can also be supported by remote cloning. In contrast to process
migration, cloning yields an exact copy of the original process, but now running
on a different machine. The cloned process is executed in parallel to the original
process. In Unix systems, remote cloning takes place by forking off a child
process and letting that child continue on a remote machine. The benefit of
cloning is that the model closely resembles the one that is already used in many
applications. The only difference is that the cloned process is executed on a
different machine. In this sense, migration by cloning is a simple way to improve
distribution transparency.
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Migration in heterogeneous systems

So far, we have tacitly assumed that the migrated code can be easily executed
at the target machine. This assumption is in order when dealing with homo-
geneous systems. In general, however, distributed systems are constructed
on a heterogeneous collection of platforms, each having their own operating
system and machine architecture.

The problems coming from heterogeneity are in many respects the same
as those of portability. Not surprisingly, solutions are also very similar. For
example, at the end of the 1970s, a simple solution to alleviate many of the
problems of porting Pascal to different machines was to generate machine-
independent intermediate code for an abstract virtual machine [Barron, 1981].
That machine, of course, would need to be implemented on many platforms,
but it would then allow Pascal programs to be run anywhere. Although this
simple idea was widely used for some years, it never really caught on as the
general solution to portability problems for other languages, notably C.

About 25 years later, code migration in heterogeneous systems is being
tackled by scripting languages and highly portable languages such as Java.
In essence, these solutions adopt the same approach as was done for porting
Pascal. All such solutions have in common that they rely on a (process) virtual
machine that either directly interprets source code (as in the case of scripting
languages), or otherwise interprets intermediate code generated by a compiler
(as in Java). Being in the right place at the right time is also important for
language developers.

Further developments have weakened the dependency on programming
languages. In particular, solutions have been proposed to migrate not only
processes, but to migrate entire computing environments. The basic idea
is to compartmentalize the overall environment and to provide processes
in the same part their own view on their computing environment. That
compartmentalization takes place in the form of virtual machine monitors
running an operating system and a suite of applications.

With virtual machine migration, it becomes possible to decouple a com-
puting environment from the underlying system and actually migrate it to
another machine (see Medina and Garcia [2014] for an overview on migration
mechanisms for virtual machines). A major advantage of this approach is
that processes can remain ignorant of the migration itself: they need not be
interrupted in their execution, nor should they experience any problems with
used resources. The latter are either migrating along with a process, or the
way that a process accesses a resource is left unaffected (at least, for that
process).

As an example, Clark et al. [2005] concentrated on real-time migration of a
virtualized operating system, typically something that would be convenient
in a cluster of servers where a tight coupling is achieved through a single,
shared local-area network. Under these circumstances, migration involves two
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major problems: migrating the entire memory image and migrating bindings
to local resources.

As to the first problem, there are, in principle, three ways to handle
migration (which can be combined):

1. Pushing memory pages to the new machine and resending the ones that
are later modified during the migration process.

2. Stopping the current virtual machine; migrate memory, and start the
new virtual machine.

3. Letting the new virtual machine pull in new pages as needed, that is,
let processes start on the new virtual machine immediately and copy
memory pages on demand.

The second option may lead to unacceptable downtime if the migrating
virtual machine is running a live service, that is, one that offers continuous
service. On the other hand, a pure on-demand approach as represented by
the third option may extensively prolong the migration period, but may also
lead to poor performance because it takes a long time before the working set
of the migrated processes has been moved to the new machine.

As an alternative, Clark et al. [2005] propose to use a pre-copy approach
which combines the first option, along with a brief stop-and-copy phase as
represented by the second option. As it turns out, this combination can lead
to very low service downtimes (see also Note 3.12).

Concerning local resources, matters are simplified when dealing only with
a cluster server. First, because there is a single network, the only thing that
needs to be done is to announce the new network-to-MAC address binding, so
that clients can contact the migrated processes at the correct network interface.
Finally, if it can be assumed that storage is provided as a separate tier (like we
showed in Figure 3.18), then migrating binding to files is similarly simple, as
it effectively means reestablishing network connections.

Note 3.12 (Advanced: On the performance of live virtual machine migration)
One potential problem with virtual-machine migration is that it may take consid-
erable time. This by itself need not be bad as long as the services that are running
on the migrating virtual machine can continue to operate. An approach used in
practice was briefly described above. First, memory pages are copied to the target
machine, possibly sending updates of pages that were modified while copying
took place (remember that copying lots of memory may take tens of seconds, even
across a high-speed local network). Second, when most pages have been faithfully
copied, the current machine is stopped, the remaining dirty pages are copied to
the target, where the now exact copy can then be started where the original left
off.

The downtime in which the remaining dirty pages need to be copied depends
on the applications running on the virtual machine. Clark et al. [2005] report
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downtimes for specific configurations between 60 msecs and less than 4 secs.
Voorsluys et al. [2009] come to similar values. However, what may be more
interesting is to observe what the response time is of the service running on the
virtual machine while the latter is being migrated. The model in this case is
that the service continues to operate on the original machine until full migration
has completed. However, we cannot ignore that migration itself is a resource-
intensive operation, requiring considerable processing capacity as well as network
bandwidth.

Figure 3.26: The effect on the response time of a service while migrating
its underlying virtual machine. Adapted from Voorsluys et al. [2009].

Voorsluys et al. [2009] have observed that a complete migration may actually
take tens of seconds, leading to a ten- to twentyfold increase in response time. In
addition, we need to realize that during the migration, a service will be completely
unavailable (i.e., unresponsive) for perhaps 4 seconds. The good news is that
the response time goes up significantly only after the downtime to complete the
migration, as shown in Figure 3.26.

In many cases, virtual machines are migrated to optimize the usage of actual
machines. However, it may also be desirable to clone a virtual machine, for
example, because the workload for the current machine is becoming too high.
Such cloning is very similar to using multiple processes in concurrent servers by
which a dispatcher process creates worker processes to handle incoming requests.
This scheme was explained in Figure 3.4 when discussing multithreaded servers.

When cloning for this type of performance, it often makes more sense not to
first copy memory pages, but, in fact, start with as few pages as possible as the
service running on the cloned machine will essentially start anew. Note that this
behavior is very similar to the usual parent-child behavior we see when forking a
Unix process. Namely, the child will start with loading its own executable, thereby
effectively cleaning the memory it inherited from its parent. This analogy inspired
Lagar-Cavilla et al. [2009] to develop an analogous mechanism for forking a virtual
machine. However, unlike the mechanism used traditionally for migrating virtual
machines, their VM fork copies pages primarily on demand. The result is an
extremely efficient cloning mechanism.

It is thus seen that there is no single best way to place copies of a virtual
machine on different physical machines: it very much depends on how and why
a virtual machine is being deployed.
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3.6 Summary

Processes play a fundamental role in distributed systems as they form a
basis for communication between different machines. An important issue
is how processes are internally organized and, in particular, whether or not
they support multiple threads of control. Threads in distributed systems are
particularly useful to continue using the CPU when a blocking I/O operation
is performed. In this way, it becomes possible to build highly-efficient servers
that run multiple threads in parallel, of which several may be blocking to wait
until disk I/O or network communication completes. In general, threads are
preferred over the use of processes when performance is at stake.

Virtualization has since long been an important field in computer science,
but in the advent of cloud computing has regained tremendous attention.
Popular virtualization schemes allow users to run a suite of applications
on top of their favorite operating system and configure complete virtual
distributed systems in the cloud. Impressively enough, performance remains
close to running applications on the host operating system, unless that system
is shared with other virtual machines. The flexible application of virtual
machines has led to different types of services for cloud computing, including
infrastructures, platforms, and software — all running in virtual environments.

Organizing a distributed application in terms of clients and servers has
proven to be useful. Client processes generally implement user interfaces,
which may range from very simple displays to advanced interfaces that can
handle compound documents. Client software is furthermore aimed at achiev-
ing distribution transparency by hiding details concerning the communication
with servers, where those servers are currently located, and whether or not
servers are replicated. In addition, client software is partly responsible for
hiding failures and recovery from failures.

Servers are often more intricate than clients, but are nevertheless subject
to only a relatively few design issues. For example, servers can either be
iterative or concurrent, implement one or more services, and can be stateless
or stateful. Other design issues deal with addressing services and mechanisms
to interrupt a server after a service request has been issued and is possibly
already being processed.

Special attention needs to be paid when organizing servers into a cluster.
A common objective is to hide the internals of a cluster from the outside
world. This means that the organization of the cluster should be shielded
from applications. To this end, most clusters use a single entry point that
can hand off messages to servers in the cluster. A challenging problem is to
transparently replace this single entry point by a fully distributed solution.

Advanced object servers have been developed for hosting remote objects.
An object server provides many services to basic objects, including facilities
for storing objects, or to ensure serialization of incoming requests. Another
important role is providing the illusion to the outside world that a collection
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of data and procedures operating on that data correspond to the concept of
an object. This role is implemented by means of object adapters. Object-based
systems have come to a point where we can build entire frameworks that can
be extended for supporting specific applications. Java has proven to provide
a powerful means for setting up more generic services, exemplified by the
highly popular Enterprise Java Beans concept and its implementation.

An exemplary server for Web-based systems is the one from Apache.
Again, the Apache server can be seen as a general solution for handling a
myriad of HTTP-based queries. By offering the right hooks, we essentially ob-
tain a flexibly configurable Web server. Apache has served as an example not
only for traditional Web sites, but also for setting up clusters of collaborative
Web servers, even across wide-area networks.

An important topic for distributed systems is the migration of code be-
tween different machines. Two important reasons to support code migration
are increasing performance and flexibility. When communication is expensive,
we can sometimes reduce communication by shipping computations from
the server to the client, and let the client do as much local processing as
possible. Flexibility is increased if a client can dynamically download software
needed to communicate with a specific server. The downloaded software can
be specifically targeted to that server, without forcing the client to have it
preinstalled.

Code migration brings along problems related to usage of local resources
for which it is required that either resources are migrated as well, new bind-
ings to local resources at the target machine are established, or for which
systemwide network references are used. Another problem is that code mi-
gration requires that we take heterogeneity into account. Current practice
indicates that the best solution to handle heterogeneity is to use virtual ma-
chines. These can take either the form of process virtual machines as in the
case of, for example, Java, or through using virtual machine monitors that
effectively allow the migration of a collection of processes along with their
underlying operating system.
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Chapter 4

Communication

Interprocess communication is at the heart of all distributed systems. It makes
no sense to study distributed systems without carefully examining the ways
that processes on different machines can exchange information. Communica-
tion in distributed systems has traditionally always been based on low-level
message passing as offered by the underlying network. Expressing commu-
nication through message passing is harder than using primitives based on
shared memory, as available for nondistributed platforms. Modern distributed
systems often consist of thousands or even millions of processes scattered
across a network with unreliable communication such as the Internet. Unless
the primitive communication facilities of computer networks are replaced
by something else, development of large-scale distributed applications is
extremely difficult.

In this chapter, we start by discussing the rules that communicating pro-
cesses must adhere to, known as protocols, and concentrate on structuring
those protocols in the form of layers. We then look at two widely-used models
for communication: Remote Procedure Call (RPC), and Message-Oriented
Middleware (MOM). We also discuss the general problem of sending data to
multiple receivers, called multicasting.

Our first model for communication in distributed systems is the remote
procedure call (RPC). An RPC aims at hiding most of the intricacies of message
passing, and is ideal for client-server applications. However, realizing RPCs
in a transparent manner is easier said than done. We look at a number of
important details that cannot be ignored, while diving into actually code to
illustrate to what extent distribution transparency can be realized such that
performance is still acceptable.

In many distributed applications, communication does not follow the
rather strict pattern of client-server interaction. In those cases, it turns out
that thinking in terms of messages is more appropriate. The low-level com-
munication facilities of computer networks are in many ways not suitable,
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again due to their lack of distribution transparency. An alternative is to use a
high-level message-queuing model, in which communication proceeds much
the same as in e-mail systems. Message-oriented communication is a subject
important enough to warrant a section of its own. We look at numerous
aspects, including application-level routing.

Finally, since our understanding of setting up multicast facilities has im-
proved, novel and elegant solutions for data dissemination have emerged.
We pay separate attention to this subject in the last section of this chapter,
discussing traditional deterministic means of multicasting, as well as proba-
bilistic approaches as used in flooding and gossiping. The latter have been
receiving increased attention over the past years due to their elegance and
simplicity.

4.1 Foundations

Before we start our discussion on communication in distributed systems, we
first recapitulate some of the fundamental issues related to communication.
In the next section we briefly discuss network communication protocols, as
these form the basis for any distributed system. After that, we take a different
approach by classifying the different types of communication that usually
occur in distributed systems.

Layered Protocols

Due to the absence of shared memory, all communication in distributed
systems is based on sending and receiving (low level) messages. When
process P wants to communicate with process Q, it first builds a message in
its own address space. Then it executes a system call that causes the operating
system to send the message over the network to Q. Although this basic idea
sounds simple enough, in order to prevent chaos, P and Q have to agree on
the meaning of the bits being sent.

The OSI reference model

To make it easier to deal with the numerous levels and issues involved in
communication, the International Standards Organization (ISO) developed
a reference model that clearly identifies the various levels involved, gives
them standard names, and points out which level should do which job. This
model is called the Open Systems Interconnection Reference Model [Day
and Zimmerman, 1983] usually abbreviated as ISO OSI or sometimes just the
OSI model. It should be emphasized that the protocols that were developed
as part of the OSI model were never widely used and are essentially dead.
However, the underlying model itself has proved to be quite useful for un-
derstanding computer networks. Although we do not intend to give a full
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description of this model and all of its implications here, a short introduction
will be helpful. For more details see [Tanenbaum and Wetherall, 2010].

The OSI model is designed to allow open systems to communicate. An
open system is one that is prepared to communicate with any other open
system by using standard rules that govern the format, contents, and meaning
of the messages sent and received. These rules are formalized in what are
called communication protocols. To allow a group of computers to commu-
nicate over a network, they must all agree on the protocols to be used. A
protocol is said to provide a communication service. There are two types of
such services. In the case of a connection-oriented service, before exchang-
ing data the sender and receiver first explicitly establish a connection, and
possibly negotiate specific parameters of the protocol they will use. When
they are done, they release (terminate) the connection. The telephone is
a typical connection-oriented communication service. With connectionless
services, no setup in advance is needed. The sender just transmits the first
message when it is ready. Dropping a letter in a mailbox is an example of
making use of connectionless communication service. With computers, both
connection-oriented and connectionless communication are common.

Figure 4.1: Layers, interfaces, and protocols in the OSI model.

In the OSI model, communication is divided into seven levels or layers, as
shown in Figure 4.1. Each layer offers one or more specific communication
services to the layer above it. In this way, the problem of getting a message
from A to B can be divided into manageable pieces, each of which can be
solved independently of the others. Each layer provides an interface to the
one above it. The interface consists of a set of operations that together define
the service the layer is prepared to offer. The seven OSI layers are:
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Physical layer Deals with standardizing how two computers are connected
and how 0s and 1s are represented.

Data link layer Provides the means to detect and possibly correct transmis-
sion errors, as well as protocols to keep a sender and receiver in the
same pace.

Network layer Contains the protocols for routing a message through a com-
puter network, as well as protocols for handling congestion.

Transport layer Mainly contains protocols for directly supporting applica-
tions, such as those that establish reliable communication, or support
real-time streaming of data.

Session layer Provides support for sessions between applications.
Presentation layer Prescribes how data is represented in a way that is inde-

pendent of the hosts on which communicating applications are running.
Application layer Essentially, everything else: e-mail protocols, Web access

protocols, file-transfer protocols, and so on.

When process P wants to communicate with some remote process Q, it
builds a message and passes that message to the application layer as offered
to it by means of an interface. This interface will typically appear in the form
of a library procedure. The application layer software then adds a header to
the front of the message and passes the resulting message across the layer 6/7
interface to the presentation layer. The presentation layer, in turn, adds its
own header and passes the result down to the session layer, and so on. Some
layers add not only a header to the front, but also a trailer to the end. When
it hits the bottom, the physical layer actually transmits the message (which
by now might look as shown in Figure 4.2) by putting it onto the physical
transmission medium.

Figure 4.2: A typical message as it appears on the network.

When the message arrives at the remote machine hosting Q, it is passed
upward, with each layer stripping off and examining its own header. Finally,
the message arrives at the receiver, process Q, which may reply to it using
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the reverse path. The information in the layer-n header is used for the layer-n
protocol.

In the OSI model, there are not two layers, but seven, as we saw in
Figure 4.1. The collection of protocols used in a particular system is called
a protocol suite or protocol stack. It is important to distinguish a reference
model from its actual protocols. As said, the OSI protocols were never popular,
in contrast to protocols developed for the Internet, such as TCP and IP.

Note 4.1 (More information: Protocols in the OSI model)
Let us briefly examine each of the OSI layers in turn, starting at the bottom.
Instead of giving examples of OSI protocols, where appropriate, we will point out
some of the Internet protocols used in each layer.

Lower-level protocols. The three lowest layers of the OSI protocol suite imple-
ment the basic functions that encompass a computer network.

The physical layer is concerned with transmitting the 0s and 1s. How many
volts to use for 0 and 1, how many bits per second can be sent, and whether
transmission can take place in both directions simultaneously are key issues in
the physical layer. In addition, the size and shape of the network connector (plug),
as well as the number of pins and meaning of each are of concern here.

The physical layer protocol deals with standardizing the electrical, optical,
mechanical, and signaling interfaces so that when one machine sends a 0 bit it is
actually received as a 0 bit and not a 1 bit. Many physical layer standards have
been developed (for different media), for example, the USB standard for serial
communication lines.

The physical layer just sends bits. As long as no errors occur, all is well.
However, real communication networks are subject to errors, so some mechanism
is needed to detect and correct them. This mechanism is the main task of the data
link layer. What it does is to group the bits into units, sometimes called frames,
and see that each frame is correctly received.

The data link layer does its work by putting a special bit pattern on the start
and end of each frame to mark them, as well as computing a checksum by adding
up all the bytes in the frame in a certain way. The data link layer appends the
checksum to the frame. When the frame arrives, the receiver recomputes the
checksum from the data and compares the result to the checksum following
the frame. If the two agree, the frame is considered correct and is accepted. If
they disagree, the receiver asks the sender to retransmit it. Frames are assigned
sequence numbers (in the header), so everyone can tell which is which.

On a LAN, there is usually no need for the sender to locate the receiver. It just
puts the message out on the network and the receiver takes it off. A wide-area
network, however, consists of a large number of machines, each with some number
of lines to other machines, rather like a large-scale map showing major cities and
roads connecting them. For a message to get from the sender to the receiver it
may have to make a number of hops, at each one choosing an outgoing line to use.
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The question of how to choose the best path is called routing, and is essentially
the primary task of the network layer.

The problem is complicated by the fact that the shortest route is not always
the best route. What really matters is the amount of delay on a given route, which,
in turn, is related to the amount of traffic and the number of messages queued up
for transmission over the various lines. The delay can thus change over the course
of time. Some routing algorithms try to adapt to changing loads, whereas others
are content to make decisions based on long-term averages.

At present, the most widely used network protocol is the connectionless IP
(Internet Protocol), which is part of the Internet protocol suite. An IP packet (the
technical term for a message in the network layer) can be sent without any setup.
Each IP packet is routed to its destination independent of all others. No internal
path is selected and remembered.

Transport protocols. The transport layer forms the last part of what could be
called a basic network protocol stack, in the sense that it implements all those
services that are not provided at the interface of the network layer, but which are
reasonably needed to build network applications. In other words, the transport
layer turns the underlying network into something that an application developer
can use.

Packets can be lost on the way from the sender to the receiver. Although
some applications can handle their own error recovery, others prefer a reliable
connection. The job of the transport layer is to provide this service. The idea is
that the application layer should be able to deliver a message to the transport
layer with the expectation that it will be delivered without loss.

Upon receiving a message from the application layer, the transport layer
breaks it into pieces small enough for transmission, assigns each one a sequence
number, and then sends them all. The discussion in the transport layer header
concerns which packets have been sent, which have been received, how many
more the receiver has room to accept, which should be retransmitted, and similar
topics.

Reliable transport connections (which by definition are connection-oriented)
can be built on top of connection-oriented or connectionless network services. In
the former case all the packets will arrive in the correct sequence (if they arrive at
all), but in the latter case it is possible for one packet to take a different route and
arrive earlier than the packet sent before it. It is up to the transport layer software
to put everything back in order to maintain the illusion that a transport connection
is like a big tube–you put messages into it and they come out undamaged and in
the same order in which they went in. Providing this end-to-end communication
behavior is an important aspect of the transport layer.

The Internet transport protocol is called TCP (Transmission Control Protocol)
and is described in detail by Comer [2013]. The combination TCP/IP is now used
as a de facto standard for network communication. The Internet protocol suite also
supports a connectionless transport protocol called UDP (Universal Datagram
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Protocol), which is essentially just IP with some minor additions. User programs
that do not need a connection-oriented protocol normally use UDP.

Additional transport protocols are regularly proposed. For example, to sup-
port real-time data transfer, the Real-time Transport Protocol (RTP) has been
defined. RTP is a framework protocol in the sense that it specifies packet formats
for real-time data without providing the actual mechanisms for guaranteeing
data delivery. In addition, it specifies a protocol for monitoring and controlling
data transfer of RTP packets [Schulzrinne et al., 2003]. Likewise, the Streaming
Control Transmission Protocol (SCTP) has been proposed as an alternative to
TCP [Stewart, 2007]. The main difference between SCTP and TCP is that SCTP
groups data into messages, whereas TCP merely moves bytes between processes.
Doing so may simplify application development.

Higher-level protocols. Above the transport layer, OSI distinguishes three addi-
tional layers. In practice, only the application layer is ever used. In fact, in the
Internet protocol suite, everything above the transport layer is grouped together.
In the face of middleware systems, we shall see that neither the OSI nor the
Internet approach is really appropriate.

The session layer is essentially an enhanced version of the transport layer. It
provides dialog control, to keep track of which party is currently talking, and it
provides synchronization facilities. The latter are useful to allow users to insert
checkpoints into long transfers, so that in the event of a crash, it is necessary to
go back only to the last checkpoint, rather than all the way back to the beginning.
In practice, few applications are interested in the session layer and it is rarely
supported. It is not even present in the Internet protocol suite. However, in
the context of developing middleware solutions, the concept of a session and
its related protocols has turned out to be quite relevant, notably when defining
higher-level communication protocols.

Unlike the lower layers, which are concerned with getting the bits from the
sender to the receiver reliably and efficiently, the presentation layer is concerned
with the meaning of the bits. Most messages do not consist of random bit strings,
but more structured information such as people’s names, addresses, amounts
of money, and so on. In the presentation layer it is possible to define records
containing fields like these and then have the sender notify the receiver that a
message contains a particular record in a certain format. This makes it easier for
machines with different internal representations to communicate with each other.

The OSI application layer was originally intended to contain a collection of
standard network applications such as those for electronic mail, file transfer, and
terminal emulation. By now, it has become the container for all applications and
protocols that in one way or the other do not fit into one of the underlying layers.
From the perspective of the OSI reference model, virtually all distributed systems
are just applications.

What is missing in this model is a clear distinction between applications,
application-specific protocols, and general-purpose protocols. For example, the
Internet File Transfer Protocol (FTP) [Postel and Reynolds, 1985; Horowitz and
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Lunt, 1997] defines a protocol for transferring files between a client and server
machine. The protocol should not be confused with the ftp program, which
is an end-user application for transferring files and which also (not entirely by
coincidence) happens to implement the Internet FTP.

Another example of a typical application-specific protocol is the HyperText
Transfer Protocol (HTTP) [Fielding and Reschke, 2014] which is designed to
remotely manage and handle the transfer of Web pages. The protocol is imple-
mented by applications such as Web browsers and Web servers. However, HTTP
is now also used by systems that are not intrinsically tied to the Web. For example,
Java’s object-invocation mechanism can use HTTP to request the invocation of
remote objects that are protected by a firewall.

There are also many general-purpose protocols that are useful to many appli-
cations, but which cannot be qualified as transport protocols. In many cases, such
protocols fall into the category of middleware protocols.

Middleware protocols

Middleware is an application that logically lives (mostly) in the OSI application
layer, but which contains many general-purpose protocols that warrant their
own layers, independent of other, more specific applications. Let us briefly
look at some examples.

The Domain Name System (DNS) [Liu and Albitz, 2006] is a distributed
service that is used to look up a network address associated with a name, such
as the address of a so-called domain name like www.distributed-systems.net.
In terms of the OSI reference model, DNS is an application and therefore
is logically placed in the application layer. However, it should be quite
obvious that DNS is offering a general-purpose, application-independent
service. Arguably, it forms part of the middleware.

As another example, there are various ways to establish authentication,
that is, provide proof of a claimed identity. Authentication protocols are
not closely tied to any specific application, but instead, can be integrated
into a middleware system as a general service. Likewise, authorization
protocols by which authenticated users and processes are granted access only
to those resources for which they have authorization, tend to have a general,
application-independent nature. Being labeled as applications in the OSI
reference model, these are clear examples that belong in the middleware.

Distributed commit protocols establish that in a group of processes, possi-
bly spread out across a number of machines, either all processes carry out a
particular operation, or that the operation is not carried out at all. This phe-
nomenon is also referred to as atomicity and is widely applied in transactions.
As it turns out, commit protocols can present an interface independently of
specific applications, thus providing a general-purpose transaction service.
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In such a form, they typically belong to the middleware and not to the OSI
application layer.

As a last example, consider a distributed locking protocol by which a
resource can be protected against simultaneous access by a collection of pro-
cesses that are distributed across multiple machines. It is not hard to imagine
that such protocols can be designed in an application-independent fashion,
and accessible through a relatively simple, again application-independent
interface. As such, they generally belong in the middleware.

These protocol examples are not directly tied to communication, yet there
are also many middleware communication protocols. For example, with
a so-called remote procedure call, a process is offered a facility to locally
call a procedure that is effectively implemented on a remote machine. This
communication service belongs to one of the oldest types of middleware
services and is used for realizing access transparency. In a similar vein, there
are high-level communication services for setting and synchronizing streams
for transferring real-time data, such as needed for multimedia applications.
As a last example, some middleware systems offer reliable multicast services
that scale to thousands of receivers spread across a wide-area network.

Figure 4.3: An adapted reference model for networked communication.

Taking this approach to layering leads to the adapted and simplified
reference model for communication, as shown in Figure 4.3. Compared to
the OSI model, the session and presentation layer have been replaced by
a single middleware layer that contains application-independent protocols.
These protocols do not belong in the lower layers we just discussed. Network
and transport services have been grouped into communication services as
normally offered by an operating system, which, in turn, manages the specific
lowest-level hardware used to establish communication.
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Types of Communication

In the remainder of this chapter, we concentrate on high-level middleware
communication services. Before doing so, there are other general criteria
for distinguishing (middleware) communication. To understand the various
alternatives in communication that middleware can offer to applications, we
view the middleware as an additional service in client-server computing, as
shown in Figure 4.4. Consider, for example an electronic mail system. In
principle, the core of the mail delivery system can be seen as a middleware
communication service. Each host runs a user agent allowing users to com-
pose, send, and receive e-mail. A sending user agent passes such mail to the
mail delivery system, expecting it, in turn, to eventually deliver the mail to
the intended recipient. Likewise, the user agent at the receiver’s side connects
to the mail delivery system to see whether any mail has come in. If so, the
messages are transferred to the user agent so that they can be displayed and
read by the user.

Figure 4.4: Viewing middleware as an intermediate (distributed) service in
application-level communication.

An electronic mail system is a typical example in which communication
is persistent. With persistent communication, a message that has been sub-
mitted for transmission is stored by the communication middleware as long
as it takes to deliver it to the receiver. In this case, the middleware will store
the message at one or several of the storage facilities shown in Figure 4.4.
As a consequence, it is not necessary for the sending application to continue
execution after submitting the message. Likewise, the receiving application
need not be executing when the message is submitted.

In contrast, with transient communication, a message is stored by the
communication system only as long as the sending and receiving application
are executing. More precisely, in terms of Figure 4.4, if the middleware cannot
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deliver a message due to a transmission interrupt, or because the recipient is
currently not active, it will simply be discarded. Typically, all transport-level
communication services offer only transient communication. In this case, the
communication system consists of traditional store-and-forward routers. If a
router cannot deliver a message to the next one or the destination host, it will
simply drop the message.

Besides being persistent or transient, communication can also be asyn-
chronous or synchronous. The characteristic feature of asynchronous com-
munication is that a sender continues immediately after it has submitted its
message for transmission. This means that the message is (temporarily) stored
immediately by the middleware upon submission. With synchronous com-
munication, the sender is blocked until its request is known to be accepted.
There are essentially three points where synchronization can take place. First,
the sender may be blocked until the middleware notifies that it will take over
transmission of the request. Second, the sender may synchronize until its
request has been delivered to the intended recipient. Third, synchronization
may take place by letting the sender wait until its request has been fully
processed, that is, up to the time that the recipient returns a response.

Various combinations of persistence and synchronization occur in practice.
Popular ones are persistence in combination with synchronization at request
submission, which is a common scheme for many message-queuing systems,
which we discuss later in this chapter. Likewise, transient communication
with synchronization after the request has been fully processed is also widely
used. This scheme corresponds with remote procedure calls, which we discuss
next.

4.2 Remote procedure call

Many distributed systems have been based on explicit message exchange
between processes. However, the operations send and receive do not conceal
communication at all, which is important to achieve access transparency in
distributed systems. This problem has long been known, but little was done
about it until researchers in the 1980s [Birrell and Nelson, 1984] introduced
a completely different way of handling communication. Although the idea
is refreshingly simple (once someone has thought of it), the implications are
often subtle. In this section we will examine the concept, its implementation,
its strengths, and its weaknesses.

In a nutshell, the proposal was to allow programs to call procedures
located on other machines. When a process on machine A calls a procedure on
machine B, the calling process on A is suspended, and execution of the called
procedure takes place on B. Information can be transported from the caller to
the callee in the parameters and can come back in the procedure result. No
message passing at all is visible to the programmer. This method is known as
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Remote Procedure Call, or often just RPC.
While the basic idea sounds simple and elegant, subtle problems exist.

To start with, because the calling and called procedures run on different ma-
chines, they execute in different address spaces, which causes complications.
Parameters and results also have to be passed, which can be complicated,
especially if the machines are not identical. Finally, either or both machines
can crash and each of the possible failures causes different problems. Still,
most of these can be dealt with, and RPC is a widely-used technique that
underlies many distributed systems.

Basic RPC operation

The idea behind RPC is to make a remote procedure call look as much as
possible like a local one. In other words, we want RPC to be transparent—the
calling procedure should not be aware that the called procedure is executing
on a different machine or vice versa. Suppose that a program has access to a
database that allows it to append data to a stored list, after which it returns a
reference to the modified list. The operation is made available to a program
by means of a routine append:

newlist = append(data, dbList)

In a traditional (single-processor) system, append is extracted from a library
by the linker and inserted into the object program. In principle, it can be a
short procedure, which could be implemented by a few file operations for
accessing the database.

Even though append eventually does only a few basic file operations, it
is called in the usual way, by pushing its parameters onto the stack. The
programmer does not know the implementation details of append, and this is,
of course, how it is supposed to be.

Note 4.2 (More information: Conventional procedure calls)
To understand how RPC works and some of its pitfalls, it may help to first under-
stand how a conventional (i.e., single machine) procedure call works. Consider
the following operation.

newlist = append(data, dbList);

We assume that the purpose of this call is to take a globally defined list object,
referred here to as dbList, and append a simple data element to it represented
by the variable data. An important observation is that in various programming
languages such as C, dbList is implemented as a reference to a list object (i.e.,
a pointer), whereas data may be represented directly by its value (which we
assume to be the case here). When calling append, both the representations of data
and dbList are pushed onto the stack, making those representations accessible
to the implementation of append. For data, this means the variable follows a
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copy-by-value policy, the policy for dblist is copy-by-reference. What happens
before and during the call is shown in Figure 4.5.

Several things are worth noting. For one, a value parameter such as data, is
just an initialized local variable. The called procedure may modify it, but such
changes do not affect the original value at the calling side.

When a parameter like dbList is actually a pointer to a variable rather than
the value of the variable, something else happens. What is pushed onto the stack
is the address of the list object as stored in main memory. When the value of data
is appended to the list, a call to append does modify the list object. The difference
between call-by-value and call-by-reference is quite important for RPC.

(a) (b)

Figure 4.5: (a) Parameter passing in a local procedure call: the stack
before the call to append. (b) The stack while the called procedure is
active.
One other parameter passing mechanism also exists, although it is not used

in most programming languages. It is called call-by-copy/restore. It consists
of having the variable copied to the stack by the caller, as in call-by-value, and
then copied back after the call, overwriting the caller’s original value. Under
most conditions, this achieves exactly the same effect as call-by-reference, but in
some situations, such as the same parameter being present multiple times in the
parameter list, the semantics are different.

The decision of which parameter passing mechanism to use is normally made
by the language designers and is a fixed property of the language. Sometimes
it depends on the data type being passed. In C, for example, integers and
other scalar types are always passed by value, whereas arrays are always passed
by reference. Some Ada compilers use copy/restore for inout parameters, but
others use call-by-reference. The language definition permits either choice, which
makes the semantics a bit fuzzy. In Python, all variables are passed by reference,
but some actually get copied to local variables, thus mimicking the behavior of
copy-by-value.

RPC achieves its transparency in an analogous way. When append is
actually a remote procedure, a different version of append, called a client
stub, is offered to the calling client. Like the original one, it, too, is called
using a normal calling sequence. However, unlike the original one, it does not
perform an append operation. Instead, it packs the parameters into a message
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and requests that message to be sent to the server as illustrated in Figure 4.6.
Following the call to send, the client stub calls receive, blocking itself until
the reply comes back.

Figure 4.6: The principle of RPC between a client and server program.

When the message arrives at the server, the server’s operating system
passes it to a server stub. A server stub is the server-side equivalent of a client
stub: it is a piece of code that transforms requests coming in over the network
into local procedure calls. Typically the server stub will have called receive
and be blocked waiting for incoming messages. The server stub unpacks the
parameters from the message and then calls the server procedure in the usual
way. From the server’s point of view, it is as though it is being called directly
by the client—the parameters and return address are all on the stack where
they belong and nothing seems unusual. The server performs its work and
then returns the result to the caller (in this case the server stub) in the usual
way.

When the server stub gets control back after the call has completed, it
packs the result in a message and calls send to return it to the client. After
that, the server stub usually does a call to receive again, to wait for the next
incoming request.

When the result message arrives at the client’s machine, the operating
system passes it through the receive operation, which had been called pre-
viously, to the client stub, and the client process is subsequently unblocked.
The client stub inspects the message, unpacks the result, copies it to its caller,
and returns in the usual way. When the caller gets control following the call
to append, all it knows is that it appended some data to a list. It has no idea
that the work was done remotely at another machine.

This blissful ignorance on the part of the client is the beauty of the whole
scheme. As far as it is concerned, remote services are accessed by making
ordinary (i.e., local) procedure calls, not by calling send and receive. All
the details of the message passing are hidden away in the two library proce-
dures, just as the details of actually making system calls are hidden away in
traditional libraries.

To summarize, a remote procedure call occurs in the following steps:
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Figure 4.7: The steps involved in calling a remote procedure doit(a,b). The
return path for the result is not shown.

1. The client procedure calls the client stub in the normal way.
2. The client stub builds a message and calls the local operating system.
3. The client’s OS sends the message to the remote OS.
4. The remote OS gives the message to the server stub.
5. The server stub unpacks the parameter(s) and calls the server.
6. The server does the work and returns the result to the stub.
7. The server stub packs the result in a message and calls its local OS.
8. The server’s OS sends the message to the client’s OS.
9. The client’s OS gives the message to the client stub.

10. The stub unpacks the result and returns it to the client.

The first steps are shown in Figure 4.7 for an abstract two-parameter
procedure doit(a,b), where we assume that parameter a is of type type1, and
b of type type2. The net effect of all these steps is to convert the local call by
the client procedure to the client stub, to a local call to the server procedure
without either client or server being aware of the intermediate steps or the
existence of the network.

Note 4.3 (More information: An example in Python)
To make matters concrete, let us consider how a remote procedure call could
be implemented for the operation append discussed previously. Take a look at
the Python code shown in Figure 4.8 (from which we omit nonessential code
fragments).

The class DBList is a simple representation of a list object, mimicking what one
would expect to see in a version that would be found in a database environment.
The client stub, represented by the class Client, consists of an implementation
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of append. When called with parameters data and dbList, the following happens.
The call is transformed into a tuple (APPEND, data, dbList) containing all the
information the server would need to do its work. The client stub then sends
the request off to the server, and subsequently waits for the response. When the
response comes in, it finishes by passing the result to the program that initially
called the stub.

1 import channel, pickle
2

3 class DBList:
4 def append(self, data):
5 self.value = self.value + [data]
6 return self
7

8 class Client:
9 def append(self, data, dbList):

10 msglst = (APPEND, data, dbList) # message payload
11 self.chan.sendTo(self.server, msglst) # send msg to server
12 msgrcv = self.chan.recvFrom(self.server) # wait for response
13 return msgrcv[1] # pass it to caller
14

15 class Server:
16 def append(self, data, dbList):
17 return dbList.append(data)
18

19 def run(self):
20 while True:
21 msgreq = self.chan.recvFromAny() # wait for any request
22 client = msgreq[0] # see who is the caller
23 msgrpc = msgreq[1] # fetch call & parameters
24 if APPEND == msgrpc[0]: # check what is being requested
25 result = self.append(msgrpc[1], msgrpc[2]) # do local call
26 self.chan.sendTo([client],result) # return response

Figure 4.8: A simple RPC example for operation append.

On the server side, we see that in the server stub, the server waits for any
incoming message, and inspects which operation it is required to call. Assuming
it received a request to call append, it then simply does a local call to its imple-
mentation of append with the appropriate parameters as also found in the request
tuple. The result is then sent off to the client.

Parameter passing

The function of the client stub is to take its parameters, pack them into a
message, and send them to the server stub. While this sounds straightforward,
it is not quite as simple as it at first appears.

Packing parameters into a message is called parameter marshaling. Re-
turning to our append operation, we thus need to ensure that its two parame-
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ters (data and dbList) are sent over the network and correctly interpreted by
the server. The thing to realize here is that, in the end, the server will just be
seeing a series of bytes coming in that constitute the original message sent by
the client. However, no additional information on what those bytes mean is
normally provided with the message, let alone that we would be facing the
same problem again: how should the meta-information be recognized as such
by the server?

Besides this interpretation problem, we also need to handle the case that
the placement of bytes in memory may differ between machine architectures.
In particular, we need to account for the fact that some machines, such as the
Intel Pentium, number their bytes from right to left, whereas many others,
such as the older ARM processors, number them the other way (ARM now
supports both). The Intel format is called little endian and the (older) ARM
format is called big endian. Byte ordering is also important for networking:
also here we can witness that machines may use a different ordering when
transmitting (and thus receiving) bits and bytes. However, big endian is what
is normally used for transferring bytes across a network.

The solution to this problem is to transform data that is to be sent to a
machine- and network-independent format, next to making sure that both
communicating parties expect the same message data type to be transmitted.
The latter can typically be solved at the level of programming languages. The
former is accomplished by using machine-dependent routines that transform
data to and from machine- and network-independent formats.

Marshaling and unmarshaling is all about this transformation to neutral
formats and forms an essential part of remote procedure calls.

We now come to a difficult problem: How are pointers, or in general,
references passed? The answer is: only with the greatest of difficulty, if at
all. A pointer is meaningful only within the address space of the process
in which it is being used. Getting back to our append example, we stated
that the second parameter, dbList, is implemented by means of a reference to
a list stored in a database. If that reference is just a pointer to a local data
structure somewhere in the caller’s main memory, we cannot simply pass it
to the server. The transferred pointer value will most likely be referring to
something completely different.

Note 4.4 (More information: An example in Python revisited)
It is not difficult to see that the solution to remote procedure calling as shown in
Figure 4.8 will not work in general. Only if the client and server are operating
on machines that obey they same byte-ordering rules and have the same machine
representations for data structures, will the exchange of messages as shown lead
to correct interpretations. A robust solution is shown in Figure 4.9 (where we
again have omitted code for brevity).
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In this example, we use the Python pickle library for marshaling and unmar-
shaling data structures. Note that the code hardly changes in comparison to what
we have shown in Figure 4.8. The only changes occur just before sending, and
after receiving a message. Also note that both client and server are programmed
to work on the same data structures, as we discussed above.

1 import channel, pickle
2

3 class Client:
4 def append(self, data, dbList):
5 msglst = (APPEND, data, dbList) # message payload
6 msgsnd = pickle.dumps(msglst) # wrap call
7 self.chan.sendTo(self.server, msgsnd) # send request to server
8 msgrcv = self.chan.recvFrom(self.server) # wait for response
9 retval = pickle.loads(msgrcv[1]) # unwrap return value

10 return retval # pass it to caller
11

12 class Server:
13 def run(self):
14 while True:
15 msgreq = self.chan.recvFromAny() # wait for any request
16 client = msgreq[0] # see who is the caller
17 msgrpc = pickle.loads(msgreq[1]) # unwrap the call
18 if APPEND == msgrpc[0]: # check what is being requested
19 result = self.append(msgrpc[1], msgrpc[2]) # do local call
20 msgres = pickle.dumps(result) # wrap the result
21 self.chan.sendTo([client],msgres) # send response

Figure 4.9: A simple RPC example for operation append, but now with
proper marshaling.

One solution is just to forbid pointers and reference parameters in general.
However, these are so important that this solution is highly undesirable. In
fact, it is often not necessary either. First, reference parameters are often used
with fixed-sized data types, such as static arrays, or with dynamic data types
for which it is easy to compute their size at runtime, such as strings or dynamic
arrays. In such cases, we can simply copy the entire data structure to which the
parameter is referring, effectively replacing the copy-by-reference mechanism
by copy-by-value/restore. Although this is semantically not always identical,
it frequently is good enough. An obvious optimization is that when the client
stub knows the referred data will be only read, there is no need to copy it
back when the call has finished. Copy-by-value is thus good enough.

More intricate data types can often be supported as well, and certainly if a
programming language supports those data types. For example, a language
such as Python or Java supports user-defined classes, allowing a language
system to provide fully automated marshaling and unmarshaling of those data
types. Note, however, that as soon as we are dealing with very large, nested,
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or otherwise intricate dynamic data structures, automatic (un)marshaling may
not be available, or even desirable.

The problem with pointers and references as discussed so far, is that
they make only locally sense: they refer to memory locations that have
meaning only to the calling process. Problems can be alleviated by using
global references: references that are meaningful to the calling and the called
process. For example, if the client and the server have access to the same file
system, passing a file handle instead of a pointer may do the trick. There
is one important observation: both processes need to know exactly what
to do when a global reference is passed. In other words, if we consider a
global reference having an associated data type, the calling and called process
should have exactly the same picture of the operations that can be performed.
Moreover, both processes should have agreement on exactly what to do when
a file handle is passed. Again, these are typically issues that can be solved by
proper programming-language support.

Note 4.5 (Advanced: Parameter passing in object-based systems)
Object-based systems often use global references. Consider the situation that all
objects in the system can be accessed from remote machines. In that case, we can
consistently use object references as parameters in method invocations. References
are passed by value, and thus copied from one machine to the other. When a
process is given an object reference as the result of a method invocation, it can
simply bind to the object referred to when needed later (see also Section 2.1).

Unfortunately, using only distributed objects can be highly inefficient, espe-
cially when objects are small, such as integers, or worse yet, Booleans. Each
invocation by a client that is not co-located in the same server as the object, gener-
ates a request between different address spaces or, even worse, between different
machines. Therefore, references to remote objects and those to local objects are
often treated differently.

Figure 4.10: Passing an object by reference or by value.

When invoking a method with an object reference as parameter, that reference
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is copied and passed as a value parameter only when it refers to a remote object.
In this case, the object is literally passed by reference. However, when the reference
refers to a local object, that is an object in the same address space as the client,
the referred object is copied as a whole and passed along with the invocation. In
other words, the object is passed by value.

These two situations are illustrated in Figure 4.10 which shows a client pro-
gram running on machine A, and a server program on machine C. The client has
a reference to a local object O1 that it uses as a parameter when calling the server
program on machine C. In addition, it holds a reference to a remote object O2

residing at machine B, which is also used as a parameter. When calling the server,
a copy of O1 is passed to the server on machine C, along with only a copy of the
reference to O2.

Note that whether we are dealing with a reference to a local object or a
reference to a remote object can be highly transparent, such as in Java. In Java, the
distinction is visible only because local objects are essentially of a different data
type than remote objects. Otherwise, both types of references are treated very
much the same (see also [Wollrath et al., 1996]). On the other hand, when using
conventional programming languages such as C, a reference to a local object can
be as simple as a pointer, which can never be used to refer to a remote object.

The side effect of invoking a method with an object reference as parameter is
that we may be copying an object. Obviously, hiding this aspect is unacceptable,
so that we are consequently forced to make an explicit distinction between local
and distributed objects. Clearly, this distinction not only violates distribution
transparency, but also makes it harder to write distributed applications.

We can now also easily explain how global references can be implemented
when using portable, interpreted languages such as Python or Java: use the entire
client stub as a reference. The key observation is that a client stub is often just
another data structure that is compiled into (portable) bytecode. That compiled
code can actually be transferred across the network and executed at the receiver’s
side. In other words, there is no need for explicit binding anymore; simply
copying the client stub to the recipient is enough to allow the latter to invoke the
associated server-side object.

RPC-based application support

From what we have explained so far, it is clear that hiding a remote procedure
call requires that the caller and the callee agree on the format of the messages
they exchange and that they follow the same steps when it comes to, for
example, passing complex data structures. In other words, both sides in an
RPC should follow the same protocol or the RPC will not work correctly.
There are at least two ways in which RPC-based application development can
be supported. The first one is to let a developer specify exactly what needs
to be called remotely, from which complete client-side and server-side stubs
can be generated. A second approach is to embed remote procedure calling
as part of a programming-language environment.
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Stub generation

Consider the function someFunction of Figure 4.11(a). It has three parameters,
a character, a floating-point number, and an array of five integers. Assuming a
word is four bytes, the RPC protocol might prescribe that we should transmit a
character in the rightmost byte of a word (leaving the next three bytes empty),
a float as a whole word, and an array as a group of words equal to the array
length, preceded by a word giving the length, as shown in Figure 4.11(b).
Thus given these rules, the client stub for someFunction knows that it must
use the format of Figure 4.11(b), and the server stub knows that incoming
messages for someFunction will have the format of Figure 4.11(b).

void someFunction(char x; float y; int z[5])

(a)

(b)

Figure 4.11: (a) A function. (b) The corresponding message, and the order in
which bytes and words are sent across the network.

Defining the message format is one aspect of an RPC protocol, but it
is not sufficient. What we also need is the client and the server to agree
on the representation of simple data structures, such as integers, characters,
Booleans, etc. For example, the protocol could prescribe that integers are
represented in two’s complement, characters in 16-bit Unicode, and floats in
the IEEE standard #754 format, with everything stored in little endian. With
this additional information, messages can be unambiguously interpreted.

With the encoding rules now pinned down to the last bit, the only thing
that remains to be done is that the caller and callee agree on the actual
exchange of messages. For example, it may be decided to use a connection-
oriented transport service such as TCP/IP. An alternative is to use an unreli-
able datagram service and let the client and server implement an error control
scheme as part of the RPC protocol. In practice, several variants exist, and it
is up to the developer to indicate the preferred underlying communication
service.

Once the RPC protocol has been fully defined, the client and server stubs
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need to be implemented. Fortunately, stubs for the same protocol but different
procedures normally differ only in their interface to the applications. An
interface consists of a collection of procedures that can be called by a client,
and which are implemented by a server. An interface is usually available in
the same programming language as the one in which the client or server is
written (although this is strictly speaking, not necessary). To simplify matters,
interfaces are often specified by means of an Interface Definition Language
(IDL). An interface specified in such an IDL is then subsequently compiled
into a client stub and a server stub, along with the appropriate compile-time
or run-time interfaces.

Practice shows that using an interface definition language considerably
simplifies client-server applications based on RPCs. Because it is easy to fully
generate client and server stubs, all RPC-based middleware systems offer an
IDL to support application development. In some cases, using the IDL is even
mandatory.

Language-based support

The approach described up until now is largely independent of a specific
programming language. As an alternative, we can also embed remote pro-
cedure calling into a language itself. The main benefit is that application
development often becomes much simpler. Also, reaching a high degree
of access transparency is often simpler as many issues related to parameter
passing can be circumvented altogether.

A well-known example in which remote procedure calling is fully em-
bedded is Java, where an RPC is referred to as a remote method invocation
(RMI). In essence, a client being executed by its own (Java) virtual machine
can invoke a method of an object managed by another virtual machine. By
simply reading an application’s source code, it may be hard or even impossible
to see whether a method invocation is to a local or to a remote object.

Note 4.6 (More information: Language-based RPC in Python)
Let us see by an example of how remote procedure calling can be integrated in
a language. We have been using the Python language for most of our examples,
and will continue to do so now as well. In Figure 4.12(a) we show a simple
server for our DBList data structure. In this case, it has two exposed operations:
exposed_append for appending elements, and exposed_value to display what is
currently in the list. We use the Python RPyC package for embedding RPCs.

The client is shown in Figure 4.12(b). When a connection is made to the server,
a new instance of DBList will be created and the client can immediately append
values to the list. The exposed operations can be called without further ado.
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1 import rpyc
2 from rpyc.utils.server import ForkingServer
3

4 class DBList(rpyc.Service):
5 value = []
6

7 def exposed_append(self, data):
8 self.value = self.value + [data]
9 return self.value

10

11 def exposed_value(self):
12 return self.value
13

14 if __name__ == "__main__":
15 server = ForkingServer(DBList, port = 12345)
16 server.start()

Figure 4.12: (a) Embedding RPCs in a language: a server.

1 import rpyc
2

3 class Client:
4 conn = rpyc.connect(SERVER, PORT) # Connect to the server
5 conn.root.exposed_append(2) # Call an exposed operation,
6 conn.root.exposed_append(4) # and append two elements
7 print conn.root.exposed_value() # Print the result

Figure 4.12: (b) Embedding RPCs in a language: a client.

This example also illustrates a subtle issue: apparently the instance of DBList
created for the client is new, and unique. In other words, as soon as the client
breaks the connection to the server, the list will be lost. It is a transient object so
to say, and special measures will need to be taken to make it a persistent object.

Variations on RPC

As in conventional procedure calls, when a client calls a remote procedure, the
client will block until a reply is returned. This strict request-reply behavior
is unnecessary when there is no result to return, or may hinder efficiency
when multiple RPCs need to be performed. In the following we look at two
variations on the RPC scheme we have discussed so far.

Asynchronous RPC

To support situations in which there is simply no result to return to the client,
RPC systems may provide facilities for what are called asynchronous RPCs.
With asynchronous RPCs, the server, in principle, immediately sends a reply
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back to the client the moment the RPC request is received, after which it
locally calls the requested procedure. The reply acts as an acknowledgment
to the client that the server is going to process the RPC. The client will
continue without further blocking as soon as it has received the server’s
acknowledgment. Figure 4.13(b) shows how client and server interact in the
case of asynchronous RPCs. For comparison, Figure 4.13(a) shows the normal
request-reply behavior.

(a) (b)

Figure 4.13: (a) The interaction between client and server in a traditional RPC.
(b) The interaction using asynchronous RPC.

Asynchronous RPCs can also be useful when a reply will be returned but
the client is not prepared to wait for it and do nothing in the meantime. A
typical case is when a client needs to contact several servers independently.
In that case, it can send the call requests one after the other, effectively
establishing that the servers operate more or less in parallel. After all call
requests have been sent, the client can start waiting for the various results to be
returned. In cases such as these, it makes sense to organize the communication
between the client and server through an asynchronous RPC combined with a
callback, as shown in Figure 4.14. In this scheme, also referred to as deferred
synchronous RPC, the client first calls the server, waits for the acceptance,
and continues. When the results become available, the server sends a response
message that leads to a callback at the client’s side. A callback is a user-defined
function that is invoked when a special event happens, such as an incoming
message. A straightforward implementation is to spawn a separate thread and
let it block on the occurrence of the event while the main process continues.
When the event occurs, the thread is unblocked and calls the function.

It should be noted that variants of asynchronous RPCs exist in which
the client continues executing immediately after sending the request to the
server. In other words, the client does not wait for an acknowledgment of the
server’s acceptance of the request. We refer to such RPCs as one-way RPCs.
The problem with this approach is that when reliability is not guaranteed,
the client cannot know for sure whether or not its request will be processed.
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Figure 4.14: A client and server interacting through asynchronous RPCs.

We return to these matters in Chapter 8. Likewise, in the case of deferred
synchronous RPC, the client may poll the server to see whether the results are
available yet, instead of letting the server calling back the client.

Multicast RPC

Asynchronous and deferred synchronous RPCs facilitate another alternative
to remote procedure calls, namely executing multiple RPCs at the same time.
Adopting the one-way RPCs (i.e., when a server does not tell the client it has
accepted its call request but immediately starts processing it), a multicast RPC
boils down to sending an RPC request to a group of servers. This principle
is shown in Figure 4.15. In this example, the client sends a request to two
servers, who subsequently process that request independently and in parallel.
When done, the result is returned to the client where a callback takes place.

Figure 4.15: The principle of a multicast RPC.

There are several issues that we need to consider. First, as before, the
client application may be unaware of the fact that an RPC is actually being
forwarded to more than one server. For example, to increase fault tolerance,
we may decide to have all operations executed by a backup server who can
take over when the main server fails. That a server has been replicated can be
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completely hidden from a client application by an appropriate stub. Yet even
the stub need not be aware that the server is replicated, for example, because
we are using a transport-level multicast address.

Second, we need to consider what to do with the responses. In particular,
will the client proceed after all responses have been received, or wait just for
one? It all depends. When the server has been replicated for fault tolerance,
we may decide to wait for just the first response, or perhaps until a majority
of the servers returns the same result. On the other hand, if the servers have
been replicated to do the same work but on different parts of the input, their
results may need to be merged before the client can continue. Again, such
matters can be hidden in the client-side stub, yet the application developer
will, at the very least, have to specify the purpose of the multicast RPC.

Example: DCE RPC

Remote procedure calls have been widely adopted as the basis of middleware
and distributed systems in general. In this section, we take a closer look at the
Distributed Computing Environment (DCE) which was developed by the
Open Software Foundation (OSF), now called The Open Group. It forms the
basis for Microsoft’s distributed computing environment DCOM [Eddon and
Eddon, 1998] and used in Samba, a file server and accompanying protocol suite
allowing the Windows file system to be accessed through remote procedure
calls from non-Windows systems.

Although DCE RPC is arguably not the most modern way of managing
RPCs, it is worthwhile discussing some of its details, notably because it
is representative for most traditional RPC systems that use a combination
of interface specifications and explicit bindings to various programming
languages. We start with a brief introduction to DCE, after which we consider
its principal workings. Details on how to develop RPC-based applications can
be found in [Stevens, 1999].

Introduction to DCE

DCE is a true middleware system in that it is designed to execute as a layer
of abstraction between existing (network) operating systems and distributed
applications. Initially designed for Unix, it has now been ported to all major
operating systems. The idea is that the customer can take a collection of
existing machines, add the DCE software, and then be able to run distributed
applications, all without disturbing existing (nondistributed) applications.
Although most of the DCE package runs in user space, in some configurations
a piece (part of the distributed file system) must be added to the kernel of the
underlying operating system.

The programming model underlying DCE is the client-server model. User
processes act as clients to access remote services provided by server processes.
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Some of these services are part of DCE itself, but others belong to the applica-
tions and are written by the application programmers. All communication
between clients and servers takes place by means of RPCs.

Goals of DCE RPC

The goals of the DCE RPC system are relatively traditional. First and foremost,
the RPC system makes it possible for a client to access a remote service by
simply calling a local procedure. This interface makes it possible for client
(i.e., application) programs to be written in a simple way, familiar to most
programmers. It also makes it easy to have large volumes of existing code run
in a distributed environment with few, if any, changes.

It is up to the RPC system to hide all the details from the clients, and,
to some extent, from the servers as well. To start with, the RPC system
can automatically locate the correct server, and subsequently set up the
communication between client and server software (generally called binding).
It can also handle the message transport in both directions, fragmenting and
reassembling them as needed (e.g., if one of the parameters is a large array).
Finally, the RPC system can automatically handle data type conversions
between the client and the server, even if they run on different architectures
and have a different byte ordering.

As a consequence of the RPC system’s ability to hide the details, clients
and servers are highly independent of one another. A client can be written
in Java and a server in C, or vice versa. A client and server can run on
different hardware platforms and use different operating systems. A variety
of network protocols and data representations are also supported, all without
any intervention from the client or server.

Writing a Client and a Server

The DCE RPC system consists of a number of components, including lan-
guages, libraries, daemons, and utility programs, among others. Together
these make it possible to write clients and servers. In this section we will
describe the pieces and how they fit together. The entire process of writing
and using an RPC client and server is summarized in Figure 4.16.

In a client-server system, the glue that holds everything together is the
interface definition, as specified in the Interface Definition Language, or
IDL. It permits procedure declarations in a form closely resembling function
prototypes in ANSI C. IDL files can also contain type definitions, constant
declarations, and other information needed to correctly marshal parameters
and unmarshal results. Ideally, the interface definition should also contain a
formal definition of what the procedures do, but such a definition is beyond
the current state of the art, so the interface definition just defines the syntax
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Figure 4.16: The steps in writing a client and a server in DCE RPC.

of the calls, not their semantics. At best the writer can add a few comments
describing what the procedures do.

A crucial element in every IDL file is a globally unique identifier for the
specified interface. The client sends this identifier in the first RPC message
and the server verifies that it is correct. In this way, if a client inadvertently
tries to bind to the wrong server, or even to an older version of the right server,
the server will detect the error and the binding will not take place.

Interface definitions and unique identifiers are closely related in DCE. As
illustrated in Figure 4.16, the first step in writing a client/server application
is usually calling the uuidgen program, asking it to generate a prototype IDL
file containing an interface identifier guaranteed never to be used again in any
interface generated anywhere by uuidgen. Uniqueness is ensured by encoding
in it the location and time of creation. It consists of a 128-bit binary number
represented in the IDL file as an ASCII string in hexadecimal.

The next step is editing the IDL file, filling in the names of the remote
procedures and their parameters. It is worth noting that RPC is not totally
transparent. For example, the client and server cannot share global variables.
The IDL rules make it impossible to express constructs that are not supported.
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When the IDL file is complete, the IDL compiler is called to process it. The
output of the IDL compiler consists of three files:

• A header file (e.g., interface.h, in C terms).
• The client stub.
• The server stub.

The header file contains the unique identifier, type definitions, constant
definitions, and function prototypes. It should be included (using #include) in
both the client and server code. The client stub contains the actual procedures
that the client program will call. These procedures are the ones responsible
for collecting and packing the parameters into the outgoing message and then
calling the runtime system to send it. The client stub also handles unpacking
the reply and returning values to the client. The server stub contains the
procedures called by the runtime system on the server machine when an
incoming message arrives. These, in turn, call the actual server procedures
that do the work.

The next step is for the application writer to write the client and server
code. Both of these are then compiled, as are the two stub procedures. The
resulting client code and client stub object files are then linked with the
runtime library to produce the executable binary for the client. Similarly, the
server code and server stub are compiled and linked to produce the server’s
binary. At runtime, the client and server are started so that the application is
actually executed as well.

Binding a client to a server

To allow a client to call a server, it is necessary that the server has been
registered and is prepared to accept incoming calls. Registration of a server
makes it possible for a client to locate the server and bind to it. Finding the
location of the server is done in two steps:

1. Locate the server’s machine.
2. Locate the server (i.e., the correct process) on that machine.

The second step is somewhat subtle. Basically, what it comes down to is
that to communicate with a server, the client needs to know a port on the
server’s machine to which it can send messages. A port is used by the server’s
operating system to distinguish incoming messages for different processes.
In DCE, a table of (server,port) pairs is maintained on each server machine by
a process called the DCE daemon. Before it becomes available for incoming
requests, the server must ask the operating system for a port. It then registers
this port with the DCE daemon. The DCE daemon records this information
(including which protocols the server speaks) in the port table for future use.
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The server also registers with the directory service by providing it the
network address of the server’s machine and a name under which the server
can be looked up. Binding a client to a server proceeds as shown in Figure 4.17.

Figure 4.17: Client-to-server binding in DCE.

Let us assume that the client wants to bind to a video server that is locally
known under the name /local/multimedia/video/movies. It passes this name
to the directory server, which returns the network address of the machine
running the video server. The client then goes to the DCE daemon on that
machine (which has a well-known port), and asks it to look up the port of the
video server in its port table. Armed with this information, the RPC can now
take place. On subsequent RPCs this lookup is not needed. DCE also gives
clients the ability to do more sophisticated searches for a suitable server when
that is needed. Secure RPC is also an option where confidentiality or data
integrity is crucial.

Performing an RPC

The actual RPC is carried out transparently and in the usual way. The client
stub marshals the parameters to the runtime library for transmission using the
protocol chosen at binding time. When a message arrives at the server side, it
is routed to the correct server based on the port contained in the incoming
message. The runtime library passes the message to the server stub, which
unmarshals the parameters and calls the server. The reply goes back by the
reverse route.

DCE provides several semantic options. The default is at-most-once oper-
ation, in which case no call is ever carried out more than once, even in the
presence of system crashes. In practice, what this means is that if a server
crashes during an RPC and then recovers quickly, the client does not repeat
the operation, for fear that it might already have been carried out once.
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Alternatively, it is possible to mark a remote procedure as idempotent (in
the IDL file), in which case it can be repeated multiple times without harm.
For example, reading a specified block from a file can be tried over and over
until it succeeds. When an idempotent RPC fails due to a server crash, the
client can wait until the server reboots and then try again. Other semantics
are also available (but rarely used), including broadcasting the RPC to all the
machines on the local network. We return to RPC semantics in Section 8.3
when discussing RPC in the presence of failures.

4.3 Message-oriented communication

Remote procedure calls and remote object invocations contribute to hiding
communication in distributed systems, that is, they enhance access trans-
parency. Unfortunately, neither mechanism is always appropriate. In particu-
lar, when it cannot be assumed that the receiving side is executing at the time
a request is issued, alternative communication services are needed. Likewise,
the inherent synchronous nature of RPCs, by which a client is blocked until
its request has been processed, may need to be replaced by something else.

That something else is messaging. In this section we concentrate on
message-oriented communication in distributed systems by first taking a closer
look at what exactly synchronous behavior is and what its implications are.
Then, we discuss messaging systems that assume that parties are executing
at the time of communication. Finally, we will examine message-queuing
systems that allow processes to exchange information, even if the other party
is not executing at the time communication is initiated.

Simple transient messaging with sockets

Many distributed systems and applications are built directly on top of the
simple message-oriented model offered by the transport layer. To better un-
derstand and appreciate the message-oriented systems as part of middleware
solutions, we first discuss messaging through transport-level sockets.

Special attention has been paid to standardizing the interface of the trans-
port layer to allow programmers to make use of its entire suite of (messaging)
protocols through a simple set of operations. Also, standard interfaces make
it easier to port an application to a different machine. As an example, we
briefly discuss the socket interface as introduced in the 1970s in Berkeley
Unix, and which has been adopted as a POSIX standard (with only very few
adaptations).

Conceptually, a socket is a communication end point to which an applica-
tion can write data that are to be sent out over the underlying network, and
from which incoming data can be read. A socket forms an abstraction over the
actual port that is used by the local operating system for a specific transport
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protocol. In the following text, we concentrate on the socket operations for
TCP, which are shown in Figure 4.18.

Operation Description
socket Create a new communication end point
bind Attach a local address to a socket
listen Tell operating system what the maximum number of pending

connection requests should be
accept Block caller until a connection request arrives
connect Actively attempt to establish a connection
send Send some data over the connection
receive Receive some data over the connection
close Release the connection

Figure 4.18: The socket operations for TCP/IP.

Servers generally execute the first four operations, normally in the order
given. When calling the socket operation, the caller creates a new commu-
nication end point for a specific transport protocol. Internally, creating a
communication end point means that the local operating system reserves
resources for sending and receiving messages for the specified protocol.

The bind operation associates a local address with the newly created socket.
For example, a server should bind the IP address of its machine together with
a (possibly well-known) port number to a socket. Binding tells the operating
system that the server wants to receive messages only on the specified address
and port. In the case of connection-oriented communication, the address is
used to receive incoming connection requests.

The listen operation is called only in the case of connection-oriented
communication. It is a nonblocking call that allows the local operating sys-
tem to reserve enough buffers for a specified maximum number of pending
connection requests that the caller is willing to accept.

A call to accept blocks the caller until a connection request arrives. When
a request arrives, the local operating system creates a new socket with the
same properties as the original one, and returns it to the caller. This approach
will allow the server to, for example, fork off a process that will subsequently
handle the actual communication through the new connection. The server can
go back and wait for another connection request on the original socket.

Let us now take a look at the client side. Here, too, a socket must first be
created using the socket operation, but explicitly binding the socket to a local
address is not necessary, since the operating system can dynamically allocate
a port when the connection is set up. The connect operation requires that the
caller specifies the transport-level address to which a connection request is to
be sent. The client is blocked until a connection has been set up successfully,
after which both sides can start exchanging information through the send and
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Figure 4.19: Connection-oriented communication pattern using sockets.

receive operations. Finally, closing a connection is symmetric when using
sockets, and is established by having both the client and server call the close
operation. Although there are many exceptions to the rule, the general pattern
followed by a client and server for connection-oriented communication using
sockets is as shown in Figure 4.19. Details on network programming using
sockets and other interfaces in Unix can be found in [Stevens, 1998].

Note 4.7 (Example: A simple socket-based client-server system)
As an illustration of the recurring pattern in Figure 4.19, consider the simple
socket-based client-server system shown below (see also Note 2.1). We see the
server [Figure 4.20(a)] starting by creating a socket, and subsequently binding an
address to that socket. It calls the listen operation, and waits for an incoming
connection request. When the server accepts a connection, the socket library
creates a separate connection, conn, which is used to receive data and send a
response to the connected client. The server enters a loop receiving and sending
messages, until no more data has been received. It then closes the connection.

1 from socket import *
2 s = socket(AF_INET, SOCK_STREAM)
3 s.bind((HOST, PORT))
4 s.listen(1)
5 (conn, addr) = s.accept() # returns new socket and addr. client
6 while True: # forever
7 data = conn.recv(1024) # receive data from client
8 if not data: break # stop if client stopped
9 conn.send(str(data)+"*") # return sent data plus an "*"

10 conn.close() # close the connection

Figure 4.20: (a) A simple socket-based client-server system: the server.

The client, shown in Figure 4.20(b), again follows the pattern from Figure 4.19.
It creates a socket, and calls connect to request a connection with the server. Once
the connection has been established, it sends a single message, waits for the
response, and after printing the result, closes the connection.
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1 from socket import *
2 s = socket(AF_INET, SOCK_STREAM)
3 s.connect((HOST, PORT)) # connect to server (block until accepted)
4 s.send(’Hello, world’) # send same data
5 data = s.recv(1024) # receive the response
6 print data # print the result
7 s.close() # close the connection

Figure 4.20: (b) A simple socket-based client-server system: the client.

Note 4.8 (Advanced: Implementing stubs as global references revisited)
To provide a deeper insight in the working of sockets, let us look at a more
elaborate example, namely the use of stubs as global references. We return to
our example of implementing a shared list, which we now do by means of a
list server, implemented in the form of the Python class shown in Figure 4.21(b).
Figure 4.21(a) shows the stub implementation of a shared list. Again, we have
omitted code for readability.

1 class DBClient:
2 def sendrecv(self, message):
3 sock = socket() # create a socket
4 sock.connect((self.host, self.port)) # connect to server
5 sock.send(pickle.dumps(message)) # send some data
6 result = pickle.loads(sock.recv(1024)) # receive the response
7 sock.close() # close the connection
8 return result
9

10 def create(self):
11 self.listID = self.sendrecv([CREATE])
12 return self.listID
13

14 def getValue(self):
15 return self.sendrecv([GETVALUE, self.listID])
16

17 def appendData(self, data):
18 return self.sendrecv([APPEND, data, self.listID])

Figure 4.21: (a) Implementing a list server in Python: the list structure.

The DBClient class represents a client-side stub that, once marshaled, can be
passed between processes. It provides three operations associated with a list:
create, getValue, and append, with obvious semantics. A DBClient is assumed to
be associated with one specific list as managed by the server. An identifier for
that list is returned when the list is created. Note how the (internal) sendrecv
operation follows the client-side pattern explained in Figure 4.19.

The server maintains lists, as shown in Figure 4.21(b). Its internal data
structure is a setOfLists with each element being a previously created list. The
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server simply waits for incoming requests, unmarshals the request, and checks
which operation is being requested. Results are sent back to the requesting client
(which always issues the sendrecv operation implemented as part of DBClient).
Again, we see that the server follows the pattern shown in Figure 4.19: it creates
a socket, binds an address to it, informs the operating system to how many
connections it should listen, and then waits to accept an incoming connection
request. Once a connection has been established, the server receives data, sends a
response, and closes the connection again.

1 class Server:
2 def __init__(self, port=PORT):
3 self.host = ’localhost’ # this machine
4 self.port = port # the port it will listen to
5 self.sock = socket() # socket for incoming calls
6 self.sock.bind((self.host,self.port)) # bind socket to an address
7 self.sock.listen(5) # max num of connections
8 self.setOfLists = {} # init: no lists to manage
9

10 def run(self):
11 while True:
12 (conn, addr) = self.sock.accept() # accept incoming call
13 data = conn.recv(1024) # fetch data from client
14 request = pickle.loads(data) # unwrap the request
15 if request[0] == CREATE: # create a list
16 listID = len(self.setOfLists) + 1 # allocate listID
17 self.setOfLists[listID] = [] # initialize to empty
18 conn.send(pickle.dumps(listID)) # return ID
19

20 elif request[0] == APPEND: # append request
21 listID = request[2] # fetch listID
22 data = request[1] # fetch data to append
23 self.setOfLists[listID].append(data) # append it to the list
24 conn.send(pickle.dumps(OK)) # return an OK
25

26 elif request[0] == GETVALUE: # read request
27 listID = request[1] # fetch listID
28 result = self.setOfLists[listID] # get the elements
29 conn.send(pickle.dumps(result)) # return the list
30 conn.close() # close the connection

Figure 4.21: (b) Implementing a list server in Python: the server.

To use a stub as a global reference, we represent each client application by
means of the class Client shown in Figure 4.21(c). The class is instantiated in the
same process running the application (exemplified by the value of self.host),
and will be listening on a specific port for messages from other applications,
as well as the server. Otherwise, it merely sends and receives messages, coded
through the operations sendTo and recvAny, respectively.

Now consider the code shown in Figure 4.21(d), which mimics two client
applications. The first one creates a new list and appends data to it. Then note
how dbClient1 is simply sent to the other client. Under the hood, we now know
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that it is marshaled in the operation sendTo (line 12) of class Client shown in
Figure 4.21(c).

The second client simply waits for an incoming message (line 12), unmarshals
the result, knowing that it is a DBClient instance, and subsequently appends some
more data to the same list as the one the first client appended data. Indeed, an
instance of DBClient is seen to be passed as global reference, seemingly along
with all the operations that go with the associated class.

1 class Client:
2 def __init__(self, port):
3 self.host = ’localhost’ # this machine
4 self.port = port # port it will listen to
5 self.sock = socket() # socket for incoming calls
6 self.sock.bind((self.host, self.port)) # bind socket to an address
7 self.sock.listen(2) # max num connections
8

9 def sendTo(self, host, port, data):
10 sock = socket()
11 sock.connect((host, port)) # connect to server (blocking call)
12 sock.send(pickle.dumps(data)) # send some data
13 sock.close()
14

15 def recvAny(self):
16 (conn, addr) = self.sock.accept()
17 return conn.recv(1024)

Figure 4.21: (c) Implementing a list server in Python: the client.

1 pid = os.fork()
2 if pid == 0:
3 client1 = Client(CLIENT1) # create client
4 dbClient1 = DBClient(HOST,PORT) # create reference
5 dbClient1.create() # create new list
6 dbClient1.appendData(’Client 1’) # append some data
7 client1.sendTo(HOSTCL2,CLIENT2,dbClient1) # send to other client
8

9 pid = os.fork()
10 if pid == 0:
11 client2 = Client(CLIENT2) # create a new client
12 data = client2.recvAny() # block until data is sent
13 dbClient2 = pickle.loads(data) # receive reference
14 dbClient2.appendData(’Client 2’) # append data to same list

Figure 4.21: (d) Passing stubs as references.

Advanced transient messaging

The standard socket-based approach toward transient messaging is very basic
and as such, rather brittle: a mistake is easily made. Furthermore, sockets
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essentially support only TCP or UDP, meaning that any extra facility for
messaging needs to be implemented separately by an application programmer.
In practice, we do often need more advanced approaches for message-oriented
communication to make network programming easier, to expand beyond the
functionality offered by existing networking protocols, to make better use of
local resources, and so on.

Using messaging patterns: ZeroMQ

One approach toward making network programming easier is based on the
observation that many messaging applications, or their components, can be
effectively organized according to a few simple communication patterns. By
subsequently providing enhancements to sockets for each of these patterns,
it may become easier to develop a networked, distributed application. This
approach has been followed in ZeroMQ and documented in [Hintjens, 2013;
Akgul, 2013].

Like in the Berkeley approach, ZeroMQ also provides sockets through
which all communication takes place. Actual message transmission gener-
ally takes place over TCP connections, and like TCP, all communication is
essentially connection-oriented, meaning that a connection will first be set up
between a sender and receiver before message transmission can take place.
However, setting up, and maintaining connections is kept mostly under the
hood: an application programmer need not bother with those issues. To
further simplify matters, a socket may be bound to multiple addresses, ef-
fectively allowing a server to handle messages from very different sources
through a single interface. For example, a server can listen to multiple ports
using a single blocking receive operation. ZeroMQ sockets can thus support
many-to-one communication instead of just one-to-one communication as is the
case with standard Berkeley sockets. To complete the story: ZeroMQ sockets
also support one-to-many communication, i.e., multicasting.

Essential to ZeroMQ is that communication is asynchronous: a sender will
normally continue after having submitted a message to the underlying com-
munication subsystem. An interesting side effect of combining asynchronous
with connection-oriented communication, is that a process can request a con-
nection setup, and subsequently send a message even if the recipient is not yet
up-and-running and ready to accept incoming connection requests, let alone
incoming messages. What happens, of course, is that a connection request and
subsequent messages are queued at the sender’s side, while a separate thread
as part of ZeroMQ’s library will take care that eventually the connection is set
up and messages are transmitted to the recipient.

Simplifying matters, ZeroMQ establishes a higher level of abstraction in
socket-based communication by pairing sockets: a specific type of socket used
for sending messages is paired with a corresponding socket type for receiving
messages. Each pair of socket types corresponds to a communication pattern.
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The three most important communication patterns supported by ZeroMQ are
request-reply, publish-subscribe, and pipeline.

The request-reply pattern is used in traditional client-server communi-
cation, like the ones normally used for remote procedure calls. A client
application uses a request socket (of type REQ) to send a request message
to a server and expects the latter to respond with an appropriate response.
The server is assumed to use a reply socket (of type REP). The request-reply
pattern simplifies matters for developers by avoiding the need to call the
listen operation, as well as the accept operation. Moreover, when a server
receives a message, a subsequent call to send is automatically targeted toward
the original sender. Likewise, when a client calls the recv operation (for re-
ceiving a message) after having sent a message, ZeroMQ assumes the client is
waiting for a response from the original recipient. Note that this approach was
effectively encoded in the local sendrecv operation of Figure 4.21 discussed in
Note 4.8.

Note 4.9 (Example: The request-reply pattern)
Let us look at a simple programming example to illustrate the request-reply
pattern. Figure 4.22(a) shows a server that appends an asterisk to a received
message. As before, it creates a socket, and binds it to a combination of a protocol
(in this case TCP), and a host and port. In our example, the server is willing
to accept incoming connection requests on two different ports. It then waits for
incoming messages. The request-reply pattern effectively ties the receipt of a
message to the subsequent response. In other words, when the server calls send, it
will transmit a message to the same client from which it previously had received
a message. Of course, this simplicity can be achieved only if the programmer
indeed abides to the request-reply pattern.

1 import zmq
2 context = zmq.Context()
3

4 p1 = "tcp://"+ HOST +":"+ PORT1 # how and where to connect
5 p2 = "tcp://"+ HOST +":"+ PORT2 # how and where to connect
6 s = context.socket(zmq.REP) # create reply socket
7

8 s.bind(p1) # bind socket to address
9 s.bind(p2) # bind socket to address

10 while True:
11 message = s.recv() # wait for incoming message
12 if not "STOP" in message: # if not to stop...
13 s.send(message + "*") # append "*" to message
14 else: # else...
15 break # break out of loop and end

Figure 4.22: (a) A ZeroMQ client-server system based: the server.

The client, shown in Figure 4.22(b) does what is expected: it creates a socket
and connects to the associated server. When it sends a message, it can expect to
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receive, from that same server, a response. By sending the string “STOP”, it tells
the server it is done, after which the server will actually stop.

Interestingly, the asynchronous nature of ZeroMQ allows one to start the client
before starting the server. An implication is that if, in this example, we would
start the server, then a client, and after a while a second client, that the latter
will be blocked until the server is restarted. Furthermore, note that ZeroMQ

does not require the programmer to specify how many bytes are expected to
be received. Unlike TCP, ZeroMQ uses messages instead of bytestreams as its
underlying model of communication.

1 import zmq
2 context = zmq.Context()
3

4 p1 = "tcp://"+ HOST +":"+ PORT1 # how and where to connect
5 s = context.socket(zmq.REQ) # create request socket
6

7 s.connect(p1) # block until connected
8 s.send("Hello world 1") # send message
9 message = s.recv() # block until response

10 s.send("STOP") # tell server to stop
11 print message # print result

Figure 4.22: (b) A ZeroMQ client-server system: the client.

In the case of a publish-subscribe pattern, clients subscribe to specific
messages that are published by servers. We came across this pattern briefly
in Chapter 1 when discussing event-based coordination. In effect, only the
messages to which the client has subscribed will be transmitted. If a server is
publishing messages to which no one has subscribed, these messages will be
lost. In its simplest form, this pattern establishes multicasting messages from
a server to several clients. The server is assumed to use a socket of type PUB,
while each client must use SUB type sockets. Each client socket is connected to
the socket of the server. By default, a client subscribes to no specific message.
This means that as long as no explicit subscription is provided, a client will
not receive a message published by the server.

Note 4.10 (Example: The publish-subscribe pattern)
Again, let us make this pattern more concrete through a simple example.
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1 import zmq, time
2

3 context = zmq.Context()
4 s = context.socket(zmq.PUB) # create a publisher socket
5 p = "tcp://"+ HOST +":"+ PORT # how and where to communicate
6 s.bind(p) # bind socket to the address
7 while True:
8 time.sleep(5) # wait every 5 seconds
9 s.send("TIME " + time.asctime()) # publish the current time

Figure 4.23: (a) A multicasting socket-based time server

Figure 4.23(a) shows an admittedly naive time server that publishes its current,
local time, through a PUB socket. The local time is published every five seconds,
for any interested client.

A client is equally simple, as shown in Figure 4.23(b). It first creates a SUB

socket which it connects to the corresponding PUB socket of the server. In order
to receive the appropriate messages, it needs to subscribe to messages that have
TIME as their tag. In our example, a client will simply print the first five messages
received from the server. Note that we can have as many clients as we want: the
server’s message will be multicast to all subscribers.

1 import zmq
2

3 context = zmq.Context()
4 s = context.socket(zmq.SUB) # create a subscriber socket
5 p = "tcp://"+ HOST +":"+ PORT # how and where to communicate
6 s.connect(p) # connect to the server
7 s.setsockopt(zmq.SUBSCRIBE, "TIME") # subscribe to TIME messages
8

9 for i in range(5): # Five iterations
10 time = s.recv() # receive a message
11 print time

Figure 4.23: (b) A client for the multicasting socket-based time server.

Finally, the pipeline pattern is characterized by the fact that a process
wants to push out its results, assuming that there are other processes that
want to pull in those results. The essence of the pipeline pattern is that a
pushing process does not really care which other process pulls in its results:
the first available one will do just fine. Likewise, any process pulling in
results from multiple other processes will do so from the first pushing process
making its results available. The intention of the pipeline pattern is thus seen
to keep as many processes working as possible, pushing results through a
pipeline of processes as quickly as possible.
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Note 4.11 (Example: The pipeline pattern)
As our last example, consider the following template for keeping a collection of
worker tasks busy. Figure 4.24(a) shows the code for a so-called farmer task: a
process generating tasks to be picked up by others. In this example, we simulate
the task by letting the farmer pick a random number modeling the duration, or
load, of the work to be done. This workload is then sent to the push socket,
effectively being queued until another process picks it up.

Such other processes are known as worker tasks, of which a sketch is given
in Figure 4.24(b). A worker task connects a single pull socket to, in this case, two
specific farmer tasks. Once it picks up some work, it simulates that it is actually
doing something by sleeping for a number of tens of milliseconds proportional to
the received workload.

1 import zmq, time, pickle, sys, random
2

3 context = zmq.Context()
4 me = str(sys.argv[1])
5 s = context.socket(zmq.PUSH) # create a push socket
6 src = SRC1 if me == ’1’ else SRC2 # check task source host
7 prt = PORT1 if me == ’1’ else PORT2 # check task source port
8 p = "tcp://"+ src +":"+ prt # how and where to connect
9 s.bind(p) # bind socket to address

10

11 for i in range(100): # generate 100 workloads
12 workload = random.randint(1, 100) # compute workload
13 s.send(pickle.dumps((me,workload))) # send workload to worker

Figure 4.24: (a) A task simulating the generation of work.

The semantics of this push-pull pattern is such that the first available worker
will pick up work from either farmer, and likewise, if there are multiple workers
ready to pick up work, each one of them will be provided with a task. How work
distribution is actually done in a fair manner requires some specific attention
which we will not discuss further here.

1 import zmq, time, pickle, sys
2

3 context = zmq.Context()
4 me = str(sys.argv[1])
5 r = context.socket(zmq.PULL) # create a pull socket
6 p1 = "tcp://"+ SRC1 +":"+ PORT1 # address first task source
7 p2 = "tcp://"+ SRC2 +":"+ PORT2 # address second task source
8 r.connect(p1) # connect to task source 1
9 r.connect(p2) # connect to task source 2

10

11 while True:
12 work = pickle.loads(r.recv()) # receive work from a source
13 time.sleep(work[1]*0.01) # pretend to work

Figure 4.24: (b) A worker task.
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The Message-Passing Interface (MPI)

With the advent of high-performance multicomputers, developers have been
looking for message-oriented operations that would allow them to easily write
highly efficient applications. This means that the operations should be at a
convenient level of abstraction (to ease application development), and that
their implementation incurs only minimal overhead. Sockets were deemed
insufficient for two reasons. First, they were at the wrong level of abstraction
by supporting only simple send and receive operations. Second, sockets
had been designed to communicate across networks using general-purpose
protocol stacks such as TCP/IP. They were not considered suitable for the
proprietary protocols developed for high-speed interconnection networks,
such as those used in high-performance server clusters. Those protocols
required an interface that could handle more advanced features, such as
different forms of buffering and synchronization.

The result was that most interconnection networks and high-performance
multicomputers were shipped with proprietary communication libraries.
These libraries offered a wealth of high-level and generally efficient com-
munication operations. Of course, all libraries were mutually incompatible, so
that application developers now had a portability problem.

The need to be hardware and platform independent eventually lead to
the definition of a standard for message passing, simply called the Message-
Passing Interface or MPI. MPI is designed for parallel applications and
as such is tailored to transient communication. It makes direct use of the
underlying network. Also, it assumes that serious failures such as process
crashes or network partitions are fatal and do not require automatic recovery.

MPI assumes communication takes place within a known group of pro-
cesses. Each group is assigned an identifier. Each process within a group is
also assigned a (local) identifier. A (groupID, processID) pair therefore uniquely
identifies the source or destination of a message, and is used instead of a
transport-level address. There may be several, possibly overlapping groups of
processes involved in a computation and that are all executing at the same
time.

At the core of MPI are messaging operations to support transient commu-
nication, of which the most intuitive ones are summarized in Figure 4.25.

Transient asynchronous communication is supported by means of the
MPI_bsend operation. The sender submits a message for transmission, which
is generally first copied to a local buffer in the MPI runtime system. When the
message has been copied, the sender continues. The local MPI runtime system
will remove the message from its local buffer and take care of transmission as
soon as a receiver has called a receive operation.

There is also a blocking send operation, called MPI_send, of which the
semantics are implementation dependent. The operation MPI_send may either
block the caller until the specified message has been copied to the MPI
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Operation Description
MPI_bsend Append outgoing message to a local send buffer
MPI_send Send a message and wait until copied to local or remote

buffer
MPI_ssend Send a message and wait until transmission starts
MPI_sendrecv Send a message and wait for reply
MPI_isend Pass reference to outgoing message, and continue
MPI_issend Pass reference to outgoing message, and wait until receipt

starts
MPI_recv Receive a message; block if there is none
MPI_irecv Check if there is an incoming message, but do not block

Figure 4.25: Some of the most intuitive message-passing operations of MPI.

runtime system at the sender’s side, or until the receiver has initiated a receive
operation. Synchronous communication by which the sender blocks until its
request is accepted for further processing is available through the MPI_ssend
operation. Finally, the strongest form of synchronous communication is also
supported: when a sender calls MPI_sendrecv, it sends a request to the receiver
and blocks until the latter returns a reply. Basically, this operation corresponds
to a normal RPC.

Both MPI_send and MPI_ssend have variants that avoid copying messages
from user buffers to buffers internal to the local MPI runtime system. These
variants essentially correspond to a form of asynchronous communication.
With MPI_isend, a sender passes a pointer to the message after which the MPI
runtime system takes care of communication. The sender immediately contin-
ues. To prevent overwriting the message before communication completes,
MPI offers operations to check for completion, or even to block if required.
As with MPI_send, whether the message has actually been transferred to the
receiver or that it has merely been copied by the local MPI runtime system to
an internal buffer is left unspecified.

Likewise, with MPI_issend, a sender also passes only a pointer to the MPI
runtime system. When the runtime system indicates it has processed the
message, the sender is then guaranteed that the receiver has accepted the
message and is now working on it.

The operation MPI_recv is called to receive a message; it blocks the
caller until a message arrives. There is also an asynchronous variant, called
MPI_irecv, by which a receiver indicates that it is prepared to accept a mes-
sage. The receiver can check whether or not a message has indeed arrived, or
block until one does.

The semantics of MPI communication operations are not always straight-
forward, and different operations can sometimes be interchanged without
affecting the correctness of a program. The official reason why so many differ-
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ent forms of communication are supported is that it gives implementers of
MPI systems enough possibilities for optimizing performance. Cynics might
say the committee could not make up its collective mind, so it threw in every-
thing. By now, MPI is in its third version with over 440 operations available.
Being designed for high-performance parallel applications, it is perhaps easier
to understand its diversity. More on MPI can be found in [Gropp et al., 2016].
The complete MPI-3 reference can be found in [Message Passing Interface
Forum, 2015].

Message-oriented persistent communication

We now come to an important class of message-oriented middleware services,
generally known as message-queuing systems, or just Message-Oriented
Middleware (MOM). Message-queuing systems provide extensive support for
persistent asynchronous communication. The essence of these systems is that
they offer intermediate-term storage capacity for messages, without requiring
either the sender or receiver to be active during message transmission. An
important difference with sockets and MPI is that message-queuing systems
are typically targeted to support message transfers that are allowed to take
minutes instead of seconds or milliseconds.

Message-queuing model

The basic idea behind a message-queuing system is that applications commu-
nicate by inserting messages in specific queues. These messages are forwarded
over a series of communication servers and are eventually delivered to the
destination, even if it was down when the message was sent. In practice, most
communication servers are directly connected to each other. In other words, a
message is generally transferred directly to a destination server. In principle,
each application has its own private queue to which other applications can
send messages. A queue can be read only by its associated application, but it
is also possible for multiple applications to share a single queue.

An important aspect of message-queuing systems is that a sender is gen-
erally given only the guarantees that its message will eventually be inserted
in the recipient’s queue. No guarantees are given about when, or even if
the message will actually be read, which is completely determined by the
behavior of the recipient.

These semantics permit communication to be loosely coupled in time.
There is thus no need for the receiver to be executing when a message is being
sent to its queue. Likewise, there is no need for the sender to be executing
at the moment its message is picked up by the receiver. The sender and
receiver can execute completely independently of each other. In fact, once a
message has been deposited in a queue, it will remain there until it is removed,
irrespective of whether its sender or receiver is executing. This gives us four
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combinations with respect to the execution mode of the sender and receiver,
as shown in Figure 4.26.

Figure 4.26: Four combinations for loosely-coupled communication using
queues.

In Figure 4.26(a), both the sender and receiver execute during the entire
transmission of a message. In Figure 4.26(b), only the sender is executing,
while the receiver is passive, that is, in a state in which message delivery is not
possible. Nevertheless, the sender can still send messages. The combination of
a passive sender and an executing receiver is shown in Figure 4.26(c). In this
case, the receiver can read messages that were sent to it, but it is not necessary
that their respective senders are executing as well. Finally, in Figure 4.26(d),
we see the situation that the system is storing (and possibly transmitting)
messages even while sender and receiver are passive. One may argue that
only if this last configuration is supported, the message-queuing system truly
provides persistent messaging.

Messages can, in principle, contain any data. The only important aspect
from the perspective of middleware is that messages are properly addressed.
In practice, addressing is done by providing a systemwide unique name of the
destination queue. In some cases, message size may be limited, although it is
also possible that the underlying system takes care of fragmenting and assem-
bling large messages in a way that is completely transparent to applications.
An effect of this approach is that the basic interface offered to applications
can be extremely simple, as shown in Figure 4.27.

The put operation is called by a sender to pass a message to the underlying
system that is to be appended to the specified queue. As we explained, this is a
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Operation Description
put Append a message to a specified queue
get Block until the specified queue is nonempty, and remove the

first message
poll Check a specified queue for messages, and remove the first.

Never block
notify Install a handler to be called when a message is put into the

specified queue

Figure 4.27: Basic interface to a queue in a message-queuing system.

nonblocking call. The get operation is a blocking call by which an authorized
process can remove the longest pending message in the specified queue. The
process is blocked only if the queue is empty. Variations on this call allow
searching for a specific message in the queue, for example, using a priority, or
a matching pattern. The nonblocking variant is given by the poll operation.
If the queue is empty, or if a specific message could not be found, the calling
process simply continues.

Finally, most queuing systems also allow a process to install a handler as a
callback function, which is automatically invoked whenever a message is put
into the queue. Callbacks can also be used to automatically start a process that
will fetch messages from the queue if no process is currently executing. This
approach is often implemented by means of a daemon on the receiver’s side
that continuously monitors the queue for incoming messages and handles
accordingly.

General architecture of a message-queuing system

Let us now take a closer look at what a general message-queuing system looks
like. First of all, queues are managed by queue managers. A queue manager
is either a separate process, or is implemented by means of a library that is
linked with an application. Secondly, as a rule of thumb, an application can
put messages only into a local queue. Likewise, getting a message is possible
by extracting it from a local queue only. As a consequence, if a queue manager
QMA handling the queues for an application A runs as a separate process,
both processes QMA and A will generally be placed on the same machine, or
at worst on the same LAN. Also note that if all queue managers are linked
into their respective applications, we can no longer speak of a persistent
asynchronous messaging system.

If applications can put messages only into local queues, then clearly each
message will have to carry information concerning its destination. It is the
queue manager’s task to make sure that a message reaches its destination.
This brings us to a number of issues.
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In the first place, we need to consider how the destination queue is ad-
dressed. Obviously, to enhance location transparency, it is preferable that
queues have logical, location-independent names. Assuming that a queue man-
ager is implemented as a separate process, using logical names implies that
each name should be associated with a contact address, such as a (host,port)-
pair, and that the name-to-address mapping is readily available to a queue
manager, as shown in Figure 4.28. In practice, a contact address carries more
information, notably the protocol to be used, such as TCP or UDP. We came
across such contact addresses in our examples of advanced sockets in, for
example, Note 4.9.

Figure 4.28: The relationship between queue-level naming and network-level
addressing.

A second issue that we need to consider is how the name-to-address
mapping is actually made available to a queue manager. A common approach
is to simply implement the mapping as a lookup table and copy that table
to all managers. Obviously, this leads to a maintenance problem, for every
time that a new queue is added or named, many, if not all tables need to be
updated. There are various ways to alleviate such problems, which we will
discuss in Chapter 5.

This brings us to a third issue, related to the problems of efficiently
maintaining name-to-address mappings. We have implicitly assumed that
if a destination queue at manager QMB is known to queue manager QMA,
then QMA can directly contact QMB to transfer messages. In effect, this means
that (the contact address of) each queue manager should be known to all
others. Obviously, when dealing with very large message-queuing systems,
we will have a scalability problem. In practice, there are often special queue
managers that operate as routers: they forward incoming messages to other
queue managers. In this way, a message-queuing system may gradually grow
into a complete, application-level, overlay network.

If only a few routers need to know about the network topology, then a
source queue manager need only to know to which adjacent router, say R
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it should forward a message, given a destination queue. Router R, in turn,
may only need to keep track of its adjacent routers to see where to forward
the message to, and so on. Of course, we still need to have name-to-address
mappings for all queue managers, including the routers, but it is not difficult
to imagine that such tables can be much smaller and easier to maintain.

Message brokers

An important application area of message-queuing systems is integrating
existing and new applications into a single, coherent distributed information
system. If we assume that communication with an application takes place
through messages, then integration requires that applications can understand
the messages they receive. In practice, this requires the sender to have its
outgoing messages in the same format as that of the receiver, but also that
its messages adhere to the same semantics as those expected by the receiver.
Sender and receiver essentially need to speak the same language, that is,
adhere to the same messaging protocol.

The problem with this approach is that each time an application A is
added to the system having its own messaging protocol, then for each other
application B that is to communicate with A we will need to provide the means
for converting their respective messages. In a system with N applications, we
will thus need N × N messaging protocol converters.

An alternative is to agree on a common messaging protocol, as is done
with traditional network protocols. Unfortunately, this approach will generally
not work for message-queuing systems. The problem is the level of abstraction
at which these systems operate. A common messaging protocol makes sense
only if the collection of processes that make use of that protocol indeed
have enough in common. If the collection of applications that make up a
distributed information system is highly diverse (which it often is), then
inventing a one-size-fits-all solution is simply not going to work.

If we focus only on the format and meaning of messages, commonality can
be achieved by lifting the level of abstraction as is done with XML messages.
In this case, messages carry information on their own organization, and what
has been standardized is the way that they can describe their content. As a
consequence, an application can provide information on the organization of
its messages that can be automatically processed. Of course, this information
is generally not enough: we also need to make sure that the semantics of
messages are well understood.

Given these problems, the general approach is to learn to live with differ-
ences, and try to provide the means to make conversions as simple as possible.
In message-queuing systems, conversions are handled by special nodes in a
queuing network, known as message brokers. A message broker acts as an
application-level gateway in a message-queuing system. Its main purpose is to
convert incoming messages so that they can be understood by the destination
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application. Note that to a message-queuing system, a message broker is just
another application, as shown in Figure 4.29. In other words, a message broker
is generally not considered to be an integral part of the queuing system.

Figure 4.29: The general organization of a message broker in a message-
queuing system.

A message broker can be as simple as a reformatter for messages. For
example, assume an incoming message contains a table from a database in
which records are separated by a special end-of-record delimiter and fields
within a record have a known, fixed length. If the destination application
expects a different delimiter between records, and also expects that fields have
variable lengths, a message broker can be used to convert messages to the
format expected by the destination.

In a more advanced setting, a message broker may act as an application-
level gateway, in which information on the messaging protocol of several
applications has been encoded. In general, for each pair of applications, we
will have a separate subprogram capable of converting messages between the
two applications. In Figure 4.29, this subprogram is drawn as a plugin to
emphasize that such parts can be dynamically plugged in, or removed from a
broker.

Finally, note that in many cases a message broker is used for advanced
enterprise application integration (EAI), as we discussed in Section 1.3. In
this case, rather than (only) converting messages, a broker is responsible for
matching applications based on the messages that are being exchanged. In
such a publish-subscribe model, applications send messages in the form of
publishing. In particular, they may publish a message on topic X, which is then
sent to the broker. Applications that have stated their interest in messages
on topic X, that is, who have subscribed to those messages, will then receive
these messages from the broker. More advanced forms of mediation are also
possible.

At the heart of a message broker lies a repository of rules for transforming
a message of one type to another. The problem is defining the rules and de-
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veloping the plugins. Most message broker products come with sophisticated
development tools, but the bottom line is still that the repository needs to be
filled by experts. Here we see a perfect example where commercial products
are often misleadingly said to provide “intelligence,” where, in fact, the only
intelligence is to be found in the heads of those experts.

Note 4.12 (More information: A note on message-queuing systems)
Considering what we have said about message-queuing systems, it would appear
that they have long existed in the form of implementations for e-mail services.
E-mail systems are generally implemented through a collection of mail servers
that store and forward messages on behalf of the users on hosts directly connected
to the server. Routing is generally left out, as e-mail systems can make direct use
of the underlying transport services. For example, in the mail protocol for the
Internet, SMTP [Postel, 1982], a message is transferred by setting up a direct TCP
connection to the destination mail server.

What makes e-mail systems special compared to message-queuing systems
is that they are primarily aimed at providing direct support for end users. This
explains, for example, why a number of groupware applications are based directly
on an e-mail system [Khoshafian and Buckiewicz, 1995]. In addition, e-mail
systems may have very specific requirements such as automatic message filtering,
support for advanced messaging databases (e.g., to easily retrieve previously
stored messages), and so on.

General message-queuing systems are not aimed at supporting only end users.
An important issue is that they are set up to enable persistent communication
between processes, regardless of whether a process is running a user application,
handling access to a database, performing computations, and so on. This approach
leads to a different set of requirements for message-queuing systems than pure e-
mail systems. For example, e-mail systems generally need not provide guaranteed
message delivery, message priorities, logging facilities, efficient multicasting, load
balancing, fault tolerance, and so on for general usage.

General-purpose message-queuing systems, therefore, have a wide range
of applications, including e-mail, workflow, groupware, and batch processing.
However, as we have stated before, the most important application area is the in-
tegration of a (possibly widely-dispersed) collection of databases and applications
into a federated information system [Hohpe and Woolf, 2004]. For example, a
query expanding several databases may need to be split into subqueries that are
forwarded to individual databases. Message-queuing systems assist by providing
the basic means to package each subquery into a message and routing it to the
appropriate database. Other communication facilities we have discussed in this
chapter are far less appropriate.

Example: IBM’s WebSphere message-queuing system

To help understand how message-queuing systems work in practice, let us
take a look at the message-queuing system that is part of IBM’s WebSphere.
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Formerly known as MQSeries, it is now referred to as WebSphere MQ. There
is a wealth of documentation on WebSphere MQ, and in the following we can
only resort to the basic principles. Taylor [2012] provides a gentle introduction
to WebSphere MQ, whereas further details can be found in [Davies and
Broadhurst, 2005; Aranha et al., 2013].

Overview

The basic architecture of an MQ queuing network is quite straightforward,
and is shown in Figure 4.30. All queues are managed by queue managers. A
queue manager is responsible for removing messages from its send queues,
and forwarding those to other queue managers. Likewise, a queue manager
is responsible for handling incoming messages by picking them up from the
underlying network and subsequently storing each message in the appropriate
input queue. To give an impression of what messaging can mean: a message
has a maximum default size of 4 MB, but this can be increased up to 100
MB. A queue is normally restricted to 2 GB of data, but depending on the
underlying operating system, this maximum can be easily set higher.

Queue managers are pairwise connected through message channels, which
are an abstraction of transport-level connections. A message channel is a uni-
directional, reliable connection between a sending and a receiving queue
manager, through which queued messages are transported. For example, an
Internet-based message channel is implemented as a TCP connection. Each of
the two ends of a message channel is managed by a message channel agent
(MCA). A sending MCA is basically doing nothing else than checking send
queues for a message, wrapping it into a transport-level packet, and sending
it along the connection to its associated receiving MCA. Likewise, the basic
task of a receiving MCA is listening for an incoming packet, unwrapping it,
and subsequently storing the unwrapped message into the appropriate queue.

Queue managers can be linked into the same process as the application
for which it manages the queues. In that case, the queues are hidden from
the application behind a standard interface, but effectively can be directly
manipulated by the application. An alternative organization is one in which
queue managers and applications run on separate machines. In that case,
the application is offered the same interface as when the queue manager is
co-located on the same machine. However, the interface is implemented as
a proxy that communicates with the queue manager using traditional RPC-
based synchronous communication. In this way, MQ basically retains the
model that only queues local to an application can be accessed.

Channels

An important component of MQ is formed by the message channels. Each
message channel has exactly one associated send queue from which it fetches
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Figure 4.30: General organization of IBM’s message-queuing system.

the messages it should transfer to the other end. Transfer along the channel
can take place only if both its sending and receiving MCA are up and running.
Apart from starting both MCAs manually, there are several alternative ways
to start a channel, some of which we discuss next.

One alternative is to have an application directly start its end of a channel
by activating the sending or receiving MCA. However, from a transparency
point of view, this is not a very attractive alternative. A better approach to
start a sending MCA is to configure the channel’s send queue to set off a
trigger when a message is first put into the queue. That trigger is associated
with a handler to start the sending MCA so that it can remove messages from
the send queue.

Another alternative is to start an MCA over the network. In particular,
if one side of a channel is already active, it can send a control message
requesting that the other MCA is to be started. Such a control message is sent
to a daemon listening to a well-known address on the same machine as where
the other MCA is to be started.

Channels are stopped automatically after a specified time has expired
during which no more messages were dropped into the send queue.

Each MCA has a set of associated attributes that determine the overall
behavior of a channel. Some of the attributes are listed in Figure 4.31. Attribute
values of the sending and receiving MCA should be compatible and perhaps
negotiated first before a channel can be set up. For example, both MCAs
should obviously support the same transport protocol. An example of a
nonnegotiable attribute is whether or not messages are to be delivered in the
same order as they are put into the send queue. If one MCA wants FIFO
delivery, the other must comply. An example of a negotiable attribute value is
the maximum message length, which will simply be chosen as the minimum
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value specified by either MCA.

Attribute Description
Transport type Determines the transport protocol to be used
FIFO delivery Indicates that messages are to be delivered in the order they

are sent
Message length Maximum length of a single message
Setup retry count Maximum number of retries to start up the remote MCA
Delivery retries Maximum times MCA will try to put received message into

queue

Figure 4.31: Some attributes associated with message channel agents.

Message transfer

To transfer a message from one queue manager to another (possibly remote)
queue manager, it is necessary that each message carries its destination ad-
dress, for which a transmission header is used. An address in MQ consists of
two parts. The first part consists of the name of the queue manager to which
the message is to be delivered. The second part is the name of the destination
queue resorting under that manager to which the message is to be appended.

Besides the destination address, it is also necessary to specify the route
that a message should follow. Route specification is done by providing the
name of the local send queue to which a message is to be appended. Thus
it is not necessary to provide the full route in a message. Recall that each
message channel has exactly one send queue. By telling to which send queue
a message is to be appended, we effectively specify to which queue manager
a message is to be forwarded.

In most cases, routes are explicitly stored inside a queue manager in a
routing table. An entry in a routing table is a pair (destQM,sendQ), where
destQM is the name of the destination queue manager, and sendQ is the name
of the local send queue to which a message for that queue manager should be
appended. (A routing table entry is called an alias in MQ.)

It is possible that a message needs to be transferred across multiple queue
managers before reaching its destination. Whenever such an intermediate
queue manager receives the message, it simply extracts the name of the
destination queue manager from the message header, and does a routing-
table look-up to find the local send queue to which the message should be
appended.

It is important to realize that each queue manager has a systemwide
unique name that is effectively used as an identifier for that queue manager.
The problem with using these names is that replacing a queue manager,
or changing its name, will affect all applications that send messages to it.
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Figure 4.32: The general organization of an MQ queuing network using
routing tables and aliases.

Problems can be alleviated by using a local alias for queue manager names.
An alias defined within a queue manager QM1 is another name for a queue
manager QM2, but which is available only to applications interfacing to QM1.
An alias allows the use of the same (logical) name for a queue, even if the
queue manager of that queue changes. Changing the name of a queue manager
requires that we change its alias in all queue managers. However, applications
can be left unaffected.

The principle of using routing tables and aliases is shown in Figure 4.32.
For example, an application linked to queue manager QMA can refer to a
remote queue manager using the local alias LA1. The queue manager will first
look up the actual destination in the alias table to find it is queue manager
QMC. The route to QMC is found in the routing table, which states that
messages for QMC should be appended to the outgoing queue SQ1, which
is used to transfer messages to queue manager QMB. The latter will use its
routing table to forward the message to QMC.

Following this approach of routing and aliasing leads to a programming
interface that is relatively simple, called the Message Queue Interface (MQI).
The most important operations of MQI are summarized in Figure 4.33.

To put messages into a queue, an application calls MQOPEN, specifying a
destination queue in a specific queue manager. The queue manager can be
named using the locally-available alias. Whether the destination queue is
actually remote or not is completely transparent to the application. MQOPEN
should also be called if the application wants to get messages from its local
queue. Only local queues can be opened for reading incoming messages.
When an application is finished with accessing a queue, it should close it by
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Operation Description
MQOPEN Open a (possibly remote) queue
MQCLOSE Close a queue
MQPUT Put a message into an opened queue
MQGET Get a message from a (local) queue

Figure 4.33: Operations available in the message-queuing interface.

calling MQCLOSE.
Messages can be written to, or read from, a queue using MQPUT and MQGET,

respectively. In principle, messages are removed from a queue on a priority
basis. Messages with the same priority are removed on a first-in, first-out
basis, that is, the longest pending message is removed first. It is also possible
to request for specific messages. Furthermore, MQ provides facilities to signal
applications when messages have arrived, thus avoiding that an application
will continuously have to poll a message queue for incoming messages.

An interesting observation, and one that is common to modern message-
queuing systems, is that persistent messaging is not obtained by simply making
queues persistent. Instead, a message is marked as being persistent, and it is a
queue manager’s job to see to it that the message can survive a crash. As a
consequence, a queue can simultaneously store persistent and nonpersistent
messages.

Managing overlay networks

From the description so far, it should be clear that an important part of
managing MQ systems is connecting the various queue managers into a
consistent overlay network. Moreover, this network needs to be maintained
over time. For small networks, this maintenance will not require much more
than average administrative work, but matters become complicated when
message queuing is used to integrate and disintegrate large existing systems.

A major issue with MQ is that overlay networks need to be manually ad-
ministrated. This administration not only involves creating channels between
queue managers, but also filling in the routing tables. Obviously, this can
grow into a nightmare. Unfortunately, management support for MQ systems
is advanced only in the sense that an administrator can set virtually every pos-
sible attribute, and tweak any thinkable configuration. However, the bottom
line is that channels and routing tables need to be manually maintained.

At the heart of overlay management is the channel control function com-
ponent, which logically sits between message channel agents. This component
allows an operator to monitor exactly what is going on at two end points of a
channel. In addition, it is used to create channels and routing tables, but also
to manage the queue managers that host the message channel agents. In a way,
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this approach to overlay management strongly resembles the management
of cluster servers where a single administration server is used. In the latter
case, the server essentially offers only a remote shell to each machine in the
cluster, along with a few collective operations to handle groups of machines.
The good news about distributed-systems management is that it offers lots
of opportunities if you are looking for an area to explore new solutions to
serious problems.

Example: Advanced Message Queuing Protocol (AMQP)

An interesting observation about message-queuing systems is that they have
been developed in part to allow legacy applications to interoperate, yet at
the same time we see that when it comes to operations between different
message-queuing systems, we often hit a wall. As a consequence, once an
organization chooses to use a message-queuing system from manufacturer X,
they may have to settle for solutions that only X provides. Message-queuing
solutions are thus in large part proprietary solutions. So much for openness.

In 2006, a working group was formed to change this situation, which
resulted in the specification of the Advanced Message-Queuing Protocol, or
simply AMQP. There are different versions of AMQP, with version 1.0 being
the most recent one. There are also various implementations of AMQP, notably
of versions prior to 1.0, which by the time version 1.0 was established, had
gained considerable popularity. Because a pre-1.0 version is so different from
the 1.0 version, yet has also a steady user base, we may see various pre-1.0
AMQP servers exist next to (their undeniably incompatible) 1.0 servers. So
much for openness.

In this section, we will describe AMQP, but will more or less deliberately
mix the pre-1.0 and 1.0 versions, sticking to the essentials and spirit of AMQP.
Details can be found in the specifications [Group, 2008; OASIS, 2011]. Im-
plementations of AMQP include RabbitMQ [Videla and Williams, 2012] and
Apache’s Qpid.

Basics

AMQP evolves around applications, queue managers, and queues. Taking
an approach that is common for many networking situations, we make a
distinction between AMQP as a messaging service, the actual messaging protocol,
and, finally, the messaging interface as offered to applications. To this end, it
is easiest to consider the situation of having only a single queue manager,
running as a single, separate server forming the implementation of AMQP as
a service. An application communicates with this queue manager through a
local interface. Between an application and the queue manager communication
proceeds according to the AMQP protocol.
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Figure 4.34: An overview of a single-server AMQP instance.

This situation is shown in Figure 4.34 and should look familiar. The AMQP
stub shields the application (as well as the queue manager) from the details
concerning message transfer and communication in general. At the same
time, it implements a message-queuing interface, allowing the application to
make use of AMQP as a message-queuing service. Although the distinction
between AMQP stub and queue manager is made explicit for queue managers,
the strictness of the separation is left to an implementation. Nevertheless, if
not strict, conceptually there is a distinction between handling queues and
handling related communication as we shall make clear shortly.

AMQP communication

AMQP allows an application to set up a connection to a queue manager; a
connection is a container for a number of one-way channels. Whereas the
lifetime of a channel can be highly dynamic, connections are assumed to
be relatively stable. This difference between connection and channel allows
for efficient implementations, notably by using a single transport-layer TCP
connection to multiplex lots of different channels between an application and
a queue manager. In practice, AMQP assumes TCP is used for establishing
AMQP connections.

Bidirectional communication is established through sessions: a logical
grouping of two channels. A connection may have multiple sessions, but note
that a channel need not necessarily be part of a session.

Finally, to actually transfer messages, a link is needed. Conceptually, a
link, or rather its end points, keep track of the status of messages that are
being transferred. It thus provides fine-grained flow control between an
application and a queue manager, and, indeed, different control policies can
be put simultaneously in place for different messages that are transferred
through the same session of connection. Flow control is established through
credits: a receiver can tell the sender how many messages it is allowed to send
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over a specific link.
When a message is to be transferred, the application passes it to its local

AMQP stub. As mentioned, each message transfer is associated with one
specific link. Message transfer normally proceeds in three steps.

1. At the sender’s side, the message is assigned a unique identifier and
is recorded locally to be in an unsettled state. The stub subsequently
transfers the message to the server, where the AMQP stub also records it
as being in an unsettled state. At that point, the server-side stub passes
it to the queue manager.

2. The receiving application (in this case the queue manager), is assumed
to handle the message and normally reports back to its stub that it is
finished. The stub passes this information to the original sender, at
which point the message at the original sender’s AMQP stub enters a
settled state.

3. The AMQP stub of the original sender now tells the stub of the original
receiver that message transfer has been settled (meaning that the original
sender will forget about the message from now on). The receiver’s stub
can now also discard anything about the message, formally recording it
as being settled as well.

Note that because the receiving application can indicate to the underlying
AMQP communication layer that it is done with a message, AMQP enables
true end-to-end communication reliability. In particular, the application, be
it a client application or an actual queue manager, can instruct the AMQP
communication layer to keep hold of a message (i.e., a message stays in the
unsettled state).

AMQP messaging

Messaging in AMQP logically takes place at the layer above the one handling
communication. It is here that an application can indicate what needs to be
done with a message, but can also see what has happened so far. Messaging
formally takes place between two nodes, of which there are three types: a
producer, a consumer, or a queue. Typically, producer and consumer nodes
represent regular applications, whereas queues are used to store and forward
messages. Indeed, a queue manager will typically consist of multiple queue
nodes. In order for message transfer to take place, two nodes will have to
establish a link between them.

The receiver can indicate to the sender whether its message was accepted
(meaning that it was successfully processed), or rejected. Note that this
means that a notification is returned to the original sender. AMQP also
supports fragmentation and assembly of large messages for which additional
notifications are sent.
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Of course, an important aspect of AMQP is its support for persistent
messaging. Achieving persistence is handled through several mechanisms.
First and foremost important, a message can be marked as durable, indicating
that the source expects any intermediate node, such as a queue, to be able to
recover in the case of a failure. An intermediate node that cannot guarantee
such durability will have to reject a message. Second, a source or target node
can also indicate its durability: if durable, will it maintain its state, or will it
also maintain the (unsettled) state of durable messages? Combining the latter
with durable messages effectively establishes reliable message transfer and
persistent messaging.

AMQP is truly a messaging protocol in the sense that it does not by itself
support, for example, publish-subscribe primitives. It expects that such issues
are handled by more advanced, proprietary queue managers, akin to the
message brokers discussed in Section 4.3.

Finally, there is no reason why a queue manager cannot be connected to
another queue manager. In fact, it is quite common to organize queue man-
agers into an overlay network in which messages are routed from producers to
their consumers. AMQP does not specify how the overlay network should be
constructed and managed, and, indeed, different providers of AMQP-based
systems offer different solutions. Of particular importance is specifying how
messages should be routed through the network. The bottom line is that ad-
ministrators will need to do a lot of this specification manually. Only in cases
where overlays have regular structures, such as cycles or trees, it becomes
easier to provide the necessary routing details.

4.4 Multicast communication

An important topic in communication in distributed systems is the support for
sending data to multiple receivers, also known as multicast communication.
For many years, this topic has belonged to the domain of network protocols,
where numerous proposals for network-level and transport-level solutions
have been implemented and evaluated [Janic, 2005; Obraczka, 1998]. A major
issue in all solutions was setting up the communication paths for informa-
tion dissemination. In practice, this involved a huge management effort, in
many cases requiring human intervention. In addition, as long as there is
no convergence of proposals, ISPs have shown to be reluctant to support
multicasting [Diot et al., 2000].

With the advent of peer-to-peer technology, and notably structured overlay
management, it became easier to set up communication paths. As peer-to-peer
solutions are typically deployed at the application layer, various application-
level multicasting techniques have been introduced. In this section, we will
take a brief look at these techniques.

Multicast communication can also be accomplished in other ways than
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setting up explicit communication paths. As we also explore in this sec-
tion, gossip-based information dissemination provides simple (yet often less
efficient) ways for multicasting.

Application-level tree-based multicasting

The basic idea in application-level multicasting is that nodes organize into
an overlay network, which is then used to disseminate information to its
members. An important observation is that network routers are not involved
in group membership. As a consequence, the connections between nodes in
the overlay network may cross several physical links, and as such, routing
messages within the overlay may not be optimal in comparison to what could
have been achieved by network-level routing.

A crucial design issue is the construction of the overlay network. In
essence, there are two approaches [El-Sayed et al., 2003; Hosseini et al., 2007;
Allani et al., 2009]. First, nodes may organize themselves directly into a tree,
meaning that there is a unique (overlay) path between every pair of nodes.
An alternative approach is that nodes organize into a mesh network in which
every node will have multiple neighbors and, in general, there exist multiple
paths between every pair of nodes. The main difference between the two is
that the latter generally provides higher robustness: if a connection breaks
(e.g., because a node fails), there will still be an opportunity to disseminate
information without having to immediately reorganize the entire overlay
network.

Note 4.13 (Advanced: Constructing a multicast tree in Chord)
To make matters concrete, let us consider a relatively simple scheme for construct-
ing a multicast tree in Chord, which we described in Note 2.5. This scheme was
originally proposed for Scribe [Castro et al., 2002b] which is an application-level
multicasting scheme built on top of Pastry [Rowstron and Druschel, 2001]. The
latter is also a DHT-based peer-to-peer system.

Assume a node wants to start a multicast session. To this end, it simply
generates a multicast identifier, say mid which is just a randomly-chosen 160-bit
key. It then looks up succ(mid), which is the node responsible for that key, and
promotes it to become the root of the multicast tree that will be used to sending
data to interested nodes. In order to join the tree, a node P simply executes the
operation lookup(mid) having the effect that a lookup message with the request
to join the multicast group mid will be routed from P to succ(mid). The routing
algorithm itself will be explained in detail in Chapter 5.

On its way toward the root, the join request will pass several nodes. Assume
it first reaches node Q. If Q had never seen a join request for mid before, it will
become a forwarder for that group. At that point, P will become a child of Q
whereas the latter will continue to forward the join request to the root. If the next
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node on the root, say R is also not yet a forwarder, it will become one and record
Q as its child and continue to send the join request.

On the other hand, if Q (or R) is already a forwarder for mid, it will also record
the previous sender as its child (i.e., P or Q, respectively), but there will not be a
need to send the join request to the root anymore, as Q (or R) will already be a
member of the multicast tree.

Nodes such as P that have explicitly requested to join the multicast tree are, by
definition, also forwarders. The result of this scheme is that we construct a multi-
cast tree across the overlay network with two types of nodes: pure forwarders that
act as helpers, and nodes that are also forwarders, but have explicitly requested
to join the tree. Multicasting is now simple: a node merely sends a multicast
message toward the root of the tree by again executing the lookup(mid) operation,
after which that message can be sent along the tree.

We note that this high-level description of multicasting in Scribe does not do
complete justice to its original design. The interested reader is encouraged to take
a look at the details, which can be found in [Castro et al., 2002b].

Performance issues in overlays

From the high-level description given above, it should be clear that although
building a tree by itself is not that difficult once we have organized the nodes
into an overlay, building an efficient tree may be a different story. Note that
in our description so far, the selection of nodes that participate in the tree
does not take into account any performance metrics: it is purely based on the
(logical) routing of messages through the overlay.

Figure 4.35: The relation between links in an overlay and actual network-level
routes.

To understand the problem at hand, take a look at Figure 4.35 which
shows a small set of five nodes that are organized in a simple overlay network,
with node A forming the root of a multicast tree. The costs for traversing
a physical link are also shown. Now, whenever A multicasts a message to
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the other nodes, it is seen that this message will traverse each of the links
〈B, Rb〉, 〈Ra, Rb〉, 〈E, Re〉, 〈Rc, Rd〉, and 〈D, Rd〉 twice. The overlay network
would have been more efficient if we had not constructed overlay links 〈B, E〉,
and 〈D, E〉, but instead 〈A, E〉 and 〈C, E〉. Such a configuration would have
saved the double traversal across physical links 〈Ra, Rb〉 and 〈Rc, Rd〉.

The quality of an application-level multicast tree is generally measured
by three different metrics: link stress, stretch, and tree cost. Link stress is
defined per link and counts how often a packet crosses the same link [Chu
et al., 2002]. A link stress greater than 1 comes from the fact that although at a
logical level a packet may be forwarded along two different connections, part
of those connections may actually correspond to the same physical link, as we
showed in Figure 4.35.

The stretch or Relative Delay Penalty (RDP) measures the ratio in the
delay between two nodes in the overlay, and the delay that those two nodes
would experience in the underlying network. For example, messages from
B to C follow the route B → Rb → Ra → Re → E → Re → Rc → Rd →
D → Rd → Rc → C in the overlay network, having a total cost of 73 units.
However, messages would have been routed in the underlying network along
the path B→ Rb→ Rd→ Rc→ C, with a total cost of 47 units, leading to a
stretch of 1.55. Obviously, when constructing an overlay network, the goal is
to minimize the aggregated stretch, or similarly, the average RDP measured
over all node pairs.

Finally, the tree cost is a global metric, generally related to minimizing
the aggregated link costs. For example, if the cost of a link is taken to be the
delay between its two end nodes, then optimizing the tree cost boils down
to finding a minimal spanning tree in which the total time for disseminating
information to all nodes is minimal.

To simplify matters somewhat, assume that a multicast group has an
associated and well-known node that keeps track of the nodes that have joined
the tree. When a new node issues a join request, it contacts this rendezvous
node to obtain a (potentially partial) list of members. The goal is to select
the best member that can operate as the new node’s parent in the tree. Who
should it select? There are many alternatives and different proposals often
follow very different solutions.

Consider, for example, a multicast group with only a single source. In
this case, the selection of the best node is obvious: it should be the source
(because in that case we can be assured that the stretch will be equal to 1).
However, in doing so, we would introduce a star topology with the source
in the middle. Although simple, it is not difficult to imagine the source may
easily become overloaded. In other words, selection of a node will generally
be constrained in such a way that only those nodes may be chosen who have
k or less neighbors, with k being a design parameter. This constraint severely
complicates the tree-establishment algorithm, as a good solution may require
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that part of the existing tree is reconfigured. Tan et al. [2003] provide an
extensive overview and evaluation of various solutions to this problem.

Note 4.14 (Advanced: Switch-trees)
As an illustration, let us take a closer look at one specific family, known as switch-
trees [Helder and Jamin, 2002]. The basic idea is simple. Assume we already have
a multicast tree with a single source as root. In this tree, a node P can switch
parents by dropping the link to its current parent in favor of a link to another
node. The only constraints imposed on switching links is that the new parent can
never be a member of the subtree rooted at P (as this would partition the tree
and create a loop), and that the new parent will not have too many immediate
children. This last requirement is needed to limit the load of forwarding messages
by any single node.

There are different criteria for deciding to switch parents. A simple one is to
optimize the route to the source, effectively minimizing the delay when a message
is to be multicast. To this end, each node regularly receives information on other
nodes (we will explain one specific way of doing this below). At that point, the
node can evaluate whether another node would be a better parent in terms of
delay along the route to the source, and if so, initiates a switch.

Another criteria could be whether the delay to the potential other parent is
lower than to the current parent. If every node takes this as a criterion, then
the aggregated delays of the resulting tree should ideally be minimal. In other
words, this is an example of optimizing the cost of the tree as we explained
above. However, more information would be needed to construct such a tree, but
as it turns out, this simple scheme is a reasonable heuristic leading to a good
approximation of a minimal spanning tree.

As an example, consider the case where a node P receives information on
the neighbors of its parent. Note that the neighbors consist of P’s grandparent,
along with the other siblings of P’s parent. Node P can then evaluate the delays
to each of these nodes and subsequently choose the one with the lowest delay,
say Q, as its new parent. To that end, it sends a switch request to Q. To prevent
loops from being formed due to concurrent switching requests, a node that has an
outstanding switch request will simply refuse to process any incoming requests.
In effect, this leads to a situation where only completely independent switches
can be carried out simultaneously. Furthermore, P will provide Q with enough
information to allow the latter to conclude that both nodes have the same parent,
or that Q is the grandparent.

An important problem that we have not yet addressed is node failure. In
the case of switch-trees, a simple solution is proposed: whenever a node notices
that its parent has failed, it simply attaches itself to the root. At that point, the
optimization protocol can proceed as usual and will eventually place the node at
a good point in the multicast tree. Experiments described in [Helder and Jamin,
2002] show that the resulting tree is indeed close to a minimal spanning one.
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Flooding-based multicasting

So far, we have assumed that when a message is to be multicast, it is to
be received by every node in the overlay network. Strictly speaking, this
corresponds to broadcasting. In general, multicasting refers to sending a
message to a subset of all the nodes, that is, a specific group of nodes. A
key design issue when it comes to multicasting is to minimize the use of
intermediate nodes for which the message is not intended. To make this clear,
if the overlay is organized as a multi-level tree, yet only the leaf nodes are the
ones who should receive a multicast message, then clearly there may be quite
some nodes who need to store and subsequently forward a message that is
not meant for them.

One simple way to avoid such inefficiency, is to construct an overlay
network per multicast group. As a consequence, multicasting a message m to a
group G is the same as broadcasting m to G. The drawback of this solution is
that a node belonging to several groups, will, in principle, need to maintain a
separate list of its neighbors for each group of which it is a member.

If we assume that an overlay corresponds to a multicast group, and thus
that we need to broadcast a message, a naive way of doing so is to apply
flooding. In this case, each node simply forwards a message m to each of its
neighbors, except to the one from which it received m. Furthermore, if a node
keeps track of the messages it received and forwarded, it can simply ignore
duplicates. We will roughly see twice as many messages being sent as there
are links in the overlay network, making flooding quite inefficient.

To understand the performance of flooding, we model an overlay network
as a connected graph G with N nodes and M edges. Keep in mind that
flooding means that we need to send (at least) M messages. Only if G is a
tree, will flooding be optimal, for in that case, M = N − 1. In the worst case,
when G is fully conneced, we will have to send out M = (N

2 ) =
1
2 · N · (N− 1)

messages.
Suppose now that we have no information on the structure of the overlay

network and that the best we can assume is that it can be represented as
a random graph, which (when keeping matters simple) is a graph having
a probability pedge that two vertices are joined by an edge, also known as
an Erdös-Rényi graph [Erdös and Rényi, 1959]. Note that we are actually
considering our overlay network to be an unstructured peer-to-peer network,
and that we do not have any information on how it is being constructed. With
a probability pedge that two nodes are joined, and a total of (N

2 ) edges, it is not
difficult to see that we can expect our overlay to have M = 1

2 · pedge ·N · (N− 1)
edges. To give an impression of what we are dealing with, Figure 4.36 shows
the relationship between the number of nodes and edges for different values
of pedge.

To reduce the number of messages, we can also use probabilistic flooding
as introduced by Banaei-Kashani and Shahab [2003] and formally analyzed
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Figure 4.36: The size of a random overlay as function of the number of nodes.

by Oikonomou and Stavrakakis [2007]. The idea is very simple: when a node
is flooding a message m and needs to forward m to a specific neighbor, it will
do so with a probability pflood. The effect can be dramatic: the total number
of messages sent will drop linearly in pflood. However, there is also a risk: the
lower pflood, the higher the chance that not all nodes in the network will be
reached. This risk is caused by the simple fact that all neighbors of a specific
node Q have decided not to forward m to Q. If Q has n neighbors, then this
can happen roughly with a probability of (1− pflood)

n. Clearly, the number
of neighbors plays an important role in deciding whether or not to forward
a message, and, indeed, we can replace the static probability of forwarding
with one that takes the degree of the neighbor into account. This heuristic has
been further developed and analyzed by Sereno and Gaeta [2011]. To give an
idea of the efficiency of probabilistic broadcasting: in a random network of
10,000 nodes and pedge = 0.1, we need only set pflood = 0.01 to establish a more
than 50-fold reduction in the number of messages sent in comparison to full
flooding.

When dealing with a structured overlay, that is, one having a more or less
deterministic topology, designing efficient flooding schemes is simpler. As an
example, consider an n-dimensional hypercube, shown in Figure 4.37 for the
case n = 4, as also discussed in Chapter 2.

A simple and efficient broadcast scheme has been designed by Schlosser
et al. [2002] and relies on keeping track of neighbors per dimension. This is
best explained by considering that every node in an n-dimensional hypercube
is represented by a bit string of length n. Each edge in the overlay is labeled
with its dimension. For the case n = 4, node 0000 will have as its neighbors
the set {0001, 0010, 0100, 1000}. The edge between 0000 and 0001 is labeled
“4” corresponding to changing the 4th bit when comparing 0000 to 0001 and
vice versa. Likewise, the edge 〈0000, 0100〉 is labeled “2,” and so forth. A node
initially broadcasts a message m to all of its neighbors, and tags m with the
label of the edge over which it sends the message. In our example, if node
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Figure 4.37: A simple peer-to-peer system organized as a four-dimensional
hypercube.

1001 broadcasts a message, it will send the following:

• (m,1) to 0001
• (m,2) to 1101
• (m,3) to 1011
• (m,4) to 1000

When a node receives a broadcast message, it will forward it only along edges
that have a higher dimension. In other words, in our example, node 1101 will
forward m only to nodes 1111 (joined to 1101 by an edge labeled “3”) and
1100 (joined by an edge with label “4”). Using this scheme, it can be shown
that every broadcast requires precisely N − 1 messages, where N = 2n, that is
the number of nodes in a n-dimensional hypercube. This broadcasting scheme
is therefore optimal in terms of the number of messages sent.

Note 4.15 (Advanced: Ring-based flooding)
A hypercube is a straightforward example of how we can effectively use knowl-
edge of the structure of an overlay network to establish efficient flooding. In the
case of Chord, we can follow an approach proposed by Ghodsi [2010]. Recall that
in Chord each node is identified by a number p, and each resource (typically a file),
is assigned a key k from the same space as used for node identifiers. The successor
succ(k) of a key k is the node with the smallest identifier p ≥ k. Consider the
small Chord ring shown in Figure 4.38 and assume that node 9 wants to flood a
message to all other nodes.
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Figure 4.38: A Chord ring in which node 9 broadcasts a message.

In our example, node 9 divides the identifier space into four segments (one
for each of its neighbors). Node 28 is requested to make sure that the message
reaches all nodes with identifiers 28 ≤ k < 9 (recall that we are applying modulo
arithmetic); node 18 takes care of nodes with identifiers 18 ≤ k < 28; node 14 for
14 ≤ k < 18; and 11 for identifiers 11 ≤ k < 14.

Node 28 will subsequently divide the part of the identifier space it is requested
to handle into two subsegments: one for its neighboring node 1 and another for 4.
Likewise, node 18, responsible for segment [18, 28) will “split” that segment into
only one part: it has only one neighbor to delegate the flood to, and forwards the
message to node 20, telling it that it should handle segment [20, 28).

In the last step, only node 20 has work to do. It forwards the message to node
21, telling it to forward it to nodes known to it in the segment [21, 28). As there
are no such nodes anymore, the broadcast completes.

As in the case of our hypercube example, we see that flooding is done with
N − 1 message, with N being the number of nodes in the system.

Gossip-based data dissemination

An important technique for disseminating information is to rely on epidemic
behavior, also referred to as gossiping. Observing how diseases spread
among people, researchers have since long investigated whether simple tech-
niques could be developed for spreading information in very large-scale
distributed systems. The main goal of these epidemic protocols is to rapidly
propagate information among a large collection of nodes using only local infor-
mation. In other words, there is no central component by which information
dissemination is coordinated.
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To explain the general principles of these algorithms, we assume that all
updates for a specific data item are initiated at a single node. In this way, we
simply avoid write-write conflicts. The following presentation is based on the
classical paper by Demers et al. [1987] on epidemic algorithms. An overview
of epidemic information dissemination can be found in [Eugster et al., 2004].

Information dissemination models

As the name suggests, epidemic algorithms are based on the theory of epi-
demics, which studies the spreading of infectious diseases. In the case of
large-scale distributed systems, instead of spreading diseases, they spread
information. Research on epidemics for distributed systems also aims at a
completely different goal: whereas health organizations will do their utmost
best to prevent infectious diseases from spreading across large groups of
people, designers of epidemic algorithms for distributed systems will try to
“infect” all nodes with new information as fast as possible.

Using the terminology from epidemics, a node that is part of a distributed
system is called infected if it holds data that it is willing to spread to other
nodes. A node that has not yet seen this data is called susceptible. Finally, an
updated node that is not willing or able to spread its data is said to have been
removed. Note that we assume we can distinguish old from new data, for
example, because it has been timestamped or versioned. In this light, nodes
are also said to spread updates.

A popular propagation model is that of anti-entropy. In this model, a
node P picks another node Q at random, and subsequently exchanges updates
with Q. There are three approaches to exchanging updates:

1. P only pulls in new updates from Q
2. P only pushes its own updates to Q
3. P and Q send updates to each other (i.e., a push-pull approach)

When it comes to rapidly spreading updates, only pushing updates turns
out to be a bad choice. Intuitively, this can be understood as follows. First,
note that in a pure push-based approach, updates can be propagated only by
infected nodes. However, if many nodes are infected, the probability of each
one selecting a susceptible node is relatively small. Consequently, chances are
that a particular node remains susceptible for a long period simply because it
is not selected by an infected node.

In contrast, the pull-based approach works much better when many nodes
are infected. In that case, spreading updates is essentially triggered by suscep-
tible nodes. Chances are big that such a node will contact an infected one to
subsequently pull in the updates and become infected as well.

If only a single node is infected, updates will rapidly spread across all
nodes using either form of anti-entropy, although push-pull remains the best
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strategy [Jelasity et al., 2007]. Define a round as spanning a period in which
every node will have taken the initiative once to exchange updates with
a randomly chosen other node. It can then be shown that the number of
rounds to propagate a single update to all nodes takes O(log(N)), where N
is the number of nodes in the system. This indicates indeed that propagating
updates is fast, but above all scalable.

Note 4.16 (Advanced: An analysis of anti-entropy)
A simple and straightforward analysis will give some idea on how well anti-
entropy works. Consider a system with N nodes. One of these nodes initiates the
spreading of a message m to all other nodes. Let pi denote the probability that a
node P has not yet received m after the ith round. We distinguish the following
three cases:

• With a pure pull-based approach, pi+1 = (pi)
2: not only had P not yet

been updated in the previous round, also the node P contacts had not yet
received m.

• With a pure push-based approach, pi+1 = pi · (1− 1
N−1 )

N(1−pi): again, P
should not have been updated in the previous round, but also none of the
updated nodes should contact P. The probability that a node contacts P is
1− 1

N−1 ; we can expect that there are N(1− pi) updated nodes in round i.
• In a push-pull approach, we can simply combine the two: P should not

contact an updated node, and should not be contacted by one.

Figure 4.39: The probability of not yet having been updated as a function
of the number of dissemination rounds.
Figure 4.39 shows how quickly the probability of not yet being updated drops

as a function of the number of rounds. Indeed, assuming that nodes are up-
and-running all the time, it turns out that anti-entropy is an extremely effective
dissemination protocol.

One specific variant of epidemic protocols is called rumor spreading. It
works as follows. If node P has just been updated for data item x, it contacts
an arbitrary other node Q and tries to push the update to Q. However, it is
possible that Q was already updated by another node. In that case, P may
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lose interest in spreading the update any further, say with probability pstop. In
other words, it then becomes removed.

Rumor spreading is gossiping analogous to real life. When Bob has some
hot news to spread around, he may phone his friend Alice telling her all about
it. Alice, like Bob, will be really excited to spread the rumor to her friends
as well. However, she will become disappointed when phoning a friend, say
Chuck, only to hear that the news has already reached him. Chances are that
she will stop phoning other friends, for what good is it if they already know?

Rumor spreading turns out to be an excellent way of rapidly spread-
ing news. However, it cannot guarantee that all nodes will actually be up-
dated [Demers et al., 1987]. In fact, when there is a large number of nodes that
participate in the epidemics, the fraction s of nodes that will remain ignorant
of an update, that is, remain susceptible, satisfies the equation:

s = e−(1/pstop+1)(1−s)

Note 4.17 (Advanced: Analysis of rumor spreading)
In order to formally analyze the situation for rumor spreading, we let s denote the
fraction of nodes that have not yet been updated, i.e., the fraction of susceptible
nodes. Likewise, let i denote the fraction of infected nodes: the ones that have
been updated and are still contacting other nodes in order to spread the news.
Finally, r is the fraction of nodes that have been updated, but have given up, i.e.,
they are no passive and play no more part in disseminating news. Obviously,
s + i + r = 1. Using theory from epidemics, it is not difficult to see the following:

(1) ds/dt = −s · i
(2) di/dt = s · i− pstop · (1− s) · i
⇒ di/ds = −(1 + pstop) +

pstop
s

⇒ i(s) = −(1 + pstop) · s + pstop · ln(s) + C

where we use the notation i(s) to express i as a function of s. When s = 1, no
nodes have yet been infected, meaning that i(1) = 0. This allows us to derive that
C = 1 + pstop, and thus

i(s) = (1 + pstop) · (1− s) + pstop · ln(s)

We are looking for the situation that there is no more rumor spreading, i.e., when
i(s) = 0. Having a closed expression for i(s) then leads to

s = e−(1/pstop+1)(1−s)

To get an idea of what this means, take a look at Figure 4.40, which
shows s as a function of pstop. Even for high values of pstop we see that the
fraction of nodes that remains ignorant is relatively low, and always less that
approximately 0.2. For pstop = 0.20 it can be shown that s = 0.0025. However,
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in those cases when pstop is relatively high, additional measures will need to
be taken to ensure that all nodes are updated.

Figure 4.40: The relation between the fraction s of update-ignorant nodes and
the probability pstop that a node will stop gossiping once it contacts a node
that has already been updated.

One of the main advantages of epidemic algorithms is their scalability, due
to the fact that the number of synchronizations between processes is relatively
small compared to other propagation methods. For wide-area systems, Lin
and Marzullo [1999] have shown that it makes sense to take the actual network
topology into account to achieve better results. In that case, nodes that are
connected to only a few other nodes are contacted with a relatively high
probability. The underlying assumption is that such nodes form a bridge to
other remote parts of the network; therefore, they should be contacted as soon
as possible. This approach is referred to as directional gossiping and comes
in different variants.

This problem touches upon an important assumption that most epidemic
solutions make, namely that a node can randomly select any other node to
gossip with. This implies that, in principle, the complete set of nodes should
be known to each member. In a large system, this assumption can never hold
and special measures will need to be taken to mimic such properties. We
return to this issue in Section 6.7 when we discuss a peer-sampling service.

Removing data

Epidemic algorithms are extremely good for spreading updates. However,
they have a rather strange side-effect: spreading the deletion of a data item
is hard. The essence of the problem lies in the fact that deletion of a data
item destroys all information on that item. Consequently, when a data item
is simply removed from a node, that node will eventually receive old copies
of the data item and interpret those as updates on something it did not have
before.
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The trick is to record the deletion of a data item as just another update, and
keep a record of that deletion. In this way, old copies will not be interpreted
as something new, but merely treated as versions that have been updated by
a delete operation. The recording of a deletion is done by spreading death
certificates.

Of course, the problem with death certificates is that they should eventually
be cleaned up, or otherwise each node will gradually build a huge local
database of historical information on deleted data items that is otherwise not
used. Demers et al. [1987] propose to use what are called dormant death
certificates. Each death certificate is timestamped when it is created. If it can
be assumed that updates propagate to all nodes within a known finite time,
then death certificates can be removed after this maximum propagation time
has elapsed.

However, to provide hard guarantees that deletions are indeed spread to
all nodes, only a very few nodes maintain dormant death certificates that are
never thrown away. Assume node P has such a certificate for data item x.
If by any chance an obsolete update for x reaches P, P will react by simply
spreading the death certificate for x again.

4.5 Summary

Having powerful and flexible facilities for communication between processes
is essential for any distributed system. In traditional network applications,
communication is often based on the low-level message-passing primitives
offered by the transport layer. An important issue in middleware systems
is to offer a higher level of abstraction that will make it easier to express
communication between processes than the support offered by the interface
to the transport layer.

One of the most widely used abstractions is the Remote Procedure Call
(RPC). The essence of an RPC is that a service is implemented by means
of a procedure, of which the body is executed at a server. The client is
offered only the signature of the procedure, that is, the procedure’s name
along with its parameters. When the client calls the procedure, the client-
side implementation, called a stub, takes care of wrapping the parameter
values into a message and sending that to the server. The latter calls the
actual procedure and returns the results, again in a message. The client’s stub
extracts the result values from the return message and passes it back to the
calling client application.

RPCs offer synchronous communication facilities, by which a client is
blocked until the server has sent a reply. Although variations of either
mechanism exist by which this strict synchronous model is relaxed, it turns
out that general-purpose, high-level message-oriented models are often more
convenient.
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In message-oriented models, the issues are whether or not communication
is persistent, and whether or not communication is synchronous. The essence
of persistent communication is that a message that is submitted for transmis-
sion, is stored by the communication system as long as it takes to deliver
it. In other words, neither the sender nor the receiver needs to be up and
running for message transmission to take place. In transient communication,
no storage facilities are offered, so that the receiver must be prepared to accept
the message when it is sent.

In asynchronous communication, the sender is allowed to continue imme-
diately after the message has been submitted for transmission, possibly before
it has even been sent. In synchronous communication, the sender is blocked
at least until a message has been received. Alternatively, the sender may be
blocked until message delivery has taken place or even until the receiver has
responded as with RPCs.

Message-oriented middleware models generally offer persistent asyn-
chronous communication, and are used where RPCs are not appropriate.
They are often used to assist the integration of (widely dispersed) collections
of databases into large-scale information systems.

Finally, an important class of communication protocols in distributed
systems is multicasting. The basic idea is to disseminate information from
one sender to multiple receivers. We have discussed two different approaches.
First, multicasting can be achieved by setting up a tree from the sender to
the receivers. Considering that it is now well understood how nodes can self-
organize into peer-to-peer system, solutions have also appeared to dynamically
set up trees in a decentralized fashion. Second, flooding messages across
the network is extremely robust, yet requires special attention if we want to
avoid severe waste of resources as nodes may see messages multiple times.
Probabilistic flooding by which a node forwards a message with a certain
probability often proves to combine simplicity and efficiency, while being
highly effective.

Another important class of dissemination solutions deploys epidemic
protocols. These protocols have proven to be very simple and extremely
robust. Apart from merely spreading messages, epidemic protocols can also
be efficiently deployed for aggregating information across a large distributed
system.
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Chapter 5

Naming

Names play an important role in all computer systems. They are used to share
resources, to uniquely identify entities, to refer to locations, and more. An
important issue with naming is that a name can be resolved to the entity it
refers to. Name resolution thus allows a process to access the named entity. To
resolve names, it is necessary to implement a naming system. The difference
between naming in distributed systems and nondistributed systems lies in the
way naming systems are implemented.

In a distributed system, the implementation of a naming system is itself
often distributed across multiple machines. How this distribution is done
plays a key role in the efficiency and scalability of the naming system. In this
chapter, we concentrate on three different, important ways that names are
used in distributed systems.

First, we consider so-called flat-naming systems. In such systems, entities
are referred to by an identifier that, in principle, has no meaning at all. In addi-
tion, flat names bare no structure, implying that we need special mechanisms
to trace the location of such entities. We discuss various approaches, ranging
from chains of forwarding links, to distributed hash tables, to hierarchical
location services.

In practice, humans prefer to use readable names. Such names are of-
ten structured, as is well known from the way Web pages are referred to.
Structured names allow for a highly systematic way of finding the server
responsible for the named entity, as exemplified by the Domain Name System.
We discuss the general principles, as well as scalability issues.

Finally, humans often prefer to describe entities by means of various
characteristics, leading to a situation in which we need to resolve a description
by means of the attributes assigned to an entity. As we shall see, this type
of name resolution is notoriously difficult, especially in combination with
searching.
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5.1 Names, identifiers, and addresses

Let us start by taking a closer look at what a name actually is. A name in a
distributed system is a string of bits or characters that is used to refer to an
entity. An entity in a distributed system can be practically anything. Typical
examples include resources such as hosts, printers, disks, and files. Other
well-known examples of entities that are often explicitly named are processes,
users, mailboxes, newsgroups, Web pages, graphical windows, messages,
network connections, and so on.

Entities can be operated on. For example, a resource such as a printer
offers an interface containing operations for printing a document, requesting
the status of a print job, and the like. Furthermore, an entity such as a network
connection may provide operations for sending and receiving data, setting
quality-of-service parameters, requesting the status, and so forth.

To operate on an entity, it is necessary to access it, for which we need an
access point. An access point is yet another, but special, kind of entity in a
distributed system. The name of an access point is called an address. The
address of an access point of an entity is also simply called an address of that
entity.

An entity can offer more than one access point. As a comparison, a
telephone can be viewed as an access point of a person, whereas the telephone
number corresponds to an address. Indeed, many people nowadays have
several telephone numbers, each number corresponding to a point where they
can be reached. In a distributed system, a typical example of an access point is
a host running a specific server, with its address formed by the combination of,
for example, an IP address and port number (i.e., the server’s transport-level
address).

An entity may change its access points in the course of time. For example,
when a mobile computer moves to another location, it is often assigned a
different IP address than the one it had before. Likewise, when a person
moves to another city or country, it is often necessary to change telephone
numbers as well. In a similar fashion, changing jobs or Internet Service
Providers, means changing your e-mail address.

An address is thus just a special kind of name: it refers to an access point
of an entity. Because an access point is tightly associated with an entity, it
would seem convenient to use the address of an access point as a regular
name for the associated entity. Nevertheless, this is hardly ever done as such
naming is generally very inflexible and often human unfriendly.

For example, it is not uncommon to regularly reorganize a distributed
system so that a specific server is now running on a different host than
previously. The old machine on which the server used to be running may
be reassigned to a completely different server. In other words, an entity
may easily change an access point, or an access point may be reassigned to
a different entity. If an address is used to refer to an entity, we will have
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an invalid reference the instant the access point changes or is reassigned to
another entity. Therefore, it is much better to let a service be known by a
separate name independent of the address of the associated server.

Likewise, if an entity offers more than one access point, it is not clear which
address to use as a reference. For instance, many organizations distribute their
Web service across several servers. If we would use the addresses of those
servers as a reference for the Web service, it is not obvious which address
should be chosen as the best one. Again, a much better solution is to have
a single name for the Web service independent from the addresses of the
different Web servers.

These examples illustrate that a name for an entity that is independent
from its addresses is often much easier and more flexible to use. Such a name
is called location independent.

In addition to addresses, there are other types of names that deserve
special treatment, such as names that are used to uniquely identify an entity.
A true identifier is a name that has the following properties [Wieringa and
de Jonge, 1995]:

1. An identifier refers to at most one entity.
2. Each entity is referred to by at most one identifier.
3. An identifier always refers to the same entity (i.e., it is never reused).

By using identifiers, it becomes much easier to unambiguously refer to an
entity. For example, assume two processes each refer to an entity by means
of an identifier. To check if the processes are referring to the same entity, it
is sufficient to test if the two identifiers are equal. Such a test would not be
sufficient if the two processes were using regular, nonunique, nonidentifying
names. For example, the name “John Smith” cannot be taken as a unique
reference to just a single person.

Likewise, if an address can be reassigned to a different entity, we cannot
use an address as an identifier. Consider the use of telephone numbers, which
are reasonably stable in the sense that a telephone number will often for some
time refer to the same person or organization. However, using a telephone
number as an identifier will not work, as it can be reassigned in the course
of time. Consequently, Bob’s new bakery may be receiving phone calls for
Alice’s old antique store for a long time. In this case, it would have been better
to use a true identifier for Alice instead of her phone number.

Addresses and identifiers are two important types of names that are each
used for very different purposes. In many computer systems, addresses and
identifiers are represented in machine-readable form only, that is, in the form
of bit strings. For example, an Ethernet address is essentially a random string
of 48 bits. Likewise, memory addresses are typically represented as 32-bit or
64-bit strings.
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Another important type of name is that which is tailored to be used by
humans, also referred to as human-friendly names. In contrast to addresses
and identifiers, a human-friendly name is generally represented as a character
string. These names appear in many different forms. For example, files in
Unix systems have character-string names that can generally be as long as 255
characters, and which are defined entirely by the user. Similarly, DNS names
are represented as relatively simple case-insensitive character strings.

Having names, identifiers, and addresses brings us to the central theme of
this chapter: how do we resolve names and identifiers to addresses? Before
we go into various solutions, it is important to realize that there is often a close
relationship between name resolution in distributed systems and message
routing [Shoch, 1978]. In principle, a naming system maintains a name-to-
address binding which in its simplest form is just a table of (name, address)
pairs. However, in distributed systems that span large networks and for which
many resources need to be named, a centralized table is not going to work.

Instead, what often happens is that a name is decomposed into several
parts such as ftp.cs.vu.nl. and that name resolution takes place through a
recursive lookup of those parts. For example, a client needing to know the
address of the FTP server named by ftp.cs.vu.nl. would first resolve nl to find
the server NS(nl) responsible for names that end with nl, after which the rest
of the name is passed to server NS(nl). This server may then resolve the name
vu to the server NS(vu.nl) responsible for names that end with vu.nl. who can
further handle the remaining name ftp.cs. Eventually, this leads to routing the
name resolution request as:

NS(.) → NS(nl) → NS(vu.nl) → address of ftp.cs.vu.nl

where NS(.) denotes the server that can return the address of NS(nl), also
known as the root server. NS(vu.nl) will return the actual address of the FTP
server. It is interesting to note that the boundaries between name resolution
and message routing are starting to blur.

Note 5.1 (More information: Information-centric networking)
Name resolution and message routing play a central role in information-centric
networking, or simply ICN [Ahlgren et al., 2012]. This type of networking re-
volves around the principle that applications are not really interested to know
where an entity is stored, but rather that they can get a copy in order to access it
locally when needed. To this end, much research has been spent since approxi-
mately 2007 on designing an alternative to the host-based addressing schemes that
are common in today’s Internet. In particular, the main idea is that an application
can retrieve an entity from the network by using that entity’s name. The network
takes that name as input, and subsequently routes a request to an appropriate
location where the entity is stored, to return a copy the requester.
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Key to the success of this approach is, of course, a form of name-based
routing, which is essentially a means for resolving a name to an address where
the associated entity is to be found. How that routing takes place depends on
the organization of names. Flat names may require solutions such as those for
distributed hash tables, which we discuss in Section 5.2. Structured names can be
efficiently resolved using hierarchical solutions as we discuss in Section 5.3.

Note 5.2 (More information: Self-certifying names)
If a name is being used to refer to an entity, how do we know that we are actually
accessing the intended entity? In other words, how can we ensure that an entity
and its name are uniquely bound to each other? In the case of immutable data
objects, there is a simple solution: take a hash of the data object and use that hash
value as its name. When the data object is retrieved, the receiving process can
hash the object and see whether the hash value corresponds to the one it used as
the object’s name. This is a simple version of a self-certifying name, which is a
name that can be checked locally to see if it truly belongs to the entity it refers to.
We return to secure naming in Section 9.4.

In the following sections we will consider three different classes of naming
systems. First, we will take a look at how identifiers can be resolved to
addresses. In this case, we will also see an example where name resolution
is actually indistinguishable from message routing. After that, we consider
human-friendly names and descriptive names (i.e., entities that are described
by a collection of names).

5.2 Flat naming

Above, we explained that identifiers are convenient to uniquely represent
entities. In many cases, identifiers are simply random bit strings, which we
conveniently refer to as unstructured, or flat names. An important property
of such a name is that it does not contain any information whatsoever on how
to locate the access point of its associated entity. In the following, we will take
a look at how flat names can be resolved, or, equivalently, how we can locate
an entity when given only its identifier.

Simple solutions

We first consider two simple solutions for locating an entity: broadcasting and
forwarding pointers. Both solutions are mainly applicable only to local-area
networks. Nevertheless, in that environment, they often do the job well, mak-
ing their simplicity particularly attractive. However, the use of broadcasting
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and forwarding pointers imposes scalability problems. Broadcasting or multi-
casting is difficult to implement efficiently in large-scale networks whereas
long chains of forwarding pointers introduce performance problems and are
susceptible to broken links.

Broadcasting

Consider a distributed system built on a computer network that offers efficient
broadcasting facilities. Typically, such facilities are offered by local-area
networks in which all machines are connected to a single cable or the logical
equivalent thereof. Also, local-area wireless networks fall into this category.

Locating an entity in such an environment is simple: a message containing
the identifier of the entity is broadcast to each machine and each machine is
requested to check whether it has that entity. Only the machines that can offer
an access point for the entity send a reply message containing the address of
that access point.

This principle is used in the Internet Address Resolution Protocol (ARP)
to find the data-link address of a machine when given only an IP address [Plum-
mer, 1982]. In essence, a machine broadcasts a packet on the local network
asking who is the owner of a given IP address. When the message arrives at
a machine, the receiver checks whether it should listen to the requested IP
address. If so, it sends a reply packet containing, for example, its Ethernet
address.

Broadcasting becomes inefficient when the network grows. Not only is
network bandwidth wasted by request messages, but, more seriously, too
many hosts may be interrupted by requests they cannot answer. One possible
solution is to switch to multicasting, by which only a restricted group of hosts
receives the request. For example, Ethernet networks support data-link level
multicasting directly in hardware.

Multicasting can also be used to locate entities in point-to-point networks.
For example, the Internet supports network-level multicasting by allowing
hosts to join a specific multicast group. Such groups are identified by a
multicast address. When a host sends a message to a multicast address, the
network layer provides a best-effort service to deliver that message to all
group members. Efficient implementations for multicasting in the Internet are
discussed in Deering and Cheriton [1990] and Deering et al. [1996].

A multicast address can be used as a general location service for multiple
entities. For example, consider an organization where each employee has his
or her own mobile computer. When such a computer connects to the locally
available network, it is dynamically assigned an IP address. In addition, it
joins a specific multicast group. When a process wants to locate computer A,
it sends a “where is A?” request to the multicast group. If A is connected, it
responds with its current IP address.
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Another way to use a multicast address is to associate it with a replicated
entity, and to use multicasting to locate the nearest replica. When sending
a request to the multicast address, each replica responds with its current
(normal) IP address. A crude way to select the nearest replica is to choose the
one whose reply comes in first, but as it turns out, selecting a nearest replica
is generally not that easy.

Forwarding pointers

Another popular approach to locating mobile entities is to make use of for-
warding pointers [Fowler, 1985]. The principle is simple: when an entity
moves from A to B, it leaves behind in A a reference to its new location at B.
The main advantage of this approach is its simplicity: as soon as an entity has
been located, for example by using a traditional naming service, a client can
look up the current address by following the chain of forwarding pointers.

There are also drawbacks. First, if no special measures are taken, a chain
for a highly mobile entity can become so long that locating that entity is
prohibitively expensive. Second, all intermediate locations in a chain will have
to maintain their part of the chain of forwarding pointers as long as needed.
A third (and related) drawback is the vulnerability to broken links. As soon
as any forwarding pointer is lost, the entity can no longer be reached. An
important issue is, therefore, to keep chains relatively short, and to ensure
that forwarding pointers are robust.

Note 5.3 (More information: SSP chains)
To better understand how forwarding pointers work, consider their use with
respect to remote objects: objects that can be accessed by means of a remote
procedure call. Following the approach in SSP chains [Shapiro et al., 1992], each
forwarding pointer is implemented as a (client stub, server stub) pair as shown
in Figure 5.1 (We note that in the original terminology, a server stub was called
a scion, leading to (stub,scion) pairs, which explains its name.) A server stub
contains either a local reference to the actual object or a local reference to a remote
client stub for that object.

Whenever an object moves from address space A to B, it leaves behind a client
stub in its place in A and installs a server stub that refers to the client stub in B.
An interesting aspect of this approach is that migration is completely transparent
to a client. The only thing the client sees of an object is a client stub. How, and to
which location that client stub forwards its invocations, are hidden from the client.
Also note that this use of forwarding pointers is not like looking up an address.
Instead, a client’s request is forwarded along the chain to the actual object.

Now suppose that process P1 in Figure 5.1 passes its reference to process P2.
Reference passing is done by installing a copy p′ of client stub p in the address
space of process P2. Client stub p′ refers to the same server stub as p, so that the
forwarding invocation mechanism works the same as before.

downloaded by OLEXANDER.PERIG@GMAIL.COM DS 3.02



244 CHAPTER 5. NAMING

Figure 5.1: The principle of forwarding pointers using
(client stub, server stub) pairs.

To shortcut a chain of (client stub, server stub) pairs, an object invocation carries
the identification of the client stub from where that invocation was initiated. A
client-stub identification consists of the client’s transport-level address, combined
with a locally generated number to identify that stub. When the invocation
reaches the object at its current location, a response is sent back to the client stub
where the invocation was initiated (often without going back up the chain). The
current location is piggybacked with this response, and the client stub adjusts its
companion server stub to the one in the object’s current location. This principle is
shown in Figure 5.2.

(a) (b)

Figure 5.2: Redirecting a forwarding pointer by storing a shortcut in a
client stub.

There is a trade-off between sending the response directly to the initiating
client stub, or along the reverse path of forwarding pointers. In the former case,
communication is faster because fewer processes may need to be passed. On the
other hand, only the initiating client stub can be adjusted, whereas sending the
response along the reverse path allows adjustment of all intermediate stubs.

When a server stub is no longer referred to by any client, it can be removed.
This by itself is strongly related to distributed garbage collection, a generally far
from trivial problem, to which we refer the interested reader to [Abdullahi and
Ringwood, 1998], [Plainfosse and Shapiro, 1995], and [Veiga and Ferreira, 2005].

Problems arise when a process in a chain of (client stub, server stub) pairs
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crashes or becomes otherwise unreachable. Several solutions are possible. One
possibility, as followed in Emerald [Jul et al., 1988], and in the LII system [Black
and Artsy, 1990], is to let the machine where an object was created (called the
object’s home location), always keep a reference to its current location. That
reference is stored and maintained in a fault-tolerant way. When a chain is broken,
the object’s home location is asked where the object is now. To allow an object’s
home location to change, a traditional naming service can be used to record the
current home location.

Home-based approaches

A popular approach to supporting mobile entities in large-scale networks is
to introduce a home location, which keeps track of the current location of an
entity. Special techniques may be applied to safeguard against network or
process failures. In practice, the home location is often chosen to be the place
where an entity was created.

The home-based approach is used as a fall-back mechanism for location
services based on forwarding pointers. Another example where the home-
based approach is followed is in Mobile IP [Johnson et al., 2004], which we
briefly explained in Note 3.9. Each mobile host uses a fixed IP address. All
communication to that IP address is initially directed to the mobile host’s
home agent. This home agent is located on the local-area network correspond-
ing to the network address contained in the mobile host’s IP address. In the
case of IPv6, it is realized as a network-layer component. Whenever the mobile
host moves to another network, it requests a temporary address that it can
use for communication. This care-of address is registered at the home agent.

When the home agent receives a packet for the mobile host, it looks up the
host’s current location. If the host is on the current local network, the packet
is simply forwarded. Otherwise, it is tunneled to the host’s current location,
that is, wrapped as data in an IP packet and sent to the care-of address. At the
same time, the sender of the packet is informed of the host’s current location.
This principle is shown in Figure 5.3 Note that the IP address is effectively
used as an identifier for the mobile host.

An important aspect is that this whole mechanism is largely hidden for
applications. In other words, the original IP address associated with the
mobile host can be used by an application without further ado. Client-side
software that is part of the application-independent communication layer will
handle the redirection to the target’s current location. Likewise, at the target’s
location, a message that has been tunneled will be unpacked and handed
to the application on the mobile host as if it were using its original address.
Indeed, Mobile IP establishes a high degree of location transparency.

Figure 5.3 also illustrates a drawback of home-based approaches in large-
scale networks. To communicate with a mobile entity, a client first has to
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Figure 5.3: The principle of Mobile IP.

contact the home, which may be at a completely different location than the
entity itself. The result is an increase in communication latency.

Another drawback of the home-based approach is the use of a fixed home
location. For one thing, it must be ensured that the home location always
exists. Otherwise, contacting the entity will become impossible. Problems
are aggravated when a long-lived entity decides to move permanently to a
completely different part of the network than where its home is located. In
that case, it would have been better if the home could have moved along with
the host.

A solution to this problem is to register the home at a traditional naming
service and to let a client first look up the location of the home. Because the
home location can be assumed to be relatively stable, that location can be
effectively cached after it has been looked up.

Distributed hash tables

Let us now take a closer look at how to resolve an identifier to the address of
the associated entity. We have already mentioned distributed hash tables a
number of times, but have deferred discussion on how they actually work. In
this section we correct this situation by first considering the Chord system as
an easy-to-explain DHT-based system.
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General mechanism

Many DHT-based systems have been developed in the past decade, with the
Chord system [Stoica et al., 2003] being a typical representative. Chord uses
an m-bit identifier space to assign randomly chosen identifiers to nodes as
well as keys to specific entities. The latter can be virtually anything: files,
processes, etc. The number m of bits is usually 128 or 160, depending on
which hash function is used. An entity with key k falls under the jurisdiction
of the node with the smallest identifier id ≥ k. This node is referred to as
the successor of k and denoted as succ(k). To keep our notation simple and
consistent, in the following we refer to a node with identifier p as node p.

The main issue in DHT-based systems is to efficiently resolve a key k to
the address of succ(k). An obvious nonscalable approach is to let each node
p keep track of the successor succ(p + 1) as well as its predecessor pred(p).
In that case, whenever a node p receives a request to resolve key k, it will
simply forward the request to one of its two neighbors–whichever one is
appropriate–unless pred(p) < k ≤ p in which case node p should return its
own address to the process that initiated the resolution of key k.

Instead of this linear approach toward key lookup, each Chord node
maintains a finger table containing s ≤ m entries. If FTp denotes the finger
table of node p, then

FTp[i] = succ(p + 2i−1)

Put in other words, the i-th entry points to the first node succeeding p by at
least 2i−1. Note that these references are actually shortcuts to existing nodes
in the identifier space, where the short-cutted distance from node p increases
exponentially as the index in the finger table increases. To look up a key k,
node p will then immediately forward the request to node q with index j in
p’s finger table where:

q = FTp[j] ≤ k < FTp[j + 1]

or q = FTp[1] when p < k < FTp[1]. (For clarity, we ignore modulo arith-
metic.) Note that when the finger-table size s is equal to 1, a Chord lookup
corresponds to naively traversing the ring linearly as we just discussed.

To illustrate this lookup, consider resolving k = 26 from node 1 as shown in
Figure 5.4. First, node 1 will look up k = 26 in its finger table to discover that
this value is larger than FT1[5], meaning that the request will be forwarded
to node 18 = FT1[5]. Node 18, in turn, will select node 20, as FT18[2] ≤ k <
FT18[3]. Finally, the request is forwarded from node 20 to node 21 and from
there to node 28, which is responsible for k = 26. At that point, the address
of node 28 is returned to node 1 and the key has been resolved. For similar
reasons, when node 28 is requested to resolve the key k = 12, a request will
be routed as shown by the dashed line in Figure 5.4. It can be shown that a
lookup will generally require O(log(N)) steps, with N being the number of
nodes in the system.
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Figure 5.4: Resolving key 26 from node 1 and key 12 from node 28 ina Chord
system.

In large distributed systems the collection of participating nodes can be
expected to change all the time. Not only will nodes join and leave voluntarily,
we also need to consider the case of nodes failing (and thus effectively leaving
the system), to later recover again (at which point they rejoin).

Joining a DHT-based system such as Chord is relatively simple. Suppose
node p wants to join. It simply contacts an arbitrary node in the existing
system and requests a lookup for succ(p + 1). Once this node has been
identified, p can insert itself into the ring. Likewise, leaving can be just as
simple. Note that nodes also keep track of their predecessor.

Obviously, the complexity comes from keeping the finger tables up-to-
date. Most important is that for every node q, FTq[1] is correct as this entry
refers to the next node in the ring, that is, the successor of q + 1. In order to
achieve this goal, each node q regularly runs a simple procedure that contacts
succ(q + 1) and requests to return pred(succ(q + 1)). If q = pred(succ(q + 1))
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then q knows its information is consistent with that of its successor. Otherwise,
if q’s successor has updated its predecessor, then apparently a new node p had
entered the system, with q < p ≤ succ(q + 1), so that q will adjust FTq[1] to p.
At that point, it will also check whether p has recorded q as its predecessor. If
not, another adjustment of FTq[1] is needed.

In a similar way, to update a finger table, node q simply needs to find the
successor for k = q + 2i−1 for each entry i. Again, this can be done by issuing
a request to resolve succ(k). In Chord, such requests are issued regularly by
means of a background process.

Likewise, each node q will regularly check whether its predecessor is alive.
If the predecessor has failed, the only thing that q can do is record the fact by
setting pred(q) to “unknown.” On the other hand, when node q is updating
its link to the next known node in the ring, and finds that the predecessor of
succ(q + 1) has been set to “unknown,” it will simply notify succ(q + 1) that it
suspects it to be the predecessor. By and large, these simple procedures ensure
that a Chord system is generally consistent, only perhaps with exception of a
few nodes. The details can be found in [Stoica et al., 2003].

Note 5.4 (Advanced: Chord in Python)

1 class ChordNode:
2 def finger(self, i):
3 succ = (self.nodeID + pow(2, i-1)) % self.MAXPROC # succ(p+2^(i-1))
4 lwbi = self.nodeSet.index(self.nodeID) # self in nodeset
5 upbi = (lwbi + 1) % len(self.nodeSet) # next neighbor
6 for k in range(len(self.nodeSet)): # process segments
7 if self.inbetween(succ, self.nodeSet[lwbi]+1, self.nodeSet[upbi]+1):
8 return self.nodeSet[upbi] # found successor
9 (lwbi,upbi) = (upbi, (upbi+1) % len(self.nodeSet)) # next segment

10

11 def recomputeFingerTable(self):
12 self.FT[0] = self.nodeSet[self.nodeSet.index(self.nodeID)-1] # Pred.
13 self.FT[1:] = [self.finger(i) for i in range(1,self.nBits+1)] # Succ.
14

15 def localSuccNode(self, key):
16 if self.inbetween(key, self.FT[0]+1, self.nodeID+1): # in (FT[0],self]
17 return self.nodeID # responsible node
18 elif self.inbetween(key, self.nodeID+1, self.FT[1]): # in (self,FT[1]]
19 return self.FT[1] # succ. responsible
20 for i in range(1, self.nBits+1): # rest of FT
21 if self.inbetween(key, self.FT[i], self.FT[(i+1) % self.nBits]):
22 return self.FT[i] # in [FT[i],FT[i+1])

Figure 5.5: The essence of a Chord node expressed in Python.

Coding Chord in Python is remarkably simple. Again, omitting many of
the nonessential coding details, the core of the behavior of a Chord node can
be described as shown in Figure 5.5. The function finger(i) computes succ(i)
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for the given node. All nodes known to a specific Chord node are collected in
a local set nodeSet, which is sorted by node identifier. The node first looks up
its own position in this set, and that of its right-hand neighbor. The operation
inbetween(k,l,u) computes if k ∈ [l, u), taking modulo arithmetic into account.
Computing inbetween(k,l+1,u+1) is therefore the same as testing whether k ∈ (l,
u]. We thus see that finger(i) returns the largest existing node identifier less or
equal to i.

Every time a node learns about a new node in the system (or discovers that
one has left), it simply adjusts the local nodeSet and recomputes its finger table
by calling recomputeFingerTable. The finger table itself is implemented as a
local table FT, with FT[0] pointing to the node’s predecessor. nBits indicates the
number of bits used for node identifiers and keys.

The core of what a node does during a lookup is encoded in localSuccNode(k).
When handed a key k, it will either return itself, its immediate successor FT[1],
or go through the finger table to search the entry satisfying FT[i] ≤ k < FT[i+1].
The code does not show what is done with the returned value (which is a node
identifier), but typically in an iterative scheme, the referenced node will be contacted
to continue looking up k, unless the node had returned itself as the one being
responsible for k. In a recursive scheme, the node itself will contact the referenced
node.

Note 5.5 (Advanced: Exploiting network proximity)
One of the potential problems with systems such as Chord is that requests may
be routed erratically across the Internet. For example, assume that node 1 in
Figure 5.5 is placed in Amsterdam, The Netherlands; node 18 in San Diego,
California; node 20 in Amsterdam again; and node 21 in San Diego. The result
of resolving key 26 will then incur three wide-area message transfers which
arguably could have been reduced to at most one. To minimize these pathological
cases, designing a DHT-based system requires taking the underlying network into
account.

Castro et al. [2002a] distinguish three different ways for making a DHT-
based system aware of the underlying network. In the case of topology-based
assignment of node identifiers the idea is to assign identifiers such that two
nearby nodes will have identifiers that are also close to each other. It is not
difficult to imagine that this approach may impose severe problems in the case of
relatively simple systems such as Chord. In the case where node identifiers are
sampled from a one-dimensional space, mapping a logical ring to the Internet is
far from trivial. Moreover, such a mapping can easily expose correlated failures:
nodes on the same enterprise network will have identifiers from a relatively small
interval. When that network becomes unreachable, we suddenly have a gap in
the otherwise uniform distribution of identifiers.

With proximity routing, nodes maintain a list of alternatives to forward a
request to. For example, instead of having only a single successor, each node in
Chord could equally well keep track of r successors. In fact, this redundancy can
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be applied for every entry in a finger table. For node p, FTp[i] normally points to
the first node in the range [p + 2i−1, p + 2i − 1]. Whenever it needs to look up key
k, it tries to prevent “overshooting” by passing the request to a node q with k < q
without knowing for sure if there is a node q′ with k ≤ q′ < q. For this reason, p
passes k to the node known to p with the largest identifier smaller or equal to k.

However, there is no reason why p cannot keep track of r nodes in range
[p + 2i−1, p + 2i − 1]: each node q in this range can be used to route a lookup
request for a key k as long as q ≤ k. In that case, when choosing to forward a
lookup request, a node can pick one of the r successors that is closest to itself while
making sure not to “overshoot.” An additional advantage of having multiple
successors for every table entry is that node failures need not immediately lead to
failures of lookups, as multiple routes can be explored.

Finally, in proximity neighbor selection the idea is to optimize routing tables
such that the nearest node is selected as neighbor. This selection works only when
there are more nodes to choose from. In Chord, this is normally not the case.
However, in other protocols such as Pastry [Rowstron and Druschel, 2001], when
a node joins it receives information about the current overlay from multiple other
nodes. This information is used by the new node to construct a routing table.
Obviously, when there are alternative nodes to choose from, proximity neighbor
selection will allow the joining node to choose the best one.

Note that it may not be that easy to draw a line between proximity routing
and proximity neighbor selection. In fact, when Chord is modified to include
r successors for each finger table entry, proximity neighbor selection resorts to
identifying the closest r neighbors, which comes very close to proximity routing
as we just explained [Dabek et al., 2004b].

Hierarchical approaches

We now discuss a general approach to a hierarchical location scheme, includ-
ing a number of optimizations. The approach we present is based on the
Globe location service [van Steen et al., 1998]. A detailed description can be
found in [Ballintijn, 2003]. This is a general-purpose location service that is
representative of many hierarchical location services proposed for what are
called Personal Communication Systems, of which a general overview can be
found in Pitoura and Samaras [2001].

In a hierarchical scheme, a network is divided into a collection of domains.
There is a single top-level domain that spans the entire network. Each domain
can be subdivided into multiple, smaller subdomains. A lowest-level domain,
called a leaf domain, typically corresponds to a local-area network in a
computer network or a cell in a mobile telephone network. The general
assumption is that within a smaller domain the average time it takes to
transfer a message from one node to another is less than in a large domain.

Each domain D has an associated directory node dir(D) that keeps track
of the entities in that domain. This leads to a tree of directory nodes. The
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directory node of the top-level domain, called the root (directory) node,
knows about all entities. This general organization of a network into domains
and directory nodes is illustrated in Figure 5.6

Figure 5.6: Hierarchical organization of a location service into domains, each
having an associated directory node.

To keep track of the whereabouts of an entity, each entity currently located
in a domain D is represented by a location record in the directory node
dir(D). A location record for entity E in the directory node N for a leaf
domain D contains the entity’s current address in that domain. In contrast,
the directory node N′ for the next higher-level domain D′ that contains D,
will have a location record for E containing only a pointer to N. Likewise,
the parent node of N′ will store a location record for E containing only a
pointer to N′. Consequently, the root node will have a location record for each
entity, where each location record stores a pointer to the directory node of the
next lower-level subdomain where that record’s associated entity is currently
located.

An entity may have multiple addresses, for example if it is replicated.
If an entity has an address in leaf domain D1 and D2 respectively, then the
directory node of the smallest domain containing both D1 and D2, will have
two pointers, one for each subdomain containing an address. This leads to
the general organization of the tree as shown in Figure 5.7.

Let us now consider how a lookup operation proceeds in such a hierarchi-
cal location service. As is shown in Figure 5.8, a client wishing to locate an
entity E, issues a lookup request to the directory node of the leaf domain D in
which the client resides. If the directory node does not store a location record
for the entity, then the entity is currently not located in D. Consequently, the
node forwards the request to its parent. Note that the parent node represents
a larger domain than its child. If the parent also has no location record for E,
the lookup request is forwarded to a next level higher, and so on.

As soon as the request reaches a directory node M that stores a location
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Figure 5.7: An example of storing information of an entity having two ad-
dresses in different leaf domains.

Figure 5.8: Looking up a location in a hierarchically organized location service.

record for entity E, we know that E is somewhere in the domain dom(M)
represented by node M. In Figure 5.8, M is shown to store a location record
containing a pointer to one of its subdomains. The lookup request is then
forwarded to the directory node of that subdomain, which in turn forwards
it further down the tree, until the request finally reaches a leaf node. The
location record stored in the leaf node will contain the address of E in that
leaf domain. This address can then be returned to the client that initially
requested the lookup to take place.

An important observation with respect to hierarchical location services is
that the lookup operation exploits locality. In principle, the entity is searched
in a gradually increasing ring centered around the requesting client. The
search area is expanded each time the lookup request is forwarded to a next
higher-level directory node. In the worst case, the search continues until the
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request reaches the root node. Because the root node has a location record
for each entity, the request can then simply be forwarded along a downward
path of pointers to one of the leaf nodes.

Update operations exploit locality in a similar fashion, as shown in Fig-
ure 5.9. Consider an entity E that has created a replica in leaf domain D for
which it needs to insert its address. The insertion is initiated at the leaf node
dir(D) of D which immediately forwards the insert request to its parent. The
parent will forward the insert request as well, until it reaches a directory node
M that already stores a location record for E.

Node M will then store a pointer in the location record for E, referring to
the child node from where the insert request was forwarded. At that point,
the child node creates a location record for E, containing a pointer to the next
lower-level node from where the request came. This process continues until
we reach the leaf node from which the insert was initiated. The leaf node,
finally, creates a record with the entity’s address in the associated leaf domain.

Inserting an address as just described leads to installing the chain of
pointers in a top-down fashion starting at the lowest-level directory node
that has a location record for entity E. An alternative is to create a location
record before passing the insert request to the parent node. In other words,
the chain of pointers is constructed from the bottom up. The advantage of
the latter is that an address becomes available for lookups as soon as possible.
Consequently, if a parent node is temporarily unreachable, the address can
still be looked up within the domain represented by the current node.

A delete operation is analogous to an insert operation. When an address
for entity E in leaf domain D needs to be removed, directory node dir(D)
is requested to remove that address from its location record for E. If that
location record becomes empty, that is, it contains no other addresses for E in
D, the record can be removed. In that case, the parent node of dir(D) wants
to remove its pointer to dir(D). If the location record for E at the parent now
also becomes empty, that record should be removed as well and the next
higher-level directory node should be informed. Again, this process continues
until a pointer is removed from a location record that remains nonempty
afterward or until the root is reached.

Note 5.6 (Advanced: Scalability issues)
One question that immediately comes to mind is whether the hierarchical ap-
proach just described can actually scale. A seemingly obvious design flaw, is
that the root node needs to keep track of all identifiers. However, it is important
to make a distinction between a logical design and its physical implementation.
Let us make this distinction here and see how we can actually come to a highly
scalable implementation of a hierarchical location service.

To this end, we assume that each entity is assigned a unique identifier uniform
at random from a large space of m-bit identifiers, just as in Chord. Furthermore,
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(a)

(b)

Figure 5.9: (a) An insert request is forwarded to the first node that knows
about entity E. (b) A chain of forwarding pointers to the leaf node is created.

let us assume that there are a total of N physical hosts {H1,H2, . . . ,HN} that can
accommodate the lookup service, spread across the Internet. Each host is capable
of running one or more location servers. Typically, two servers running on the
same host will represent two nodes at different levels of the logical tree. Let Dk(A)
denote the domain at level k that contains address A, with k = 0 denoting the
root domain. Likewise, let LSk(E,A) denote the unique location server in Dk(A)
responsible for keeping track of the whereabouts of entity E.

We can now make a distinction between a logical root and its implementation.
Let Dk = {Dk,1,Dk,2, . . . ,Dk,Nk

} denote the Nk domains at level k, with, obviously,
N0 = |D0| = 1. For each level k, the set of hosts is partitioned into Nk subsets,
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with each host running a location server representing exactly one of the domains
Dk,i from Dk. This principle is shown in Figure 5.10.

Figure 5.10: The principle of distributing logical location servers over
physical hosts.

In this example, we consider a simple tree with four levels and nine hosts.
There are two level-1 domains, four level-2 domains, and eight leaf domains. We
also show a tree for one specific entity E: any contact address associated with E

will be stored in one of the eight level-3 location servers, depending, of course,
on the domain to which that address belongs. The root location server for E is
running on host H3. Note that this host also runs a leaf-level location server for E.

As explained by [van Steen and Ballintijn, 2002], by judiciously choosing
which host should run a location server for E, we can combine the principle of
local operations (which is good for geographical scalability) and full distribution
of higher level servers (which is good for size scalability).

5.3 Structured naming

Flat names are good for machines, but are generally not very convenient
for humans to use. As an alternative, naming systems generally support
structured names that are composed from simple, human-readable names.
Not only file naming, but also host naming on the Internet follows this
approach. In this section, we concentrate on structured names and the way
that these names are resolved to addresses.

Name spaces

Names are commonly organized into what is called a name space. Name
spaces for structured names can be represented as a labeled, directed graph
with two types of nodes. A leaf node represents a named entity and has
the property that it has no outgoing edges. A leaf node generally stores
information on the entity it is representing–for example, its address–so that a
client can access it. Alternatively, it can store the state of that entity, such as in
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the case of file systems in which a leaf node actually contains the complete
file it is representing. We return to the contents of nodes below.

In contrast to a leaf node, a directory node has a number of outgoing
edges, each labeled with a name, as shown in Figure 5.11 Each node in a
naming graph is considered as yet another entity in a distributed system,
and, in particular, has an associated identifier. A directory node stores a table
in which an outgoing edge is represented as a pair (node identifier, edge label).
Such a table is called a directory table.

Figure 5.11: A general naming graph with a single root node.

The naming graph shown in Figure 5.11 has one node, namely n0, which
has only outgoing and no incoming edges. Such a node is called the root
(node) of the naming graph. Although it is possible for a naming graph to
have several root nodes, for simplicity, many naming systems have only one.
Each path in a naming graph can be referred to by the sequence of labels
corresponding to the edges in that path, such as N:[label1, label2, ..., labeln],
where N refers to the first node in the path. Such a sequence is called a path
name. If the first node in a path name is the root of the naming graph, it is
called an absolute path name. Otherwise, it is called a relative path name.

It is important to realize that names are always organized in a name space.
As a consequence, a name is always defined relative only to a directory node.
In this sense, the term “absolute name” is somewhat misleading. Likewise, the
difference between global and local names can often be confusing. A global
name is a name that denotes the same entity, no matter where that name is
used in a system. In other words, a global name is always interpreted with
respect to the same directory node. In contrast, a local name is a name whose
interpretation depends on where that name is being used. Put differently,
a local name is essentially a relative name whose directory in which it is
contained is (implicitly) known.

This description of a naming graph comes close to what is implemented
in many file systems. However, instead of writing the sequence of edge
labels to represent a path name, path names in file systems are generally
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represented as a single string in which the labels are separated by a special
separator character, such as a slash (“/”). This character is also used to
indicate whether a path name is absolute. For example, in Figure 5.11 instead
of using n0:[home, steen, mbox], that is, the actual path name, it is common
practice to use its string representation /home/steen/mbox. Note also that
when there are several paths that lead to the same node, that node can be
represented by different path names. For example, node n5 in Figure 5.11 can
be referred to by /home/steen/keys as well as /keys. The string representation
of path names can be equally well applied to naming graphs other than those
used for only file systems. In Plan 9 [Pike et al., 1995], all resources, such as
processes, hosts, I/O devices, and network interfaces, are named in the same
fashion as traditional files. This approach is analogous to implementing a
single naming graph for all resources in a distributed system.

There are many different ways to organize a name space. As we mentioned,
most name spaces have only a single root node. In many cases, a name space
is also strictly hierarchical in the sense that the naming graph is organized as
a tree. This means that each node except the root has exactly one incoming
edge; the root has no incoming edges. As a consequence, each node also has
exactly one associated (absolute) path name.

The naming graph shown in Figure 5.11 is an example of directed acyclic
graph. In such an organization, a node can have more than one incoming
edge, but the graph is not permitted to have a cycle. There are also name
spaces that do not have this restriction.

Note 5.7 (More information: Implementing the Unix naming graph)
To make matters more concrete, consider the way that files in a traditional Unix
file system are named. In a naming graph for Unix a directory node represents a
file directory, whereas a leaf node represents a file. There is a single root directory,
represented in the naming graph by the root node. The implementation of the
naming graph is an integral part of the complete implementation of the file system.
That implementation consists of a contiguous series of blocks from a logical disk,
generally divided into a boot block, a superblock, a series of index nodes (called
inodes), and file data blocks. See also Silberschatz et al. [2012] or Tanenbaum
[2001]. This organization is shown in Figure 5.12.

The boot block is a special block of data and instructions that are automatically
loaded into main memory when the system is booted. The boot block is used to
load the operating system into main memory.

The superblock contains information on the entire file system, such as its size,
which blocks on disk are not yet allocated, which inodes are not yet used, and so
on. Inodes are referred to by an index number, starting at number zero, which is
reserved for the inode representing the root directory.
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Figure 5.12: The general organization of the Unix file system implemen-
tation on a logical disk of contiguous disk blocks.

Each inode contains information on where the data of its associated file can
be found on disk. In addition, an inode contains information on its owner, time
of creation and last modification, protection, and the like. Consequently, when
given the index number of an inode, it is possible to access its associated file.
Each directory is implemented as a file as well. This is also the case for the root
directory, which contains a mapping between file names and index numbers of
inodes. It is thus seen that the index number of an inode corresponds to a node
identifier in the naming graph.

Name resolution

Name spaces offer a convenient mechanism for storing and retrieving infor-
mation about entities by means of names. More generally, given a path name,
it should be possible to look up any information stored in the node referred
to by that name. The process of looking up a name is called name resolution.

To explain how name resolution works, let us consider a path name such
as N:[label1, label2, ..., labeln]. Resolution of this name starts at node N of the
naming graph, where the name label1 is looked up in the directory table, and
which returns the identifier of the node to which label1 refers. Resolution then
continues at the identified node by looking up the name label2 in its directory
table, and so on. Assuming that the named path actually exists, resolution
stops at the last node referred to by labeln, by returning that node’s content.

Note 5.8 (More information: The Unix naming graph again)
A name lookup returns the identifier of a node from where the name resolution
process continues. In particular, it is necessary to access the directory table of
the identified node. Consider again a naming graph for a Unix file system. As
mentioned, a node identifier is implemented as the index number of an inode.
Accessing a directory table means that first the inode has to be read to find out
where the actual data are stored on disk, and then subsequently to read the data
blocks containing the directory table.

downloaded by OLEXANDER.PERIG@GMAIL.COM DS 3.02



260 CHAPTER 5. NAMING

Closure mechanism

Name resolution can take place only if we know how and where to start. In
our example, the starting node was given, and we assumed we had access to its
directory table. Knowing how and where to start name resolution is generally
referred to as a closure mechanism. Essentially, a closure mechanism deals
with selecting the initial node in a name space from which name resolution
is to start [Radia, 1989]. What makes closure mechanisms sometimes hard
to understand is that they are necessarily partly implicit and may be very
different when comparing them to each other.

Consider, for example, the string “00312059837784”. Many people will not
know what to do with these numbers, unless they are told that the sequence is
a telephone number. That information is enough to start the resolution process,
in particular, by dialing the number. The telephone system subsequently does
the rest.

As another example, consider the use of global and local names in dis-
tributed systems. A typical example of a local name is an environment variable.
For example, in Unix systems, the variable named HOME is used to refer to
the home directory of a user. Each user has its own copy of this variable,
which is initialized to the global, systemwide name corresponding to the
user’s home directory. The closure mechanism associated with environment
variables ensures that the name of the variable is properly resolved by looking
it up in a user-specific table.

Note 5.9 (More information: The Unix naming graph and its closure mechanism)
Name resolution in the naming graph for a Unix file system makes use of the fact
that the inode of the root directory is the first inode in the logical disk representing
the file system. Its actual byte offset is calculated from the values in other fields
of the superblock, together with hard-coded information in the operating system
itself on the internal organization of the superblock.

To make this point clear, consider the string representation of a file name
such as /home/steen/mbox. To resolve this name, it is necessary to already
have access to the directory table of the root node of the appropriate naming
graph. Being a root node, the node itself cannot have been looked up unless it is
implemented as a different node in a another naming graph, say G. But in that
case, it would have been necessary to already have access to the root node of G.
Consequently, resolving a file name requires that some mechanism has already
been implemented by which the resolution process can start.

Linking and mounting

Strongly related to name resolution is the use of aliases. An alias is another
name for the same entity. An environment variable is an example of an alias.
In terms of naming graphs, there are basically two different ways to implement
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an alias. The first approach is to simply allow multiple absolute paths names
to refer to the same node in a naming graph. This approach is illustrated
in Figure 5.13, in which node n5 can be referred to by two different path
names. In Unix terminology, both path names /keys and /home/steen/keys
in Figure 5.9 are called hard links to node n5.

The second approach is to represent an entity by a leaf node, say N, but
instead of storing the address or state of that entity, the node stores an absolute
path name. When first resolving an absolute path name that leads to N, name
resolution will return the path name stored in N, at which point it can continue
with resolving that new path name. This principle corresponds to the use of
symbolic links in Unix file systems, and is illustrated in Figure 5.13 In this
example, the path name /home/steen/keys, which refers to a node containing
the absolute path name /keys, is a symbolic link to node n5.

Figure 5.13: The concept of a symbolic link explained in a naming graph.

Name resolution as described so far takes place completely within a single
name space. However, name resolution can also be used to merge different
name spaces in a transparent way. Let us first consider a mounted file system.
In terms of our naming model, a mounted file system corresponds to letting a
directory node store the identifier of a directory node from a different name
space, which we refer to as a foreign name space. The directory node storing
the node identifier is called a mount point. Accordingly, the directory node in
the foreign name space is called a mounting point. Normally, the mounting
point is the root of a name space. During name resolution, the mounting point
is looked up and resolution proceeds by accessing its directory table.

The principle of mounting can be generalized to other name spaces as
well. In particular, what is needed is a directory node that acts as a mount
point and stores all the necessary information for identifying and accessing
the mounting point in the foreign name space. This approach is followed in
many distributed file systems.

Consider a collection of name spaces that is distributed across different
machines. In particular, each name space is implemented by a different server,
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each possibly running on a separate machine. Consequently, if we want to
mount a foreign name space NS2 into a name space NS1, it may be necessary
to communicate over a network with the server of NS2, as that server may be
running on a different machine than the server for NS1. To mount a foreign
name space in a distributed system requires at least the following information:

1. The name of an access protocol.
2. The name of the server.
3. The name of the mounting point in the foreign name space.

Note that each of these names needs to be resolved. The name of an access
protocol needs to be resolved to the implementation of a protocol by which
communication with the server of the foreign name space can take place. The
name of the server needs to be resolved to an address where that server can
be reached. As the last part in name resolution, the name of the mounting
point needs to be resolved to a node identifier in the foreign name space.

In nondistributed systems, none of the three points may actually be needed.
For example, in Unix there is no access protocol and no server. Also, the name
of the mounting point is not necessary, as it is simply the root directory of the
foreign name space.

The name of the mounting point is to be resolved by the server of the
foreign name space. However, we also need name spaces and implementations
for the access protocol and the server name. One possibility is to represent
the three names listed above as a URL.

To make matters concrete, consider a situation in which a user with a
laptop computer wants to access files that are stored on a remote file server.
The client machine and the file server are both configured with the Network
File System (NFS). In particular, to allow NFS to work across the Internet,
a client can specify exactly which file it wants to access by means of an
NFS URL, for example, nfs : //flits.cs.vu.nl/home/steen. This URL names a
file (which happens to be a directory) called /home/steen on an NFS file
server flits.cs.vu.nl, which can be accessed by a client by means of the NFS
protocol [Shepler et al., 2003].

The name nfs is a well-known name in the sense that worldwide agreement
exists on how to interpret that name. Given that we are dealing with a URL,
the name nfs will be resolved to an implementation of the NFS protocol. The
server name is resolved to its address using DNS, which is discussed in a
later section. As we said, /home/steen is resolved by the server of the foreign
name space.

The organization of a file system on the client machine is partly shown in
Figure 5.14 The root directory has a number of user-defined entries, including
a subdirectory called /remote. This subdirectory is intended to include mount
points for foreign name spaces such as the user’s home directory at VU
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Figure 5.14: Mounting remote name spaces through a specific protocol.

University. To this end, a directory node named /remote/vu is used to store
the URL nfs : //flits.cs.vu.nl/home/steen.

Now consider the name /remote/vu/mbox. This name is resolved by
starting in the root directory on the client’s machine and continues until the
node /remote/vu is reached. The process of name resolution then continues
by returning the URL nfs : //flits.cs.vu.nl/home/steen, in turn leading the client
machine to contact the file server flits.cs.vu.nl by means of the NFS protocol,
and to subsequently access directory /home/steen. Name resolution can then
be continued by reading the file named mbox in that directory, after which the
resolution process stops.

Distributed systems that allow mounting a remote file system as just
described allow a client machine to, for example, execute the following com-
mands (assume the client machine is named horton):

horton$ cd /remote/vu
horton$ ls -l

which subsequently lists the files in the directory /home/steen on the remote
file server. The beauty of all this is that the user is spared the details of the
actual access to the remote server. Ideally, only some loss in performance is
noticed compared to accessing locally available files. In effect, to the client it
appears that the name space rooted on the local machine, and the one rooted
at /home/steen on the remote machine, form a single name space.
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Note 5.10 (More information: Mounting across a network in Unix)
There are many ways in which mounting across a network can take place. One
practical solution and adopted by many small-scale distributed systems, is to
simply assign fixed IP addresses to machines and subsequently offer mounting
points to clients. Consider the following example. Suppose we have a Unix
machine named coltrane using the private address 192.168.2.3, storing a collection
of music files under the local directory /audio. This directory can be exported as a
mounting point, and as a consequence can be imported by another machine.

Let quandar be such a machine, and suppose it wants to mount the collection
of audio files at the local mount point /home/maarten/Music. The following
command will do the job (assuming the correct privileges have been set):

quandar$ mount -t nfs 192.168.2.3:/audio /home/maarten/Music

From that moment on, all files available on coltrane in its directory /audio can be
accessed by quandar in the directory /home/maarten/Music. The beauty of this
scheme is that once mounted, there is no need to think of remote access anymore
(until something fails, of course).

The implementation of a name space

A name space forms the heart of a naming service, that is, a service that
allows users and processes to add, remove, and look up names. A naming
service is implemented by name servers. If a distributed system is restricted
to a local-area network, it is often feasible to implement a naming service
by means of only a single name server. However, in large-scale distributed
systems with many entities, possibly spread across a large geographical area,
it is necessary to distribute the implementation of a name space over multiple
name servers.

Name space distribution

Name spaces for a large-scale, possibly worldwide distributed system, are
usually organized hierarchically. As before, assume such a name space has
only a single root node. To effectively implement such a name space, it
is convenient to partition it into logical layers. Cheriton and Mann [1989]
distinguish the following three layers.

The global layer is formed by highest-level nodes, that is, the root node
and other directory nodes logically close to the root, namely its children.
Nodes in the global layer are often characterized by their stability, in the
sense that directory tables are rarely changed. Such nodes may represent
organizations, or groups of organizations, for which names are stored in the
name space.

The administrational layer is formed by directory nodes that together are
managed within a single organization. A characteristic feature of the directory
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nodes in the administrational layer is that they represent groups of entities
that belong to the same organization or administrational unit. For example,
there may be a directory node for each department in an organization, or a
directory node from which all hosts can be found. Another directory node
may be used as the starting point for naming all users, and so forth. The
nodes in the administrational layer are relatively stable, although changes
generally occur more frequently than to nodes in the global layer.

Finally, the managerial layer consists of nodes that may typically change
regularly. For example, nodes representing hosts in the local network belong
to this layer. For the same reason, the layer includes nodes representing shared
files such as those for libraries or binaries. Another important class of nodes
includes those that represent user-defined directories and files. In contrast
to the global and administrational layer, the nodes in the managerial layer
are maintained not only by system administrators, but also by individual end
users of a distributed system.

Figure 5.15: An example partitioning of the DNS name space, including
Internet-accessible files, into three layers.

To make matters more concrete, Figure 5.15 shows an example of the
partitioning of part of the DNS name space, including the names of files within
an organization that can be accessed through the Internet, for example, Web
pages and transferable files. The name space is divided into nonoverlapping
parts, called zones in DNS [Mockapetris, 1987]. A zone is a part of the name
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space that is implemented by a separate name server. Some of these zones are
illustrated in Figure 5.15.

If we take a look at availability and performance, name servers in each
layer have to meet different requirements. High availability is especially
critical for name servers in the global layer. If a name server fails, a large
part of the name space will be unreachable because name resolution cannot
proceed beyond the failing server.

Performance is somewhat subtle. Due to the low rate of change of nodes
in the global layer, the results of lookup operations generally remain valid for
a long time. Consequently, those results can be effectively cached (i.e., stored
locally) by the clients. The next time the same lookup operation is performed,
the results can be retrieved from the client’s cache instead of letting the name
server return the results. As a result, name servers in the global layer do
not have to respond quickly to a single lookup request. On the other hand,
throughput may be important, especially in large-scale systems with millions
of users.

The availability and performance requirements for name servers in the
global layer can be met by replicating servers, in combination with client-side
caching. Updates in this layer generally do not have to come into effect
immediately, making it much easier to keep replicas consistent.

Availability for a name server in the administrational layer is primarily
important for clients in the same organization as the name server. If the name
server fails, many resources within the organization become unreachable
because they cannot be looked up. On the other hand, it may be less important
that resources in an organization are temporarily unreachable for users outside
that organization.

With respect to performance, name servers in the administrational layer
have similar characteristics as those in the global layer. Because changes to
nodes do not occur all that often, caching lookup results can be highly effective,
making performance less critical. However, in contrast to the global layer,
the administrational layer should take care that lookup results are returned
within a few milliseconds, either directly from the server or from the client’s
local cache. Likewise, updates should generally be processed quicker than
those of the global layer. For example, it is unacceptable that an account for a
new user takes hours to become effective.

These requirements can often be met by using relatively powerful machines
to run name servers. In addition, client-side caching should be applied,
combined with replication for increased overall availability.

Availability requirements for name servers at the managerial level are
generally less demanding. In particular, it often suffices to use a single
machine to run name servers at the risk of temporary unavailability. However,
performance is crucial: operations must take place immediately. Because
updates occur regularly, client-side caching is often less effective.
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Issue Global Administrational Managerial
Geographical scale Worldwide Organization Department
Number of nodes Few Many Vast numbers

Responsiveness to lookups Seconds Milliseconds Immediate
Update propagation Lazy Immediate Immediate
Number of replicas Many None or few None
Client-side caching Yes Yes Sometimes

Figure 5.16: A comparison between name servers for implementing nodes
from a large-scale name space partitioned into a global layer, an administra-
tional layer, and a managerial layer.

A comparison between name servers at different layers is shown in Fig-
ure 5.16. In distributed systems, name servers in the global and administra-
tional layer are the most difficult to implement. Difficulties are caused by
replication and caching, which are needed for availability and performance,
but which also introduce consistency problems. Some of the problems are
aggravated by the fact that caches and replicas are spread across a wide-area
network, which may introduce long communication delays during lookups.

Implementation of name resolution

The distribution of a name space across multiple name servers affects the
implementation of name resolution. To explain the implementation of name
resolution in large-scale name services, we assume for the moment that name
servers are not replicated and that no client-side caches are used. Each
client has access to a local name resolver, which is responsible for ensuring
that the name resolution process is carried out. Referring to Figure 5.15,
assume the (absolute) path name root:[nl, vu, cs, ftp, pub, globe, index.html] is to
be resolved. Using a URL notation, this path name would correspond to
ftp : //ftp.cs.vu.nl/pub/globe/index.html. There are now two ways to imple-
ment name resolution.

In iterative name resolution, a name resolver hands over the complete
name to the root name server. It is assumed that the address where the root
server can be contacted is well known. The root server will resolve the path
name as far as it can, and return the result to the client. In our example, the
root server can resolve only the label nl, for which it will return the address of
the associated name server.

At that point, the client passes the remaining path name (i.e., nl:[vu, cs, ftp,
pub, globe, index.html]) to that name server. This server can resolve only the
label vu, and returns the address of the associated name server, along with
the remaining path name vu:[cs, ftp, pub, globe, index.html].

The client’s name resolver will then contact this next name server, which
responds by resolving the label cs, and subsequently also ftp, returning the
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address of the FTP server along with the path name ftp:[pub, globe, index.html].
The client then contacts the FTP server, requesting it to resolve the last part of
the original path name. The FTP server will subsequently resolve the labels
pub, globe, and index.html, and transfer the requested file (in this case using
FTP). This process of iterative name resolution is shown in Figure 5.17. (The
notation #[cs] is used to indicate the address of the server responsible for
handling the node referred to by [cs].)

Figure 5.17: The principle of iterative name resolution.

In practice, the last step, namely contacting the FTP server and requesting
it to transfer the file with path name ftp:[pub, globe, index.html], is carried out
separately by the client process. In other words, the client would normally
hand only the path name root:[nl, vu, cs, ftp] to the name resolver, from which
it would expect the address where it can contact the FTP server, as is also
shown in Figure 5.17

An alternative to iterative name resolution is to use recursion during
name resolution. Instead of returning each intermediate result back to
the client’s name resolver, with recursive name resolution, a name server
passes the result to the next name server it finds. So, for example, when
the root name server finds the address of the name server implementing
the node named nl, it requests that name server to resolve the path name
nl:[vu, cs, ftp, pub, globe, index.html]. Using recursive name resolution as well,
this next server will resolve the complete path and eventually return the file
index.html. to the root server, which, in turn, will pass that file to the client’s
name resolver.

Recursive name resolution is shown in Figure 5.18. As in iterative name
resolution, the last step (contacting the FTP server and asking it to transfer
the indicated file) is generally carried out as a separate process by the client.
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Figure 5.18: The principle of recursive name resolution.

The main drawback of recursive name resolution is that it puts a higher
performance demand on each name server. Basically, a name server is required
to handle the complete resolution of a path name, although it may do so in
cooperation with other name servers. This additional burden is generally
so high that name servers in the global layer of a name space support only
iterative name resolution.

There are two important advantages to recursive name resolution. The first
advantage is that caching results is more effective compared to iterative name
resolution. The second advantage is that communication costs may be reduced.
To explain these advantages, assume that a client’s name resolver will accept
path names referring only to nodes in the global or administrational layer
of the name space. To resolve that part of a path name that corresponds to
nodes in the managerial layer, a client will separately contact the name server
returned by its name resolver, as we discussed above.

Recursive name resolution allows each name server to gradually learn
the address of each name server responsible for implementing lower-level
nodes. As a result, caching can be effectively used to enhance performance.
For example, when the root server is requested to resolve the path name
root:[nl, vu, cs, ftp], it will eventually get the address of the name server imple-
menting the node referred to by that path name. To come to that point, the
name server for the nl node has to look up the address of the name server for
the vu node, whereas the latter has to look up the address of the name server
handling the cs node.

Because changes to nodes in the global and administrational layer do not
occur often, the root name server can effectively cache the returned address.
Moreover, because the address is also returned, by recursion, to the name
server responsible for implementing the vu node and to the one implementing
the nl node, it might as well be cached at those servers too.
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Likewise, the results of intermediate name lookups can also be returned
and cached. For example, the server for the nl node will have to look up the
address of the vu node server. That address can be returned to the root server
when the nl server returns the result of the original name lookup. A complete
overview of the resolution process, and the results that can be cached by each
name server is shown in Figure 5.19.

Server Should Looks up Passes to Receives Returns
for node resolve child and caches to requester
cs [ftp] #[ftp] — — #[ftp]
vu [cs, ftp] #[cs] [ftp] #[ftp] #[cs]

#[cs, ftp]
nl [vu, cs, ftp] #[vu] [cs, ftp] #[cs] #[vu]

#[cs, ftp] #[vu, cs]
#[vu, cs, ftp]

root [nl, vu, cs, ftp] #[nl] [vu, cs, ftp] #[vu] #[nl]
#[vu, cs] #[nl, vu]
#[vu, cs, ftp] #[nl, vu, cs]

#[nl, vu, cs, ftp]

Figure 5.19: Recursive name resolution of [nl, vu, cs, ftp]. Name servers cache
intermediate results for subsequent lookups.

The main benefit of this approach is that, eventually, lookup operations
can be handled quite efficiently. For example, suppose that another client later
requests resolution of the path name root:[nl, vu, cs, flits]. This name is passed
to the root, which can immediately forward it to the name server for the cs
node, and request it to resolve the remaining path name cs:[flits].

With iterative name resolution, caching is necessarily restricted to the
client’s name resolver. Consequently, if a client A requests the resolution of a
name, and another client B later requests that same name to be resolved, name
resolution will have to pass through the same name servers as was done for
client A. As a compromise, many organizations use a local, intermediate name
server that is shared by all clients. This local name server handles all naming
requests and caches results. Such an intermediate server is also convenient
from a management point of view. For example, only that server needs to
know where the root name server is located; other machines do not require
this information.

The second advantage of recursive name resolution is that it is often
cheaper with respect to communication. Again, consider the resolution of the
path name root:[nl, vu, cs, ftp] and assume the client is located in San Francisco.
Assuming that the client knows the address of the server for the nl node,
with recursive name resolution, communication follows the route from the
client’s host in San Francisco to the nl server in The Netherlands, shown
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as R1 in Figure 5.20 From there on, communication is subsequently needed
between the nl server and the name server of VU University on the campus in
Amsterdam, The Netherlands. This communication is shown as R2. Finally,
communication is needed between the vu server and the name server in the
Computer Science Department, shown as R3. The route for the reply is the
same, but in the opposite direction. Clearly, communication costs are dictated
by the message exchange between the client’s host and the nl server.

In contrast, with iterative name resolution, the client’s host has to commu-
nicate separately with the nl server, the vu server, and the cs server, of which
the total costs may be roughly three times that of recursive name resolution.
The arrows in Figure 5.20 labeled I1, I2, and I3 show the communication path
for iterative name resolution.

Figure 5.20: The comparison between recursive and iterative name resolution
with respect to communication costs.

Example: The Domain Name System

One of the largest distributed naming services in use today is the Internet
Domain Name System (DNS). DNS is primarily used for looking up IP
addresses of hosts and mail servers. In the following pages, we concentrate
on the organization of the DNS name space and the information stored in its
nodes. Also, we take a closer look at the actual implementation of DNS. More
information can be found in [Mockapetris, 1987] and [Liu and Albitz, 2006].
An assessment of DNS, notably concerning whether it still fits the needs of
the current Internet, can be found in [Levien, 2005]. From this report, one can
draw the somewhat surprising conclusion that even after more than 30 years,
DNS gives no indication that it needs to be replaced. We would argue that the
main cause lies in the designer’s deep understanding of how to keep matters
simple. Practice in other fields of distributed systems indicates that not many
are gifted with such an understanding.
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The DNS name space

The DNS name space is hierarchically organized as a rooted tree. A label is
a case-insensitive string made up of alphanumeric characters. A label has
a maximum length of 63 characters; the length of a complete path name is
restricted to 255 characters. The string representation of a path name consists
of listing its labels, starting with the rightmost one, and separating the labels
by a dot (“.”). The root is represented by a dot. So, for example, the path
name root:[nl, vu, cs, flits], is represented by the string “flits.cs.vu.nl.”, which
includes the rightmost dot to indicate the root node. We generally omit this
dot for readability.

Because each node in the DNS name space has exactly one incoming edge
(with the exception of the root node, which has no incoming edges), the label
attached to a node’s incoming edge is also used as the name for that node. A
subtree is called a domain a path name to its root node is called a domain
name. Note that, just like a path name, a domain name can be either absolute
or relative.

The contents of a node is formed by a collection of resource records.
There are different types of resource records. The major ones are shown in
Figure 5.21.

Type Refers to Description

SOA Zone Holds info on the represented zone
A Host IP addr. of host this node represents
MX Domain Mail server to handle mail for this node
SRV Domain Server handling a specific service
NS Zone Name server for the represented zone
CNAME Node Symbolic link
PTR Host Canonical name of a host
HINFO Host Info on this host
TXT Any kind Any info considered useful

Figure 5.21: The most important types of resource records forming the con-
tents of nodes in the DNS name space.

A node in the DNS name space will often represent several entities at the
same time. For example, a domain name such as vu.nl is used to represent
a domain and a zone. In this case, the domain is implemented by means of
several (nonoverlapping) zones.

An SOA (start of authority) resource record contains information such as
an e-mail address of the system administrator responsible for the represented
zone, the name of the host where data on the zone can be fetched, and so on.
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An A (address) record, represents a particular host in the Internet. The A
record contains an IP address for that host to allow communication. If a host
has several IP addresses, as is the case with multi-homed machines, the node
will contain an A record for each address.

Another type of record is the MX (mail exchange) record, which is like
a symbolic link to a node representing a mail server. For example, the
node representing the domain cs.vu.nl has an MX record containing the name
zephyr.cs.vu.nl which refers to a mail server. That server will handle all incom-
ing mail addressed to users in the cs.vu.nl domain. There may be several MX
records stored in a node.

Related to MX records are SRV records, which contain the name of a server
for a specific service. The service itself is identified by means of a name
along with the name of a protocol. For example, the Web server in the cs.vu.nl
domain could be named by means of an SRV record such as _http_tcp.cs.vu.nl.
This record would then refer to the actual name of the server (which is
soling.cs.vu.nl). An important advantage of SRV records is that clients need no
longer know the DNS name of the host providing a specific service. Instead,
only service names need to be standardized, after which the providing host
can be looked up.

Nodes that represent a zone, contain one or more NS (name server) records.
Like MX records, an NS record contains the name of a name server that
implements the zone represented by the node. In principle, each node in
the name space can store an NS record referring to the name server that
implements it. However, as we discuss below, the implementation of the
DNS name space is such that only nodes representing zones need to store NS
records.

DNS distinguishes aliases from what are called canonical names. Each
host is assumed to have a canonical, or primary name. An alias is implemented
by means of node storing a CNAME record containing the canonical name
of a host. The name of the node storing such a record is thus the same as a
symbolic link, as was shown in Figure 5.13.

DNS maintains an inverse mapping of IP addresses to host names by
means of PTR (pointer) records. To accommodate the lookups of host names
when given only an IP address, DNS maintains a domain named in-addr.arpa,
which contains nodes that represent Internet hosts and which are named by
the IP address of the represented host. For example, host www.cs.vu.nl has
IP address 130.37.20.20. DNS creates a node named 20.20.37.130.in-addr.arpa,
which is used to store the canonical name of that host (which happens to be
soling.cs.vu.nl in a PTR record).

Finally, an HINFO (host info) record is used to store additional information
on a host such as its machine type and operating system. In a similar fashion,
TXT records are used for any other kind of data that a user finds useful to
store about the entity represented by the node.
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DNS implementation

In essence, the DNS name space can be divided into a global layer and an
administrational layer as shown in Figure 5.15. The managerial layer, which
is generally formed by local file systems, is formally not part of DNS and is
therefore also not managed by it.

Each zone is implemented by a name server, which is virtually always
replicated for availability. Updates for a zone are normally handled by the
primary name server. Updates take place by modifying the DNS database
local to the primary server. Secondary name servers do not access the database
directly, but, instead, request the primary server to transfer its content. The
latter is called a zone transfer in DNS terminology.

A DNS database is implemented as a (small) collection of files, of which
the most important one contains all the resource records for all the nodes in a
particular zone. This approach allows nodes to be simply identified by means
of their domain name, by which the notion of a node identifier reduces to an
(implicit) index into a file.

Note 5.11 (More information: An example DNS database)
To better understand these implementation issues, Figure 5.22 shows a small part
of the file that contains most of the information for a previous organization of the
cs.vu.nl domain. Note that we have deliberately chosen an outdated version for
security reasons. The file has been edited for readability. It shows the content of
several nodes that are part of the cs.vu.nl domain, where each node is identified
by means of its domain name.

The node cs.vu.nl represents the domain as well as the zone. Its SOA resource
record contains specific information on the validity of this file, which will not
concern us further. There are four name servers for this zone, referred to by their
canonical host names in the NS records. The TXT record is used to give some
additional information on this zone, but cannot be automatically processed by any
name server. Furthermore, there is a single mail server that can handle incoming
mail addressed to users in this domain. The number preceding the name of a
mail server specifies a selection priority. A sending mail server should always
first attempt to contact the mail server with the lowest number.

The host star.cs.vu.nl operates as a name server for this zone. Name servers
are critical to any naming service. What can be seen about this name server
is that additional robustness has been created by giving two separate network
interfaces, each represented by a separate A resource record. In this way, the
effects of a broken network link can be somewhat alleviated as the server will
remain accessible.

The next four lines (for zephyr.cs.vu.nl) give the necessary information about
one of the department’s mail servers. Note that this mail server is also backed up
by another mail server, whose path is tornado.cs.vu.nl.
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Name Record type Record value
cs.vu.nl. SOA star.cs.vu.nl. hostmaster.cs.vu.nl.

2005092900 7200 3600 2419200 3600
cs.vu.nl. TXT “VU University - Computer Science”
cs.vu.nl. MX 1 mail.few.vu.nl.
cs.vu.nl. NS ns.vu.nl.
cs.vu.nl. NS top.cs.vu.nl.
cs.vu.nl. NS solo.cs.vu.nl.
cs.vu.nl. NS star.cs.vu.nl.
star.cs.vu.nl. A 130.37.24.6
star.cs.vu.nl. A 192.31.231.42
star.cs.vu.nl. MX 1 star.cs.vu.nl.
star.cs.vu.nl. MX 666 zephyr.cs.vu.nl.
star.cs.vu.nl. HINFO “Sun” “Unix”
zephyr.cs.vu.nl. A 130.37.20.10
zephyr.cs.vu.nl. MX 1 zephyr.cs.vu.nl.
zephyr.cs.vu.nl. MX 2 tornado.cs.vu.nl.
zephyr.cs.vu.nl. HINFO “Sun” “Unix”
ftp.cs.vu.nl. CNAME soling.cs.vu.nl.
www.cs.vu.nl. CNAME soling.cs.vu.nl.
soling.cs.vu.nl. A 130.37.20.20
soling.cs.vu.nl. MX 1 soling.cs.vu.nl.
soling.cs.vu.nl. MX 666 zephyr.cs.vu.nl.
soling.cs.vu.nl. HINFO “Sun” “Unix”
vucs-das1.cs.vu.nl. PTR 0.198.37.130.in-addr.arpa.
vucs-das1.cs.vu.nl. A 130.37.198.0
inkt.cs.vu.nl. HINFO “OCE” “Proprietary”
inkt.cs.vu.nl. A 192.168.4.3
pen.cs.vu.nl. HINFO “OCE” “Proprietary”
pen.cs.vu.nl. A 192.168.4.2
localhost.cs.vu.nl. A 127.0.0.1

Figure 5.22: An excerpt from an (old) DNS database for the zone cs.vu.nl.

The next six lines show a typical configuration in which the department’s
Web server, as well as the department’s FTP server are implemented by a single
machine, called soling.cs.vu.nl. By executing both servers on the same machine
(and essentially using that machine only for Internet services and not anything
else), system management becomes easier. For example, both servers will have
the same view of the file system, and for efficiency, part of the file system may
be implemented on soling.cs.vu.nl. This approach is often applied in the case of
WWW and FTP services.

The following two lines show information on one of the department’s older
server clusters. In this case, it tells us that the address 130.37.198.0 is associated
with the host name vucs-das1.cs.vu.nl.

The next four lines show information on two major printers connected to the
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local network. Note that addresses in the range 192.168.0.0 to 192.168.255.255
are private: they can be accessed only from inside the local network and are not
accessible from an arbitrary Internet host.

Name Record type Record value
cs.vu.nl. NS solo.cs.vu.nl.
cs.vu.nl. NS star.cs.vu.nl.
cs.vu.nl. NS ns.vu.nl.
cs.vu.nl. NS top.cs.vu.nl.
ns.vu.nl. A 130.37.129.4
top.cs.vu.nl. A 130.37.20.4
solo.cs.vu.nl. A 130.37.20.5
star.cs.vu.nl. A 130.37.24.6
star.cs.vu.nl. A 192.31.231.42

Figure 5.23: Part of the description for the vu.nl domain which contains
the cs.vu.nl domain.
Because the cs.vu.nl domain is implemented as a single zone, Figure 5.22 does

not include references to other zones. The way to refer to nodes in a subdomain
that are implemented in a different zone is shown in Figure 5.23. What needs
to be done is to specify a name server for the subdomain by simply giving its
domain name and IP address. When resolving a name for a node that lies in the
cs.vu.nl domain, name resolution will continue at a certain point by reading the
DNS database stored by the name server for the cs.vu.nl domain.

Note 5.12 (Advanced: Decentralized versus hierarchical DNS implementations)
The implementation of DNS we described so far is the standard one. It follows
a hierarchy of servers with 13 well-known root nodes and ending in millions of
servers at the leaves (but read on). An important observation is that higher-level
nodes receive many more requests than lower-level nodes. Only by caching the
name-to-address bindings of these higher levels, it becomes possible to avoid
sending requests to them and thus swamping them.

These scalability problems can, in principle, be avoided altogether with fully
decentralized solutions. In particular, we can compute the hash of a DNS name,
and subsequently take that hash as a key value to be looked up in a distributed
hash table or a hierarchical location service with a fully partitioned root node.
The obvious drawback of this approach is that we lose the structure of the original
name. This loss may prevent efficient implementations of, for example, finding all
children in a specific domain.

As argued by Walfish et al. [2004], when there is a need for many names,
using identifiers as a semantic-free way of accessing data will allow different
systems to make use of a single naming system. The reason is simple: by now
it is well understood how a huge collection of (flat) names can be efficiently
supported. What needs to be done is to maintain the mapping of identifier-to-
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name information, where in this case a name may come from the DNS space,
be a URL, and so on. Using identifiers can be made easier by letting users or
organizations use a strict local name space. The latter is completely analogous to
maintaining a private setting of environment variables on a computer.

Nevertheless, stating that a decentralized implementation of DNS will cir-
cumvent many of its scalability problems is too simple. In a comparative study,
Pappas et al. [2006] showed that there are many trade-offs to consider and that
actually the current, hierarchical design of DNS is not so bad for at least two
reasons:

• In a hierarchical design, not all nodes are equal and in the case of DNS,
notably the higher-level nodes are engineered differently. For example,
despite that there are officially 13 root nodes, each of these nodes is highly
distributed and replicated for performance and availability. To illustrate,
the root node provided by RIPE NCC is implemented at some 25 different
sites (all using the same IP address), each implemented as a highly robust
and replicated server cluster.
Again, we see the important difference between a logical and physical
design. Exploiting this difference is crucial for the operation of a distributed
system such as DNS. However, in virtually all DHT-based systems, making
this distinction can be much more difficult when dealing with a logical
naming hierarchy, as all names are necessarily treated to be equal. In such
cases, it becomes much more difficult to engineer the system so that, for
example, top-level domains are separated out by special (physical) nodes.
Of course, the obvious drawback of not having all nodes being equal, is
that special measures need to be taken to protect the more important parts
of a system against abuse. We have already mentioned that top-level nodes
in DNS are implemented as distributed and replicated server (clusters), but
also that an associated server will not provide recursive name resolution.
Such implementation decisions are necessary also from a perspective of
robustness.

• DNS caches are highly effective and driven almost entirely by the local
distribution of queries: if domain D is queried often at server S, then the
references for name servers of D will be cached at S. The behavior at another
server S′ is determined by what is queried at S′. This important feature has
been confirmed in a more recent study that also shows how difficult it can
be to understand the effectiveness of caching and the locality principles of
DNS resolvers. In particular, an ISP’s DNS resolver may be very effective in
redirecting traffic to content that is localized in that ISP [Ager et al., 2010].
In contrast, caching and replication in DHT-based systems generally does
not show such principles of locality: results are simply cached at nodes on
the return path of a lookup and have very little to do with the fact that a
lookup was locally initiated at a specific node in the DHT, or a resolver for
which the local ISP can assist in looking up content.

The fact remains that replacing DNS by a decentralized implementation is not
necessarily a good idea. DNS as it stands today, is a well-engineered system that

downloaded by OLEXANDER.PERIG@GMAIL.COM DS 3.02



278 CHAPTER 5. NAMING

is difficult to beat when it comes to performance and robustness [Vixie, 2009;
2014].

Example: The Network File System

As another, and very different example, consider naming in NFS. The funda-
mental idea underlying the NFS naming model is to provide clients complete
transparent access to a remote file system as maintained by a server. This
transparency is achieved by letting a client be able to mount a remote file
system into its own local file system, as shown in Figure 5.24.

Figure 5.24: Mounting (part of) a remote file system in NFS.

Instead of mounting an entire file system, NFS allows clients to mount
only part of a file system, as also shown in Figure 5.24. A server is said to
export a directory when it makes that directory and its entries available to
clients. An exported directory can be mounted into a client’s local name space.

This design approach has a serious implication: in principle, users do not
share name spaces. As shown in Figure 5.24 the file named /remote/vu/mbox
at client A is named /work/me/mbox at client B. A file’s name therefore
depends on how clients organize their own local name space, and where
exported directories are mounted. The drawback of this approach in a dis-
tributed file system is that sharing files becomes much harder. For example,
Alice cannot tell Bob about a file using the name she assigned to that file, for
that name may have a completely different meaning in Bob’s name space of
files.

There are several ways to solve this problem, but the most common one
is to provide each client with a name space that is partly standardized. For
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example, each client may be using the local directory /usr/bin to mount a
file system containing a standard collection of programs that are available to
everyone. Likewise, the directory /local may be used as a standard to mount
a local file system that is located on the client’s host.

An NFS server can itself mount directories that are exported by other
servers. However, it is not allowed to export those directories to its own
clients. Instead, a client will have to explicitly mount such a directory from
the server that maintains it, as shown in Figure 5.25. This restriction comes
partly from simplicity. If a server could export a directory that it mounted
from another server, it would have to return special file handles that include
an identifier for a server. NFS does not support such file handles.

Figure 5.25: Mounting nested directories from multiple servers in NFS.

To explain this point in more detail, assume that server A hosts a file system
FSA from which it exports the directory /packages. This directory contains
a subdirectory /draw that acts as a mount point for a file system FSB that is
exported by server B and mounted by A. Let A also export /packages/draw to
its own clients, and assume that a client has mounted /packages into its local
directory /bin as shown in Figure 5.25.

If name resolution is iterative, then to resolve the name /bin/draw/install,
the client contacts server A when it has locally resolved /bin and requests A to
return a file handle for directory /draw. In that case, server A should return a
file handle that includes an identifier for server B, for only B can resolve the
rest of the path name, in this case /install. As we have said, this kind of name
resolution is not supported by NFS.
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Name resolution in earlier versions of NFS is strictly iterative in the sense
that only a single file name at a time can be looked up. In other words,
resolving a name such as /bin/draw/install requires three separate calls to the
NFS server. Moreover, the client is fully responsible for implementing the
resolution of a path name. NFSv4 also supports recursive name lookups. In
this case, a client can pass a complete path name to a server and request that
server to resolve it.

There is another peculiarity with NFS name lookups that has been solved
with the most recent version (NFSv4). Consider a file server hosting several
file systems. With the strict iterative name resolution, whenever a lookup is
done for a directory on which another file system was mounted, the lookup
would return the file handle of the directory. Subsequently reading that
directory would return its original content, not that of the root directory of the
mounted file system.

To explain, assume that in our previous example that both file systems FSA
and FSB are hosted by a single server. If the client has mounted /packages
into its local directory /bin, then looking up the file name draw at the server
would return the file handle for draw. A subsequent call to the server for
listing the directory entries of draw by means of readdir would then return
the list of directory entries that were originally stored in FSA in subdirectory
/packages/draw. Only if the client had also mounted file system FSB, would
it be possible to properly resolve the path name draw/install relative to /bin.

NFSv4 solves this problem by allowing lookups to cross mount points at a
server. In particular, lookup returns the file handle of the mounted directory
instead of that of the original directory. The client can detect that the lookup
has crossed a mount point by inspecting the file system identifier of the looked
up file. If required, the client can locally mount that file system as well.

A file handle is a reference to a file within a file system. It is independent
of the name of the file it refers to. A file handle is created by the server that is
hosting the file system and is unique with respect to all file systems exported
by the server. It is created when the file is created. The client is kept ignorant
of the actual content of a file handle; it is completely opaque. File handles
were 32 bytes in NFS version 2, but were variable up to 64 bytes in version 3
and 128 bytes in version 4. Of course, the length of a file handle is not opaque.

Ideally, a file handle is implemented as a true identifier for a file relative to
a file system. For one thing, this means that as long as the file exists, it should
have one and the same file handle. This persistence requirement allows a
client to store a file handle locally once the associated file has been looked
up by means of its name. One benefit is performance: as most file operations
require a file handle instead of a name, the client can avoid having to look
up a name repeatedly before every file operation. Another benefit of this
approach is that the client can now access the file regardless which (current)
name it has.
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Because a file handle can be locally stored by a client, it is also important
that a server does not reuse a file handle after deleting a file. Otherwise, a
client may mistakenly access the wrong file when it uses its locally stored file
handle.

Note that the combination of iterative name lookups and not letting a
lookup operation allow crossing a mount point introduces a problem with
getting an initial file handle. In order to access files in a remote file system,
a client will need to provide the server with a file handle of the directory
where the lookup should take place, along with the name of the file or
directory that is to be resolved. NFSv3 solves this problem through a separate
mount protocol, by which a client actually mounts a remote file system. After
mounting, the client is passed back the root file handle of the mounted file
system, which it can subsequently use as a starting point for looking up
names.

In NFSv4, this problem is solved by providing a separate operation
putrootfh that tells the server to solve all file names relative to the root file
handle of the file system it manages. The root file handle can be used to
look up any other file handle in the server’s file system. This approach has
the additional benefit that there is no need for a separate mount protocol.
Instead, mounting can be integrated into the regular protocol for looking up
files. A client can simply mount a remote file system by requesting the server
to resolve names relative to the file system’s root file handle using putrootfh.

Note 5.13 (Advanced: Automounting)
As we mentioned, the NFS naming model essentially provides users with their
own name space. Sharing in this model may become difficult if users name the
same file differently. One solution to this problem is to provide each user with a
local name space that is partly standardized, and subsequently mounting remote
file systems the same for each user.

Another problem with the NFS naming model has to do with deciding when a
remote file system should be mounted. Consider a large system with thousands
of users. Assume that each user has a local directory /home that is used to mount
the home directories of other users. For example, Alice’s home directory may
be locally available to her as /home/alice, although the actual files are stored on
a remote server. This directory can be automatically mounted when Alice logs
into her workstation. In addition, she may have access to Bob’s public files by
accessing Bob’s directory through /home/bob.

The question, however, is whether Bob’s home directory should also be
mounted automatically when Alice logs in. The benefit of this approach would be
that the whole business of mounting file systems would be transparent to Alice.
However, if this policy were followed for every user, logging in could incur a lot
of communication and administrative overhead. In addition, it would require
that all users are known in advance. A much better approach is to transparently
mount another user’s home directory on demand, that is, when it is first needed.
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On-demand mounting of a remote file system (or actually an exported direc-
tory) is handled in NFS by an automounter, which runs as a separate process
on the client’s machine. The principle underlying an automounter is relatively
simple. Consider a simple automounter implemented as a user-level NFS server
on a Unix operating system. (For other implementations, see [Callaghan, 2000]).

Assume that for each user, the home directories of all users are available
through the local directory /home, as described above. When a client machine
boots, the automounter starts with mounting this directory. The effect of this local
mount is that whenever a program attempts to access /home, the Unix kernel will
forward a lookup operation to the NFS client, which in this case, will forward the
request to the automounter in its role as NFS server, as shown in Figure 5.26.

Figure 5.26: A simple automounter for NFS.

For example, suppose that Alice logs in. The login program will attempt to
read the directory /home/alice to find information such as login scripts. The
automounter will thus receive the request to look up subdirectory /home/alice,
for which reason it first creates a subdirectory /alice in /home. It then looks up
the NFS server that exports Alice’s home directory to subsequently mount that
directory in /home/alice. At that point, the login program can proceed.

The problem with this approach is that the automounter will have to be
involved in all file operations to guarantee transparency. If a referenced file is not
locally available because the corresponding file system has not yet been mounted,
the automounter will have to know. In particular, it will need to handle all read
and write requests, even for file systems that have already been mounted. This
approach may incur a large performance problem. It would be better to have
the automounter only mount/unmount directories, but otherwise stay out of the
loop.

A simple solution is to let the automounter mount directories in a special
subdirectory, and install a symbolic link to each mounted directory. This approach
is shown in Figure 5.27.
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Figure 5.27: Using symbolic links with automounting.

In our example, the user home directories are mounted as subdirectories of
/tmp_mnt. When Alice logs in, the automounter mounts her home directory
in /tmp_mnt/home/alice and creates a symbolic link /home/alice that refers to
that subdirectory. In this case, whenever Alice executes a command such as ls

--l /home/alice the NFS server that exports Alice’s home directory is contacted
directly without further involvement of the automounter.

5.4 Attribute-based naming

Flat and structured names generally provide a unique and location-independent
way of referring to entities. Moreover, structured names have been partly
designed to provide a human-friendly way to name entities so that they can be
conveniently accessed. In most cases, it is assumed that the name refers to only
a single entity. However, location independence and human friendliness are
not the only criterion for naming entities. In particular, as more information
is being made available it becomes important to effectively search for entities.
This approach requires that a user can provide merely a description of what
he is looking for.

There are many ways in which descriptions can be provided, but a popular
one in distributed systems is to describe an entity in terms of (attribute, value)
pairs, generally referred to as attribute-based naming. In this approach,
an entity is assumed to have an associated collection of attributes. Each
attribute says something about that entity. By specifying which values a
specific attribute should have, a user essentially constrains the set of entities
that he is interested in. It is up to the naming system to return one or more
entities that meet the user’s description. In this section we take a closer look
at attribute-based naming systems.

Directory services

Attribute-based naming systems are also known as directory services, whereas
systems that support structured naming are generally called naming systems.
With directory services, entities have a set of associated attributes that can be
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used for searching. In some cases, the choice of attributes can be relatively
simple. For example, in an e-mail system, messages can be tagged with
attributes for the sender, recipient, subject, and so on. However, even in the
case of e-mail, matters become difficult when other types of descriptors are
needed, as is illustrated by the difficulty of developing filters that will allow
only certain messages (based on their descriptors) to be passed through.

What it all boils down to is that designing an appropriate set of attributes
is not trivial. In most cases, attribute design has to be done manually. Even if
there is consensus on the set of attributes to use, practice shows that setting
the values consistently by a diverse group of people is a problem by itself, as
many will have experienced when accessing music and video databases on
the Internet.

To alleviate some of these problems, research has been conducted on
unifying the ways that resources can be described. In the context of distributed
systems, one particularly relevant development is the resource description
framework (RDF). Fundamental to the RDF model is that resources are
described as triplets consisting of a subject, a predicate, and an object. For
example, (Person, name, Alice) describes a resource named Person whose name
is Alice. In RDF, each subject, predicate, or object can be a resource itself.
This means that Alice may be implemented as a reference to a file that can
be subsequently retrieved. In the case of a predicate, such a resource could
contain a textual description of that predicate. Resources associated with
subjects and objects can be anything. References in RDF are essentially URLs.

If resource descriptions are stored, it becomes possible to query that
storage in a way that is common for many attribute-based naming systems.
For example, an application could ask for the information associated with a
person named Alice. Such a query would return a reference to the person
resource associated with Alice. This resource can then subsequently be fetched
by the application.

In this example, the resource descriptions are stored at a central location.
There is no reason why the resources should reside at the same location as
well. However, not having the descriptions in the same place may incur a
serious performance problem. Unlike structured naming systems, looking up
values in an attribute-based naming system essentially requires an exhaustive
search through all descriptors. (Various techniques can be applied to avoid
such exhaustive searches, one obvious being indexing.) When considering
performance, an exhaustive search may be less of problem within a single,
nondistributed data store, but simply sending a search query to hundreds of
servers that jointly implement a distributed data store is generally not such
a good idea. In the following, we will take a look at different approaches to
solving this problem in distributed systems.
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Hierarchical implementations: LDAP

A common approach to tackling distributed directory services is to combine
structured naming with attribute-based naming. This approach has been
widely adopted, for example, in Microsoft’s Active Directory service and other
systems. Many of these systems use, or rely on the lightweight directory
access protocol commonly referred simply as LDAP. The LDAP directory
service has been derived from OSI’s X.500 directory service. As with many OSI
services, the quality of their associated implementations hindered widespread
use, and simplifications were needed to make it useful. Detailed information
on LDAP can be found in Arkills [2003].

Conceptually, an LDAP directory service consists of a number of records,
usually referred to as directory entries. A directory entry is comparable
to a resource record in DNS. Each record is made up of a collection of (at-
tribute, value) pairs, where each attribute has an associated type. A distinction
is made between single-valued attributes and multiple-valued attributes. The
latter typically represent arrays and lists. As an example, a simple direc-
tory entry identifying the network addresses of some general servers from
Figure 5.23 is shown in Figure 5.28.

Attribute Abbr. Value
Country C NL
Locality L Amsterdam
Organization O VU University
OrganizationalUnit OU Computer Science
CommonName CN Main server
Mail_Servers – 137.37.20.3, 130.37.24.6, 137.37.20.10
FTP_Server – 130.37.20.20
WWW_Server – 130.37.20.20

Figure 5.28: A simple example of an LDAP directory entry using LDAP
naming conventions.

In our example, we have used a naming convention described in the
LDAP standards, which applies to the first five attributes. The attributes
Organization and OrganizationUnit describe, respectively, the organization and
the department associated with the data that are stored in the record. Likewise,
the attributes Locality and Country provide additional information on where
the entry is stored. The CommonName attribute is often used as an (ambiguous)
name to identify an entry within a limited part of the directory. For example,
the name “Main server” may be enough to find our example entry given the
specific values for the other four attributes Country, Locality, Organization, and
OrganizationalUnit. In our example, only attribute Mail_Servers has multiple
values associated with it. All other attributes have only a single value.

The collection of all directory entries in an LDAP directory service is

downloaded by OLEXANDER.PERIG@GMAIL.COM DS 3.02



286 CHAPTER 5. NAMING

called a directory information base (DIB). An important aspect of a DIB
is that each record is uniquely named so that it can be looked up. Such a
globally unique name appears as a sequence of naming attributes in each
record. Each naming attribute is called a relative distinguished name, or
RDN for short. In our example in Figure 5.28 the first five attributes are
all naming attributes. Using the conventional abbreviations for representing
naming attributes in LDAP, as shown in Figure 5.28 the attributes Country,
Organization, and OrganizationalUnit could be used to form the globally unique
name /C = NL/O = VU University/OU = Computer Science. analogous to the
DNS name nl.vu.cs.

As in DNS, the use of globally unique names by listing RDNs in sequence,
leads to a hierarchy of the collection of directory entries, which is referred to
as a directory information tree (DIT). A DIT essentially forms the naming
graph of an LDAP directory service in which each node represents a directory
entry. In addition, a node may also act as a directory in the traditional sense,
in that there may be several children for which the node acts as parent. To
explain, consider the naming graph as partly shown in Figure 5.29. (Recall
that labels are associated with edges.)

(a)

Attribute Value Attribute Value
Locality Amsterdam Locality Amsterdam

Organization VUUniversity Organization VUUniversity

OrganizationalUnit ComputerScience OrganizationalUnit ComputerScience

CommonName Mainserver CommonName Mainserver

HostName star HostName zephyr

HostAddress 192.31.231.42 HostAddress 137.37.20.10

(b)

Figure 5.29: (a) Part of a directory information tree. (b) Two directory entries
having HostName as RDN.

Node N corresponds to the directory entry shown in Figure 5.28. At the
same time, this node acts as a parent to a number of other directory entries
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that have an additional naming attribute HostName that is used as an RDN. For
example, such entries may be used to represent hosts as shown in Figure 5.29.

A node in an LDAP naming graph can thus simultaneously represent a
directory in the traditional sense as we discussed previously, as well as an
LDAP record. This distinction is supported by two different lookup operations.
The read operation is used to read a single record given its path name in the
DIT. In contrast, the list operation is used to list the names of all outgoing
edges of a given node in the DIT. Each name corresponds to a child node of
the given node. Note that the list operation does not return any records; it
merely returns names. In other words, calling read with as input the name

/C = NL/O = VU University/OU = Computer Science/CN = Main server

will return the record shown in Figure 5.29, whereas calling list will return
the names star and zephyr from the entries shown in Figure 5.29 as well as the
names of other hosts that have been registered in a similar way.

Implementing an LDAP directory service proceeds in much the same way
as implementing a naming service such as DNS, except that LDAP supports
more lookup operations as we will discuss shortly. When dealing with a large-
scale directory, the DIT is usually partitioned and distributed across several
servers, known as directory service agents (DSA). Each part of a partitioned
DIT thus corresponds to a zone in DNS. Likewise, each DSA behaves very
much the same as a normal name server, except that it implements a number
of typical directory services, such as advanced search operations.

Clients are represented by what are called directory user agents, or simply
DUA. A DUA is similar to a name resolver in structured-naming services. A
DUA exchanges information with a DSA according to a standardized access
protocol.

What makes an LDAP implementation different from a DNS implementa-
tion are the facilities for searching through a DIB. In particular, facilities are
provided to search for a directory entry given a set of criteria that attributes
of the searched entries should meet. For example, suppose that we want a list
of all main servers at VU University. Using the notation defined in Howes
[1997], such a list can be returned using a search operation like

search(‘‘(C=NL)(O=VU University)(OU=*)(CN=Main server)’’)

In this example, we have specified that the place to look for main servers
is the organization named VU_University in country NL, but that we are not
interested in a particular organizational unit. However, each returned result
should have the CN attribute equal to Main_server.

As we already mentioned, searching in a directory service is generally an
expensive operation. For example, to find all main servers at VU University
requires searching all entries at each department and combining the results
in a single answer. In other words, we will generally need to access several
leaf nodes of a DIT in order to get an answer. In practice, this also means that
several DSAs need to be accessed. In contrast, naming services can often be
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implemented in such a way that a lookup operation requires accessing only a
single leaf node.

This whole setup of LDAP can be taken one step further by allowing
several trees to co-exist, while also being linked to each other. This ap-
proach is followed in Microsoft’s Active Directory leading to a forest of LDAP
domains [Allen and Lowe-Norris, 2003]. Obviously, searching in such an
organization can be overwhelmingly complex. To circumvent some of the
scalability problems, Active Directory usually assumes there is a global index
server (called a global catalog) that can be searched first. The index will
indicate which LDAP domains need to be searched further.

Although LDAP by itself already exploits hierarchy for scalability, it is
common to combine LDAP with DNS. For example, every tree in LDAP needs
to be accessible at the root (known in Active Directory as a domain controller).
The root is often known under a DNS name, which, in turn, can be found
through an appropriate SRV record as we explained above.

Decentralized implementations

Notably with the advent of peer-to-peer systems, researchers have also been
looking for solutions for decentralized attribute-based naming systems. In
particular, peer-to-peer systems are often used to store files. Initially, files
could not be searched—they could only be looked up by their key. However,
having the possibility to search for a file based on descriptors can be extremely
convenient, where each descriptor is nothing but an (attribute, value) pair.
Obviously, querying every node in a peer-to-peer system to see if it contains
a file matching one or more of such pairs is infeasible. What we need is a
mapping of (attribute, value) pairs to index servers, which, in turn, point to
files matching those pairs.

Using a distributed index

Let us first look at the situation of building a (distributed) index. The basic
idea is that a search query is formulated as a list of (attribute, value) pairs, just
as in the case of our LDAP examples. The result should be a list of (references
to) entities that match all pairs. In the case of a peer-to-peer system storing
files, a list of keys to relevant files may be returned, after which the client can
look up each of those files using the returned keys.

A straightforward approach toward a distributed index is the following.
Assume there are d different attributes. In that case we can use a server for
each of the d attributes, where a server for attribute A maintains a set of (E,val)
pairs for each entity E that has the value val for attribute A. A search query
such as

search(‘‘(Country=NL)(Organization=VU University)
(OrganizationalUnit=*)(CommonName=Main server)’’)
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would be sent to the servers for Country, Organization, and CommonName,
respectively, after which the client would need to see which entities occur in all
three sets as returned by the servers. To prevent that a server needs to maintain
a very large set of entities, the set for each server can be further partitioned
and distributed across several subservers, each subserver associated with the
same attribute.

More precisely, if we have a set of attributes {a1, . . . , aN}, then for each
attribute ak we associate a set Sk = {Sk1, . . . , Sknk} of nk servers. Assuming that
an attribute ak takes values from a set Rk, we construct a global mapping F
such that

F(ak, v) = Skj with Skj ∈ Sk and v ∈ Rk

In this example, server Skj would keep track of each key associated with a file
having ak = v. The beauty of this scheme is its simplicity. If L(ak, v) is the
set of keys returned by server F(ak, v), then a query can be formulated as a
logical expression such as(

F(a1, v1) ∧ F(a2, v2)
)
∨ F(a3, v3)

which can then be processed on the client side by constructing the set(
L(a1, v1) ∩ L(a2, v2)

)
∪ L(a3, v3)

Unfortunately, there are important drawbacks to this scheme. First, any
query involving k attributes requires contacting k index servers, which may
incur significant communication costs. Furthermore, and related, is that the
client is required to process the sets returned by the index servers. Just
imagine that each file has two attributes firstName and lastName, respectively,
and that a client is looking for the file owned by Pheriby Smith. Now, although
Pheriby may be quite unique for a first name, Smith definitely is not. However,
our poor client will have to receive perhaps millions of keys of files for which
lastName = Smith, while there may actually be only a handful of files for
which firstName = Pheriby. Thirdly, although this scheme does allow to leave
certain attributes unspecified (by simply not mentioning them in the query),
it does not easily support range queries, such as, price = [1000− 2500].

Space-filling curves

A common approach to implementing decentralized attribute-based naming
systems is to use what are known as space-filling curves. The basic idea is to
map the N-dimensional space covered by the N attributes {a1, . . . , aN} into a
single dimension, and then use, for example, a simple hashing technique to
distribute the resultant space among index servers. One of the key issues is to
have (attribute, value) pairs that are “close” to each other be handled by the
same index server.
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Let us make matters concrete and look into one popular case, namely
Hilbert space-filling curves (see, for example, Lawder and King [2000]). These
are easiest to explain by looking only at two dimensions, that is, considering
only two distinct attributes. The possible values that each attribute can have
corresponds to one axis in a two-dimensional space. Without loss of generality,
we assume that each attribute takes on values in the interval [0, 1). As a first
approximation of the square, we divide it into four quadrants, as shown in
Figure 5.30(a). All data values (x, y) with 0 ≤ x, y < 0.5 are associated with
index 0. Values (x, y) with 0.5 ≤ x, y < 1.0 are associated with index 2.

(a) (b)

Figure 5.30: Reducing a two-dimensional space to a single dimension through
a Hilbert space-filling curve of (a) order 1, and (b) order 4.

We can repeat this procedure recursively for each subsquare: divide it
into four smaller squares and connect the smaller squares through a single
line. Using rotation and reflection, we make sure that this line can be nicely
connected to the one in the previously neighboring larger subsquare (which
has also been divided into smaller squares). To illustrate, where Figure 5.30(a)
shows a Hilbert curve of order 1, Figure 5.30(b) shows a curve of order 4 with
256 indices. In general, a Hilbert curve of order k connects 22k subsquares,
and thus has also 22k indices. There are various ways in which we can
systematically draw a curve through a two-dimensional space that has been
partitioned into equally sized squares. Furthermore, the process can be easily
expanded to higher dimensions, as explained by Sagan [1994] and Bader
[2013].

An important property of space-filling curves is that they preserve locality:
two indices that are close to each other on the curve correspond to two
points that are also close to each other in the multidimensional space. (Note
that the reverse is not always true: two points close to each other in the
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multidimensional space need not necessarily lie close to each other on the
curve.)

To complete the story, several things need to be done. First, attribute
values need to indexed. Assume that we are dealing with a total of N possible
attributes {a1, . . . , aN}, and that each entity assigns a value to each of these N
attributes (possibly the equivalent of a “don’t care” value). To keep matters
simple, we assume that each attribute value is normalized to a value in the
interval [0, 1). Then clearly, an entity E having the tuple of values (v1, . . . , vN)
is associated with a real-valued coordinate in an N-dimensional space, in turn
uniquely associated with an N-dimensional subsquare as we discussed for the
two-dimensional case. The center of such a subsquare corresponds to an index
on the associated Hilbert space-filling curve, and is now the index associated
with entity E. Of course, multiple entities whose associated coordinates fall in
the same subsquare will all have the same index. To avoid such collisions as
much as possible, we need to use high-ordered space-filling curves. Orders of
32 or 64 are not uncommon.

Second, we also need to be able to search for entities. The principle of
searching for entities based on their attribute values should now be clear.
Suppose we were looking for files whose two attribute values a1 and a2 lie
in intervals [v1l , v1u) and [v2l , v2u), respectively (with vil < viu). Clearly, this
delineates a rectangular region through which the curve passes, and all files
indexed by those segments of the curve that intersect with that region match
the search criterion. We therefore need an operation that returns a series of
curve-related indices given a region (expressed in terms of subsquares) in
the associated N-dimensional space. Such an operation is clearly dependent
on which space-filling curve has been used, but interestingly, need not be
dependent on actual entities.

Finally, we need to maintain (references to) the entities associated with
indices. One approach, used in the Squid system [Schmidt and Parashar,
2008], is to use a Chord ring. In Squid, the index space is chosen to be the
same as that of the Chord ring, that is, both use m-bit identifiers. Then clearly,
the Chord node responsible for index i will store (references to) the entities
indexed by i.

Note 5.14 (More information: Other examples)
Decentralized implementations of attribute-based naming systems have received
a lot of attention. The ones based on space-filling curves are relatively popular,
but several alternatives have been proposed as well. Let us take a look at some
representative examples to shed some light on the design space.

Attribute-value trees Here is another example where (attribute, value) pairs
are supported by a DHT-based system. First, assume that queries consist of a
conjunction of pairs as with LDAP, that is, a user specifies a list of attributes,
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along with the unique value he wants to see for every attribute. Such single-
valued queries are supported in the INS/Twine system [Balazinska et al., 2002].
Each entity (referred to as a resource) is assumed to be described by means of
possibly hierarchically organized attributes such as shown in Figure 5.31. Each
such description is translated into an attribute-value tree (AVTree) which is then
used as the basis for an encoding that maps well onto a DHT-based system.

Figure 5.31: (a) A general description of a resource. (b) Its representation
as an AVTree.

The main issue is to transform the AVTrees again into a collection of keys
that can be looked up in a DHT system. In this case, every path originating in
the root is assigned a unique hash value, where a path description starts with
a link (representing an attribute), and ends either in a node (value), or another
link. Taking Figure 5.31 as our example, the following keys of all such paths are
considered:

Key Computed as
h1: hash(type-book)
h2: hash(type-book-author)
h3: hash(type-book-author-Tolkien)
h4: hash(type-book-title)
h5: hash(type-book-title-LOTR)
h6: hash(genre-fantasy)

A node responsible for hash value hi will keep (a reference to) the actual
resource. In our example, this may lead to six nodes storing information on
Tolkien’s Lord of the Rings. However, the benefit of this redundancy is that it will
allow supporting partial queries. For example, consider a query such as “Return
books written by Tolkien.” This query is translated into the AVTree shown in
Figure 5.32 leading to computing the following three hashes:

h1: hash(type-book)
h2: hash(type-book-author)
h3: hash(type-book-author-Tolkien)

These values will be sent to nodes that store information on Tolkien’s books,
and will at least return Lord of the Rings. Note that a hash such as h1 is rather
general and will be generated often. These type of hashes can be filtered out of
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the system. Moreover, it is not difficult to see that only the most specific hashes
need to be evaluated.

Figure 5.32: (a) The resource description of a query. (b) Its representation
as an AVTree.

SWORD: including range queries Let us take a look at queries that can contain
range specifications for attribute values. We discuss a solution adopted in the
SWORD resource discovery system [Oppenheimer et al., 2005].

In SWORD, (attribute, value) pairs are first transformed into a key for a DHT.
These pairs always contain a single value; only queries may contain value ranges
for attributes. When computing the key (by means of a hash) the name of the
attribute and its value are kept separate. Specific bits in the key will identify the
attribute name, while others identify its value. In addition, the key will contain
a number of random bits to guarantee uniqueness among all keys that need to
be generated. In this way, the space of attributes is conveniently partitioned: if
n bits are reserved to code attribute names, 2n different server groups can be
used, one group for each attribute name. Likewise, by using m bits to encode
values, a further partitioning per server group can be applied to store specific
(attribute, value) pairs. DHTs are used only for distributing attribute names.

For each attribute name, the possible range of its value is partitioned into
subranges and a single server is assigned to each subrange. To explain, consider
a resource description with two attributes: a1 taking values in the range [1..10]
and a2 taking values in the range [101...200]. Assume there are two servers for
a1: S11 takes care of recording values of a1 in [1..5], and S12 for values in [6..10].
Likewise, server S21 records values for a2 in range [101..150] and server S22

for values in [151..200]. Then, when an entity E has associated attribute values
(a1 = 7, a2 = 175), server S12 and server S22 will maintain a copy of, or a reference
to E.

The advantage of this scheme is that range queries can be easily supported.
When a query is issued to return resources that have a2 lying between 165 and
189, the query can be forwarded to server S22 who can then return the resources
that match the query range. The drawback, however, is that updates need to be
sent to multiple servers. Moreover, it is not immediately clear how well the load is
balanced between the various servers. In particular, if certain range queries turn
out to be very popular, specific servers will receive a high fraction of all queries.
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Summarizing remarks There are indeed many different ways of supporting
attribute-based naming systems in a decentralized fashion. The essence in all
cases is to assign attributes to servers so that clients know where to direct their
queries, yet at the same time make sure that there is a balance in the load for the
set of servers. In this light, supporting range queries requires special attention, if
only to decide, as in SWORD, which server is going to be responsible for which
subrange.

In practice, we see that when dealing with N attributes many systems model
the collection of (attribute, value) pairs as an N-dimensional space in which each
entity is represented by a unique point in that space. Conceptually, a search
addresses a subspace and leads to identifying the servers responsible for that
subspace. In the simplest case, we assign each attribute to one server leading to
O(N) servers. In this scheme, a query addressing k attributes needs to be sent
to k servers, while the querying client needs to combine the results. We have
discussed this case previously. The problem is to divide the ranges per attribute
among subservers such that we have a reasonable balance of the workload. A
solution to this problem is discussed in [Bharambe et al., 2004].

Instead of letting a client combine results, we can let servers collaborate. To
this end, the N-dimensional space is divided into subspaces by splitting each
dimension d into nd intervals. This splitting leads to a total of n1 × · · · × nN
subspaces where each subspace is assigned to a separate server. Even with nd = 2
for each dimension, we will face a total of O(2N) servers. Using space-filling
curves, we can reduce the number of dimensions to one, and use a separate
technique for deciding which N-dimensional subspace is served by which server.
Practice indicates that load balancing may become an issue. An alternative
solution in which the number of dimensions is still reduced, but larger than one,
while also maintaining load balancing, has been built into HyperDex [Escriva
et al., 2012]. The authors also address the problem of replication and consistency
in case the naming system at the same time stores the entities which it indexes. In
that case, whenever a server indexes an entity E, it will have to be copied to the
respective server.

We finally point to an attribute-based naming system that integrates naming
with resource selection service [Stratan et al., 2012]. Again, the attribute space is
modeled by an N-dimensional space in which each resource is associated with a
coordinate. In this situation, each resource maintains a link to a another resource,
but one that is responsible for a subspace of exponentially increasing size. The net
effect is that each resource needs to have only a fixed number of neighbors, while
routing a query to the relevant subspace takes only a linear number of steps. The
organization is akin to the use of finger tables in Chord.

5.5 Summary

Names are used to refer to entities. Essentially, there are three types of names.
An address is the name of an access point associated with an entity, also
simply called the address of an entity. An identifier is another type of name.
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It has three properties: each entity is referred to by exactly one identifier, an
identifier refers to only one entity, and is never assigned to another entity.
Finally, human-friendly names are targeted to be used by humans and as such
are represented as character strings. Given these types, we make a distinction
between flat naming, structured naming, and attribute-based naming.

Systems for flat naming essentially need to resolve an identifier to the
address of its associated entity. This locating of an entity can be done in
different ways. The first approach is to use broadcasting or multicasting. The
identifier of the entity is broadcast to every process in the distributed system.
The process offering an access point for the entity responds by providing an
address for that access point. Obviously, this approach has limited scalability.

A second approach is to use forwarding pointers. Each time an entity
moves to a next location, it leaves behind a pointer telling where it will be
next. Locating the entity requires traversing the path of forwarding pointers.
To avoid large chains of pointers, it is important to reduce chains periodically

A third approach is to allocate a home to an entity. Each time an entity
moves to another location, it informs its home where it is. Locating an entity
proceeds by first asking its home for the current location.

A fourth approach is to organize all nodes into a structured peer-to-peer
system, and systematically assign nodes to entities taking their respective
identifiers into account. By subsequently devising a routing algorithm by
which lookup requests are moved toward the node responsible for a given
entity, efficient and robust name resolution is possible.

A fifth approach is to build a hierarchical search tree. The network is
divided into nonoverlapping domains. Domains can be grouped into higher-
level (nonoverlapping) domains, and so on. There is a single top-level domain
that covers the entire network. Each domain at every level has an associated
directory node. If an entity is located in a domain D, the directory node of the
next higher-level domain will have a pointer to D. A lowest-level directory
node stores the address of the entity. The top-level directory node knows
about all entities.

Structured names are easily organized in a name space. A name space
can be represented by a naming graph in which a node represents a named
entity and the label on an edge represents the name under which that entity
is known. A node having multiple outgoing edges represents a collection of
entities and is also known as a context node or directory. Large-scale naming
graphs are often organized as rooted acyclic directed graphs.

Naming graphs are convenient to organize human-friendly names in a
structured way. An entity can be referred to by a path name. Name resolution
is the process of traversing the naming graph by looking up the components
of a path name, one at a time. A large-scale naming graph is implemented by
distributing its nodes across multiple name servers. When resolving a path
name by traversing the naming graph, name resolution continues at the next
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name server as soon as a node is reached implemented by that server.
More problematic are attribute-based naming schemes in which entities are

described by a collection of (attribute, value) pairs. Queries are also formulated
as such pairs, essentially requiring an exhaustive search through all descriptors.
Such a search is feasible only when the descriptors are stored in a single
database. However, alternative solutions have been devised by which the pairs
are mapped onto DHT-based systems, essentially leading to a distribution of
the collection of entity descriptors. Using space-filling curves, we can then
make different nodes responsible for different values of an attribute which
helps in effectively distributing the load among the nodes in the case of search
operations.
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Chapter 6

Coordination

In the previous chapters, we have looked at processes and communication
between processes. While communication is important, it is not the entire
story. Closely related is how processes cooperate and synchronize with one
another. Cooperation is partly supported by means of naming, which allows
processes to at least share resources, or entities in general.

In this chapter, we mainly concentrate on how processes can synchronize
and coordinate their actions. For example, it is important that multiple
processes do not simultaneously access a shared resource, such as a file, but
instead cooperate in granting each other temporary exclusive access. Another
example is that multiple processes may sometimes need to agree on the
ordering of events, such as whether message m1 from process P was sent
before or after message m2 from process Q.

Synchronization and coordination are two closely related phenomena. In
process synchronization we make sure that one process waits for another to
complete its operation. When dealing with data synchronization, the problem
is to ensure that two sets of data are the same. When it comes to coordination,
the goal is to manage the interactions and dependencies between activities
in a distributed system [Malone and Crowston, 1994]. From this perspective,
one could state that coordination encapsulates synchronization.

As it turns out, coordination in distributed systems is often much more
difficult compared to that in uniprocessor or multiprocessor systems. The
problems and solutions that are discussed in this chapter are, by their nature,
rather general, and occur in many different situations in distributed systems.

We start with a discussion of the issue of synchronization based on actual
time, followed by synchronization in which only relative ordering matters
rather than ordering in absolute time.

In many cases, it is important that a group of processes can appoint one
process as a coordinator, which can be done by means of election algorithms.
We discuss various election algorithms in a separate section. Before that,
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we look into a number of algorithms for coordinating mutual exclusion to a
shared resource. As a special class of coordination problems, we also dive into
location systems by which we place a process in a multidimensional plane.
Such placements come in handy when dealing with very large distributed
systems.

We already came across publish-subscribe systems, but have not yet dis-
cussed in any detail how we actually match subscriptions to publications.
There are many ways to do this and we look at centralized as well as decen-
tralized implementations.

Finally, we consider three different gossip-based coordination problems:
aggregation, peer sampling, and overlay construction.

Distributed algorithms come in all sorts and flavors and have been devel-
oped for very different types of distributed systems. Many examples (and
further references) can be found in Andrews [2000], Cachin et al. [2011],
and Fokkink [2013]. More formal approaches to a wealth of algorithms can
be found in text books from Attiya and Welch [2004], Lynch [1996], Santoro
[2007], and Tel [2000].

6.1 Clock synchronization

In a centralized system, time is unambiguous. When a process wants to know
the time, it simply makes a call to the operating system. If process A asks for
the time, and then a little later process B asks for the time, the value that B
gets will be higher than (or possibly equal to) the value A got. It will certainly
not be lower. In a distributed system, achieving agreement on time is not
trivial.

Just think, for a moment, about the implications of the lack of global time
on the Unix make program, as a simple example. Normally, in Unix large
programs are split up into multiple source files, so that a change to one source
file requires only one file to be recompiled, not all the files. If a program
consists of 100 files, not having to recompile everything because one file has
been changed greatly increases the speed at which programmers can work.

The way make normally works is simple. When the programmer has
finished changing all the source files, he runs make, which examines the times
at which all the source and object files were last modified. If the source file
input.c has time 2151 and the corresponding object file input.o has time
2150, make knows that input.c has been changed since input.o was created,
and thus input.c must be recompiled. On the other hand, if output.c has
time 2144 and output.o has time 2145, no compilation is needed. Thus make
goes through all the source files to find out which ones need to be recompiled
and calls the compiler to recompile them.

Now imagine what could happen in a distributed system in which there
was no global agreement on time. Suppose that output.o has time 2144 as
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above, and shortly thereafter output.c is modified but is assigned time 2143
because the clock on its machine is slightly behind, as shown in Figure 6.1.
Make will not call the compiler. The resulting executable binary program will
then contain a mixture of object files from the old sources and the new sources.
It will probably crash and the programmer will go crazy trying to understand
what is wrong with the code.

Figure 6.1: When each machine has its own clock, an event that occurred after
another event may nevertheless be assigned an earlier time.

There are many more examples where an accurate account of time is
needed. The example above can easily be reformulated to file timestamps in
general. In addition, think of application domains such as financial brokerage,
security auditing, and collaborative sensing, and it will become clear that
accurate timing is important. Since time is so basic to the way people think
and the effect of not having all the clocks synchronized can be so dramatic, it
is fitting that we begin our study of synchronization with the simple question:
Is it possible to synchronize all the clocks in a distributed system? The answer
is surprisingly complicated.

Physical clocks

Nearly all computers have a circuit for keeping track of time. Despite the
widespread use of the word “clock” to refer to these devices, they are not
actually clocks in the usual sense. Timer is perhaps a better word. A computer
timer is usually a precisely machined quartz crystal. When kept under tension,
quartz crystals oscillate at a well-defined frequency that depends on the kind
of crystal, how it is cut, and the amount of tension. Associated with each
crystal are two registers, a counter and a holding register. Each oscillation of
the crystal decrements the counter by one. When the counter gets to zero, an
interrupt is generated and the counter is reloaded from the holding register.
In this way, it is possible to program a timer to generate an interrupt 60 times
a second, or at any other desired frequency. Each interrupt is called one clock
tick.

When the system is booted, it usually asks the user to enter the date and
time, which is then converted to the number of ticks after some known starting
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date and stored in memory. Most computers have a special battery-backed
up CMOS RAM so that the date and time need not be entered on subsequent
boots. At every clock tick, the interrupt service procedure adds one to the
time stored in memory. In this way, the (software) clock is kept up to date.

With a single computer and a single clock, it does not matter much if this
clock is off by a small amount. Since all processes on the machine use the
same clock, they will still be internally consistent. For example, if the file
input.c has time 2151 and file input.o has time 2150, make will recompile the
source file, even if the clock is off by 2 and the true times are 2153 and 2152,
respectively. All that really matters are the relative times.

As soon as multiple CPUs are introduced, each with its own clock, the sit-
uation changes radically. Although the frequency at which a crystal oscillator
runs is usually fairly stable, it is impossible to guarantee that the crystals in
different computers all run at exactly the same frequency. In practice, when
a system has n computers, all n crystals will run at slightly different rates,
causing the (software) clocks gradually to get out of sync and give different
values when read out. This difference in time values is called clock skew. As
a consequence of this clock skew, programs that expect the time associated
with a file, object, process, or message to be correct and independent of the
machine on which it was generated (i.e., which clock it used) can fail, as we
saw in the make example above.

In some systems (e.g., real-time systems), the actual clock time is important.
Under these circumstances, external physical clocks are needed. For reasons of
efficiency and redundancy, multiple physical clocks are generally considered
desirable, which yields two problems: (1) how do we synchronize them with
real-world clocks, and (2) how do we synchronize the clocks with each other?

Note 6.1 (More information: Determining real time)
Before answering these questions, let us digress slightly to see how time is
actually measured. It is not nearly as easy as one might think, especially when
high accuracy is required. Since the invention of mechanical clocks in the 17th
century, time has been measured astronomically. Every day, the sun appears to
rise on the eastern horizon, then climbs to a maximum height in the sky, and
finally sinks in the west. The event of the sun’s reaching its highest apparent
point in the sky is called the transit of the sun. This event occurs at about noon
each day. The interval between two consecutive transits of the sun is called the
solar day. Since there are 24 hours in a day, each containing 3600 seconds, the
solar second is defined as exactly 1/86400th of a solar day. The geometry of the
mean solar day calculation is shown in Figure 6.2.

In the 1940s, it was established that the period of the earth’s rotation is not
constant. The earth is slowing down due to tidal friction and atmospheric drag.
Based on studies of growth patterns in ancient coral, geologists now believe that
300 million years ago there were about 400 days per year. The length of the year
(the time for one trip around the sun) is not thought to have changed; the day has
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simply become longer. In addition to this long-term trend, short-term variations in
the length of the day also occur, probably caused by turbulence deep in the earth’s
core of molten iron. These revelations lead astronomers to compute the length
of the day by measuring a large number of days and taking the average before
dividing by 86,400. The resulting quantity was called the mean solar second.

Figure 6.2: Computation of the mean solar day.

With the invention of the atomic clock in 1948, it became possible to measure
time much more accurately, and independent of the wiggling and wobbling of the
earth, by counting transitions of the cesium 133 atom. The physicists took over
the job of timekeeping from the astronomers and defined the second to be the
time it takes the cesium 133 atom to make exactly 9,192,631,770 transitions. The
choice of 9,192,631,770 was made to make the atomic second equal to the mean
solar second in the year of its introduction. Currently, several laboratories around
the world have cesium 133 clocks. Periodically, each laboratory tells the Bureau
International de l’Heure (BIH) in Paris how many times its clock has ticked. The
BIH averages these to produce International Atomic Time, which is abbreviated
TAI. Thus TAI is just the mean number of ticks of the cesium 133 clocks since
midnight on Jan. 1, 1958 (the beginning of time) divided by 9,192,631,770.

Although TAI is highly stable and available to anyone who wants to go to the
trouble of buying a cesium clock, there is a serious problem with it; 86,400 TAI
seconds is now about 3 msec less than a mean solar day (because the mean solar
day is getting longer all the time). Using TAI for keeping time would mean that
over the course of the years, noon would get earlier and earlier, until it would
eventually occur in the wee hours of the morning. People might notice this and
we could have the same kind of situation as occurred in 1582 when Pope Gregory
XIII decreed that 10 days be omitted from the calendar. This event caused riots in
the streets because landlords demanded a full month’s rent and bankers a full
month’s interest, while employers refused to pay workers for the 10 days they did
not work, to mention only a few of the conflicts. The Protestant countries, as a
matter of principle, refused to have anything to do with papal decrees and did
not accept the Gregorian calendar for 170 years.
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BIH solves the problem by introducing leap seconds whenever the discrepancy
between TAI and solar time grows to 800 msec. The use of leap seconds is
illustrated in Figure 6.3. This correction gives rise to a time system based on
constant TAI seconds but which stays in phase with the apparent motion of the
sun. This time system is known as UTC.

Figure 6.3: TAI seconds are of constant length, unlike solar seconds. Leap
seconds are introduced when necessary to keep in phase with the sun.

Most electric power companies synchronize the timing of their 60-Hz or 50-Hz
clocks to UTC, so when BIH announces a leap second, the power companies raise
their frequency to 61 Hz or 51 Hz for 60 or 50 sec, to advance all the clocks in their
distribution area. Since 1 sec is a noticeable interval for a computer, an operating
system that needs to keep accurate time over a period of years must have special
software to account for leap seconds as they are announced (unless they use the
power line for time, which is usually too crude). The total number of leap seconds
introduced into UTC so far is about 30.

The basis for keeping global time is a called Universal Coordinated Time,
but is abbreviated as UTC. UTC is the basis of all modern civil timekeeping
and is a worldwide standard. To provide UTC to people who need precise
time, some 40 shortwave radio stations around the world broadcast a short
pulse at the start of each UTC second. The accuracy of these stations is about
± 1 msec, but due to random atmospheric fluctuations that can affect the
length of the signal path, in practice the accuracy is no better than ± 10 msec.

Several earth satellites also offer a UTC service. The Geostationary Envi-
ronment Operational Satellite can provide UTC accurately to 0.5 msec, and
some other satellites do even better. By combining receptions from several
satellites, ground time servers can be built offering an accuracy of 50 nsec.
UTC receivers are commercially available and many computers are equipped
with one.

Clock synchronization algorithms

If one machine has a UTC receiver, the goal becomes keeping all the other
machines synchronized to it. If no machines have UTC receivers, each machine
keeps track of its own time, and the goal is to keep all the machines together
as well as possible. Many algorithms have been proposed for doing this
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synchronization. Surveys are provided by Ramanathan et al. [1990], Horauer
[2004], and Shin et al. [2011].

All clocks are based on some harmonic oscillator: an object that resonates
at a certain frequency and from which we can subsequently derive time.
Atomic clocks are based on the transitions of the cesium 133 atom, which is
not only very high, but also very constant. Hardware clocks in most computers
use a crystal oscillator based on quartz, which is also capable of producing
a very high, stable frequency, although not as stable as that of atomic clocks.
A software clock in a computer is derived from that computer’s hardware
clock. In particular, the hardware clock is assumed to cause an interrupt f
times per second. When this timer goes off, the interrupt handler adds 1 to a
counter that keeps track of the number of ticks (interrupts) since some agreed-
upon time in the past. This counter acts as a software clock C, resonating at
frequency F.

When the UTC time is t, denote by Cp(t) the value of the software clock
on machine p. The goal of clock synchronization algorithms is to keep the
deviation between the respective clocks of any two machines in a distributed
system, within a specified bound, known as the precision π:

∀t, ∀p, q : |Cp(t)− Cq(t)| ≤ π

Note that precision refers to the deviation of clocks only between machines
that are part of a distributed system. When considering an external reference
point, like UTC, we speak of accuracy, aiming to keep it bound to a value α:

∀t, ∀p : |Cp(t)− t| ≤ α

The whole idea of clock synchronization is that we keep clocks precise, referred
to as internal synchronization or accurate, known as external synchroniza-
tion. A set of clocks that are accurate within bound α, will be precise within
bound π = 2α. However, being precise does not allow us to conclude anything
about the accuracy of clocks.

In a perfect world, we would have Cp(t) = t for all p and all t, and
thus α = π = 0. Unfortunately, hardware clocks, and thus also software
clocks, are subject to clock drift: because their frequency is not perfect and
affected by external sources such as temperature, clocks on different machines
will gradually start showing different values for time. This is known as
the clock drift rate: the difference per unit of time from a perfect reference
clock. A typical quartz-based hardware clock has a clock drift rate of some
10−6 seconds per second, or approximately 31.5 seconds per year. Computer
hardware clocks exist that have much lower drift rates.

The specifications of a hardware clock include its maximum clock drift
rate ρ. If F(t) denotes the actual oscillator frequency of the hardware clock at
time t and F its ideal (constant) frequency, then a hardware clock is living up
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to its specifications if

∀t : (1− ρ) ≤ F(t)
F
≤ (1 + ρ)

By using hardware interrupts we are directly coupling a software clock to the
hardware clock, and thus also its clock drift rate. In particular, we have that

Cp(t) =
1
F

∫ t

0
F(t)dt, and thus:

dCp(t)
dt

=
F(t)

F

which brings us to our ultimate goal, namely keeping the software clock drift
rate also bounded to ρ:

∀t : 1− ρ ≤
dCp(t)

dt
≤ 1 + ρ

Slow, perfect, and fast clocks are shown in Figure 6.4.

Figure 6.4: The relation between clock time and UTC when clocks tick at
different rates.

If two clocks are drifting from UTC in the opposite direction, at a time
∆t after they were synchronized, they may be as much as 2ρ · ∆t apart. If
the system designers want to guarantee a precision π, that is, that no two
clocks ever differ by more than π seconds, clocks must be resynchronized
(in software) at least every π/(2ρ) seconds. The various algorithms differ in
precisely how this resynchronization is done.

Network Time Protocol

A common approach in many protocols and originally proposed by Cristian
[1989], is to let clients contact a time server. The latter can accurately provide
the current time, for example, because it is equipped with a UTC receiver
or an accurate clock. The problem, of course, is that when contacting the
server, message delays will have outdated the reported time. The trick is to
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Figure 6.5: Getting the current time from a time server.

find a good estimation for these delays. Consider the situation sketched in
Figure 6.5.

In this case, A will send a request to B, timestamped with value T1. B,
in turn, will record the time of receipt T2 (taken from its own local clock),
and returns a response timestamped with value T3, and piggybacking the
previously recorded value T2. Finally, A records the time of the response’s
arrival, T4. Let us assume that the propagation delays from A to B is roughly
the same as B to A, meaning that δTreq = T2 − T1 ≈ T4 − T3 = δTres. In that
case, A can estimate its offset relative to B as

θ = T3 +
(T2 − T1) + (T4 − T3)

2
− T4 =

(T2 − T1) + (T3 − T4)

2

Of course, time is not allowed to run backward. If A’s clock is fast, θ < 0,
meaning that A should, in principle, set its clock backward. This is not allowed
as it could cause serious problems such as an object file compiled just after
the clock change having a time earlier than the source which was modified
just before the clock change.

Such a change must be introduced gradually. One way is as follows.
Suppose that the timer is set to generate 100 interrupts per second. Normally,
each interrupt would add 10 msec to the time. When slowing down, the
interrupt routine adds only 9 msec each time until the correction has been
made. Similarly, the clock can be advanced gradually by adding 11 msec at
each interrupt instead of jumping it forward all at once.

In the case of the network time protocol (NTP), this protocol is set up
pairwise between servers. In other words, B will also probe A for its current
time. The offset θ is computed as given above, along with the estimation δ for
the delay:

δ =
(T4 − T1)− (T3 − T2)

2
Eight pairs of (θ, δ) values are buffered, finally taking the minimal value
found for δ as the best estimation for the delay between the two servers, and
subsequently the associated value θ as the most reliable estimation of the
offset.
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Applying NTP symmetrically should, in principle, also let B adjust its
clock to that of A. However, if B’s clock is known to be more accurate, then
such an adjustment would be foolish. To solve this problem, NTP divides
servers into strata. A server with a reference clock such as a UTC receiver or
an atomic clock, is known to be a stratum-1 server (the clock itself is said to
operate at stratum 0). When A contacts B, it will adjust only its time if its own
stratum level is higher than that of B. Moreover, after the synchronization, A’s
stratum level will become one higher than that of B. In other words, if B is a
stratum-k server, then A will become a stratum-(k + 1) server if its original
stratum level was already larger than k. Due to the symmetry of NTP, if A’s
stratum level was lower than that of B, B will adjust itself to A.

There are many important features about NTP, of which many relate to
identifying and masking errors, but also security attacks. NTP was originally
described in [Mills, 1992] and is known to achieve (worldwide) accuracy in
the range of 1–50 msec. A detailed description of NTP can be found in [Mills,
2011].

The Berkeley algorithm

In many clock synchronization algorithms the time server is passive. Other
machines periodically ask it for the time. All it does is respond to their
queries. In Berkeley Unix exactly the opposite approach is taken [Gusella
and Zatti, 1989]. Here the time server (actually, a time daemon) is active,
polling every machine from time to time to ask what time it is there. Based
on the answers, it computes an average time and tells all the other machines
to advance their clocks to the new time or slow their clocks down until some
specified reduction has been achieved. This method is suitable for a system in
which no machine has a UTC receiver. The time daemon’s time must be set
manually by the operator periodically. The method is illustrated in Figure 6.6.

In Figure 6.6(a) at 3:00, the time daemon tells the other machines its time
and asks for theirs. In Figure 6.6(b) they respond with how far ahead or
behind the time daemon they are. Armed with these numbers, the time
daemon computes the average and tells each machine how to adjust its clock
[see Figure 6.6(c)].

Note that for many purposes, it is sufficient that all machines agree on
the same time. It is not essential that this time also agrees with the real time
as announced on the radio every hour. If in our example of Figure 6.6 the
time daemon’s clock would never be manually calibrated, no harm is done
provided none of the other nodes communicates with external computers.
Everyone will just happily agree on a current time, without that value having
any relation with reality. The Berkeley algorithm is thus typically an internal
clock synchronization algorithm.
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(a) (b) (c)

Figure 6.6: (a) The time daemon asks all the other machines for their clock
values. (b) The machines answer. (c) The time daemon tells everyone how to
adjust their clock.

Clock synchronization in wireless networks

An important advantage of more traditional distributed systems is that we
can easily and efficiently deploy time servers. Moreover, most machines can
contact each other, allowing for a relatively simple dissemination of infor-
mation. These assumptions are no longer valid in many wireless networks,
notably sensor networks. Nodes are resource constrained, and multihop
routing is expensive. In addition, it is often important to optimize algorithms
for energy consumption. These and other observations have led to the design
of very different clock synchronization algorithms for wireless networks. In
the following, we consider one specific solution. Sivrikaya and Yener [2004]
provide a brief overview of other solutions. An extensive survey can be found
in [Sundararaman et al., 2005].

Reference broadcast synchronization (RBS) is a clock synchronization
protocol that is quite different from other proposals [Elson et al., 2002]. First,
the protocol does not assume that there is a single node with an accurate
account of the actual time available. Instead of aiming to provide all nodes
UTC time, it aims at merely internally synchronizing the clocks, just as the
Berkeley algorithm does. Second, the solutions we have discussed so far are
designed to bring the sender and receiver into sync, essentially following a
two-way protocol. RBS deviates from this pattern by letting only the receivers
synchronize, keeping the sender out of the loop.

In RBS, a sender broadcasts a reference message that will allow its receivers
to adjust their clocks. A key observation is that in a sensor network the time
to propagate a signal to other nodes is roughly constant, provided no multi-
hop routing is assumed. Propagation time in this case is measured from
the moment that a message leaves the network interface of the sender. As
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a consequence, two important sources for variation in message transfer no
longer play a role in estimating delays: the time spent to construct a message,
and the time spent to access the network. This principle is shown in Figure 6.7.

Figure 6.7: The usual critical path and the one used in RBS in determining
network delays.

Note that in protocols such as NTP, a timestamp is added to the message
before it is passed on to the network interface. Furthermore, as wireless
networks are based on a contention protocol, there is generally no saying how
long it will take before a message can actually be transmitted. These factors
of nondeterminism are eliminated in RBS. What remains is the delivery time
at the receiver, but this time varies considerably less than the network-access
time.

The idea underlying RBS is simple: when a node broadcasts a reference
message m, each node p simply records the time Tp,m that it received m. Note
that Tp,m is read from p’s local clock. Ignoring clock skew, two nodes p and q
can exchange each other’s delivery times in order to estimate their mutual,
relative offset:

Offset[p, q] =
∑M

k=1(Tp,k − Tq,k)

M
where M is the total number of reference messages sent. This information is
important: node p will know the value of q’s clock relative to its own value.
Moreover, if it simply stores these offsets, there is no need to adjust its own
clock, which saves energy.

Unfortunately, clocks can drift apart. The effect is that simply computing
the average offset as done above will not work: the last values sent are
simply less accurate than the first ones. Moreover, as time goes by, the offset
will presumably increase. Elson et al. [2002] use a very simple algorithm to
compensate for this: instead of computing an average they apply standard
linear regression to compute the offset as a function:

Offset[p, q](t) = αt + β
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The constants α and β are computed from the pairs (Tp,k, Tq,k). This new form
will allow a much more accurate computation of q’s current clock value by
node p, and vice versa.

Note 6.2 (More information: How important is an accurate account of time?)
So why is time such a big deal for distributed systems? As we shall discuss in
the remainder of this chapter, reaching consensus on a global ordering of events
is what we really want, and this can be achieved without any notion of global
absolute time. However, as will become clear, alternative methods for distributed
coordination do not come easy.

And life would be much simpler if processes in a distributed system could
timestamp their events with infinite precision. Although infinite precision is
asking too much, we can come practically close. Researchers at Google were
confronted with the fact that their customers would really like to make use of
a globally distributed database that supported transactions. Such a database
would need to serve massive numbers of clients, rendering the use of, for ex-
ample, a central transaction processing monitor as we discussed in Section 1.3,
infeasible. Instead, for their Spanner system, Google decided to implement a
true-time service, called TrueTime [Corbett et al., 2013]. This service provides
three operations:

Operation Result
TT.now() A time interval [Tlwb, Tupb] with Tlwb < Tupb
TT.after(t) True if timestamp t has definitely passed
TT.before(t) True if timestamp t has definitely not arrived

The most important aspect is that Tlwb and Tupb are guaranteed bounds. Of
course, if ε = Tupb − Tlwb is large, say 1 hour, then implementing the service
is relatively easy. Impressively enough, ε = 6ms. To achieve this accuracy, the
TrueTime service makes use of time master machines of which there are several
per data center. Time-slave daemons run on every machine in a data center
and query multiple time masters, including ones from other data centers, very
similar to what we described for NTP. Many time masters are equipped with
accurate GPS receivers, while many others are independently equipped with
atomic clocks. The result is a collection of time sources with a high degree of
mutual independence (which is important for reasons of fault tolerance). Using
a version of an algorithm developed by Marzullo and Owicki [1983], outliers
are kept out of the computations. Meanwhile, the performance of TrueTime is
continuously monitored and “bad” time machines are (manually) removed to give
at least very high guarantees for the accuracy of the TrueTime service.

With a guaranteed accuracy of 6 milliseconds, building a transactional system
becomes much easier: transactions can actually be timestamped, even by different
servers, with the restriction that timestamping may need to be delayed for ε time
units. More precisely, in order to know for sure that a transaction has committed,
reading the resulting data may impose a wait for ε units. This is achieved by
pessimistically assigning a timestamp to a transaction that writes data to the
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global database and making sure that clients never see any changes before the
assigned timestamp (which is relatively easy to implement).

There are many details to this approach, which can be found in [Corbett
et al., 2013]. As we are still dealing with a time interval, taking more traditional
ordering mechanisms into account it is possible to improve results, as explained
by Demirbas and Kulkarni [2013].

6.2 Logical clocks

Clock synchronization is naturally related to time, although it may not be
necessary to have an accurate account of the real time: it may be sufficient
that every node in a distributed systems agrees on a current time. We can
go one step further. For running make it is adequate that two nodes agree
that input.o is outdated by a new version of input.c, for example. In this case,
keeping track of each other’s events (such as a producing a new version of
input.c) is what matters. For these algorithms, it is conventional to speak of
the clocks as logical clocks.

In a seminal paper, Lamport [1978] showed that although clock synchro-
nization is possible, it need not be absolute. If two processes do not interact,
it is not necessary that their clocks be synchronized because the lack of syn-
chronization would not be observable and thus could not cause problems.
Furthermore, he pointed out that what usually matters is not that all processes
agree on exactly what time it is, but rather that they agree on the order in which
events occur. In the make example, what counts is whether input.c is older or
newer than input.o, not their respective absolute creation times.

Lamport’s logical clocks

To synchronize logical clocks, Lamport defined a relation called happens-
before. The expression a → b is read “event a happens before event b” and
means that all processes agree that first event a occurs, then afterward, event b
occurs. The happens-before relation can be observed directly in two situations:

1. If a and b are events in the same process, and a occurs before b, then
a→ b is true.

2. If a is the event of a message being sent by one process, and b is the
event of the message being received by another process, then a→ b is
also true. A message cannot be received before it is sent, or even at the
same time it is sent, since it takes a finite, nonzero amount of time to
arrive.

Happens-before is a transitive relation, so if a → b and b → c, then a → c.
If two events, x and y, happen in different processes that do not exchange
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messages (not even indirectly via third parties), then x → y is not true, but
neither is y→ x. These events are said to be concurrent, which simply means
that nothing can be said (or need be said) about when the events happened or
which event happened first.

What we need is a way of measuring a notion of time such that for every
event, a, we can assign it a time value C(a) on which all processes agree.
These time values must have the property that if a → b, then C(a) < C(b).
To rephrase the conditions we stated earlier, if a and b are two events within
the same process and a occurs before b, then C(a) < C(b). Similarly, if a
is the sending of a message by one process and b is the reception of that
message by another process, then C(a) and C(b) must be assigned in such a
way that everyone agrees on the values of C(a) and C(b) with C(a) < C(b).
In addition, the clock time, C, must always go forward (increasing), never
backward (decreasing). Corrections to time can be made by adding a positive
value, never by subtracting one.

Now let us look at the algorithm Lamport proposed for assigning times
to events. Consider the three processes depicted in Figure 6.8. The processes
run on different machines, each with its own clock. For the sake of argument,
we assume that a clock is implemented as a software counter: the counter
is incremented by a specific value every T time units. However, the value
by which a clock is incremented differs per process. The clock in process
P1 is incremented by 6 units, 8 units in process P2, and 10 units in process
P3, respectively. (Below, we explain that Lamport clocks are, in fact, event
counters, which explains why their value may differ between processes.)

(a) (b)

Figure 6.8: (a) Three processes, each with its own (logical) clock. The clocks
run at different rates. (b) Lamport’s algorithm corrects their values.

At time 6, process P1 sends message m1 to process P2. How long this
message takes to arrive depends on whose clock you believe. In any event,
the clock in process P2 reads 16 when it arrives. If the message carries the
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starting time, 6, in it, process P2 will conclude that it took 10 ticks to make the
journey. This value is certainly possible. According to this reasoning, message
m2 from P2 to P3 takes 16 ticks, again a plausible value.

Now consider message m3. It leaves process P3 at 60 and arrives at P2 at
56. Similarly, message m4 from P2 to P1 leaves at 64 and arrives at 54. These
values are clearly impossible. It is this situation that must be prevented.

Lamport’s solution follows directly from the happens-before relation. Since
m3 left at 60, it must arrive at 61 or later. Therefore, each message carries the
sending time according to the sender’s clock. When a message arrives and
the receiver’s clock shows a value prior to the time the message was sent,
the receiver fast forwards its clock to be one more than the sending time. In
Figure 6.8, we see that m3 now arrives at 61. Similarly, m4 arrives at 70.

Let us formulate this procedure more precisely. At this point, it is impor-
tant to distinguish three different layers of software, as we already encountered
in Chapter 1: the network, a middleware layer, and an application layer, as
shown in Figure 6.9. What follows is typically part of the middleware layer.

Figure 6.9: The positioning of Lamport’s logical clocks in distributed systems.

To implement Lamport’s logical clocks, each process Pi maintains a local
counter Ci. These counters are updated according to the following steps [Ray-
nal and Singhal, 1996]:

1. Before executing an event (i.e., sending a message over the network,
delivering a message to an application, or some other internal event), Pi

increments Ci: Ci ← Ci + 1.
2. When process Pi sends a message m to process Pj, it sets m’s timestamp

ts(m) equal to Ci after having executed the previous step.
3. Upon the receipt of a message m, process Pj adjusts its own local counter

as Cj ← max{Cj, ts(m)} after which it then executes the first step and
delivers the message to the application.

In some situations, an additional requirement is desirable: no two events ever
occur at exactly the same time. To achieve this goal, we also use the unique
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process identifier to break ties and use tuples instead of only the counter’s
values. For example, an event at time 40 at process Pi will be timestamped as
〈40, i〉. If we also have an event 〈40, j〉 and i < j, then 〈40, i〉 < 〈40, j〉.

Note that by assigning the event time C(a) ← Ci(a) if a happened at
process Pi at time Ci(a), we have a distributed implementation of the global
time value we were initially seeking for; we have thus constructed a logical
clock.

Example: Total-ordered multicasting

As an application of Lamport’s logical clocks, consider the situation in which
a database has been replicated across several sites. For example, to improve
query performance, a bank may place copies of an account database in two
different cities, say New York and San Francisco. A query is always forwarded
to the nearest copy. The price for a fast response to a query is partly paid in
higher update costs, because each update operation must be carried out at
each replica.

In fact, there is a more stringent requirement with respect to updates.
Assume a customer in San Francisco wants to add $100 to his account, which
currently contains $1,000. At the same time, a bank employee in New York
initiates an update by which the customer’s account is to be increased with
1 percent interest. Both updates should be carried out at both copies of the
database. However, due to communication delays in the underlying network,
the updates may arrive in the order as shown in Figure 6.10.

Figure 6.10: Updating a replicated database and leaving it in an inconsistent
state.

The customer’s update operation is performed in San Francisco before the
interest update. In contrast, the copy of the account in the New York replica is
first updated with the 1 percent interest, and after that with the $100 deposit.
Consequently, the San Francisco database will record a total amount of $1,111,
whereas the New York database records $1,110.

The problem that we are faced with is that the two update operations
should have been performed in the same order at each copy. Although it
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makes a difference whether the deposit is processed before the interest update
or the other way around, which order is followed is not important from a
consistency point of view. The important issue is that both copies should be
exactly the same. In general, situations such as these require a total-ordered
multicast, that is, a multicast operation by which all messages are delivered
in the same order to each receiver. Lamport’s logical clocks can be used to
implement total-ordered multicasts in a completely distributed fashion.

Consider a group of processes multicasting messages to each other. Each
message is always timestamped with the current (logical) time of its sender.
When a message is multicast, it is conceptually also sent to the sender. In
addition, we assume that messages from the same sender are received in the
order they were sent, and that no messages are lost.

When a process receives a message, it is put into a local queue, ordered
according to its timestamp. The receiver multicasts an acknowledgment to the
other processes. Note that if we follow Lamport’s algorithm for adjusting local
clocks, the timestamp of the received message is lower than the timestamp
of the acknowledgment. The interesting aspect of this approach is that all
processes will eventually have the same copy of the local queue (provided no
messages are removed).

A process can deliver a queued message to the application it is running
only when that message is at the head of the queue and has been acknowl-
edged by each other process. At that point, the message is removed from the
queue and handed over to the application; the associated acknowledgments
can simply be removed. Because each process has the same copy of the queue,
all messages are delivered in the same order everywhere. In other words, we
have established total-ordered multicasting. We leave it as an exercise to the
reader to figure out that it is not strictly necessary that each multicast message
has been explicitly acknowledged. It is sufficient that a process reacts to an
incoming message either by returning an acknowledgment or sending its own
multicast message.

Total-ordered multicasting is an important vehicle for replicated services
where the replicas are kept consistent by letting them execute the same
operations in the same order everywhere. As the replicas essentially follow
the same transitions in the same finite state machine, it is also known as state
machine replication [Schneider, 1990].

Note 6.3 (Advanced: Using Lamport clocks to achieve mutual exclusion)
To further illustrate the usage of Lamport’s clocks, let us see how we can use the
previous algorithm for total-ordered multicasting to establish access to what is
commonly known as a critical section: a section of code that can be executed
by at most one process at a time. This algorithm is very similar to the one for
multicasting, as essentially all processes need to agree on the order by which
processes are allowed to enter their critical section.
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Figure 6.11(a) shows the code that each process executes when requesting,
releasing, or allowing access to the critical section (again, leaving out details).
Each process maintains a request queue as well as a logical clock. To enter the
critical section, a call to requestToEnter is made, which results in inserting an
ENTER message with timestamp (clock,procID) into the local queue and sending
that message to the other processes. The operation cleanupQ essentially sorts the
queue. We return to it shortly.

1 class Process:
2 def __init__(self, chan):
3 self.queue = [] # The request queue
4 self.clock = 0 # The current logical clock
5

6 def requestToEnter(self):
7 self.clock = self.clock + 1 # Increment clock value
8 self.queue.append((self.clock, self.procID, ENTER)) # Append request to q
9 self.cleanupQ() # Sort the queue

10 self.chan.sendTo(self.otherProcs, (self.clock,self.procID,ENTER)) # Send request
11

12 def allowToEnter(self, requester):
13 self.clock = self.clock + 1 # Increment clock value
14 self.chan.sendTo([requester], (self.clock,self.procID,ALLOW)) # Permit other
15

16 def release(self):
17 tmp = [r for r in self.queue[1:] if r[2] == ENTER] # Remove all ALLOWs
18 self.queue = tmp # and copy to new queue
19 self.clock = self.clock + 1 # Increment clock value
20 self.chan.sendTo(self.otherProcs, (self.clock,self.procID,RELEASE)) # Release
21

22 def allowedToEnter(self):
23 commProcs = set([req[1] for req in self.queue[1:]]) # See who has sent a message
24 return (self.queue[0][1]==self.procID and len(self.otherProcs)==len(commProcs))

Figure 6.11: (a) Using Lamport’s logical clocks for mutual exclusion.

When a process P receives an ENTER message from process Q, it can simply
allow Q to enter its critical section, even if P wants to do so as well. In that case,
P’s request will have a lower logical timestamp than the ALLOW message sent by P

to Q, meaning that P’s request will have been inserted into Q’s queue before P’s
ALLOW message.

Finally, when a process leaves its critical section, it calls release. It cleans up
its local queue by removing all received ALLOW messages, leaving only the ENTER

requests from other processes. It then multicasts a RELEASE message.
In order to actually enter a critical section, a process will have to repeatedly call

allowedToEnter and when returned False, will have to block on a next incoming
message. The operation allowedToEnter does what is to be expected: it checks
if the calling process’s ENTER message is at the head of the queue, and sees if all
other processes have sent a message as well. The latter is encoded through the set
commProcs, which contains the procIDs of all processes having sent a message by
inspecting all messages in the local queue from the second position and onwards.

downloaded by OLEXANDER.PERIG@GMAIL.COM DS 3.02



316 CHAPTER 6. COORDINATION

1 def receive(self):
2 msg = self.chan.recvFrom(self.otherProcs)[1] # Pick up any message
3 self.clock = max(self.clock, msg[0]) # Adjust clock value...
4 self.clock = self.clock + 1 # ...and increment
5 if msg[2] == ENTER:
6 self.queue.append(msg) # Append an ENTER request
7 self.allowToEnter(msg[1]) # and unconditionally allow
8 elif msg[2] == ALLOW:
9 self.queue.append(msg) # Append an ALLOW

10 elif msg[2] == RELEASE:
11 del(self.queue[0]) # Just remove first message
12 self.cleanupQ() # And sort and cleanup

Figure 6.11: (b) Using Lamport’s logical clocks for mutual exclusion:
handling incoming requests.

What to do when a message is received is shown in Figure 6.11(b). First,
the local clock is adjusted according to the rules for Lamport’s logical clocks
explained above. When receiving an ENTER or ALLOW message, that message is
simply inserted into the queue. An entry request is always acknowledged, as we
just explained. When a RELEASE message is received, the original ENTER request is
removed. Note that this request is at the head of the queue. After that, the queue
is cleaned up again.

At this point, note that if we would clean up the queue by only sorting it,
we may get into trouble. Suppose that processes P and Q want to enter their
respective critical sections at roughly the same time, but that P is allowed to go
first based on logical-clock values. P may find Q’s request in its queue, along
with ENTER or ALLOW messages from other processes. If its own request is at the
head of its queue, P will proceed and enter its critical section. However, Q will
also send an ALLOW message to P as well, in addition to its original ENTER message.
That ALLOW message may arrive after P had already entered its critical section, but
before ENTER messages from other processes. When Q eventually enters, and leaves
its critical section, Q’s RELEASE message would result in removing Q’s original
ENTER message, but not the ALLOW message it had previously sent to P. By now,
that message is at the head of P’s queue, effectively blocking the entrance to the
critical section of other processes in P’s queue. Cleaning up the queue thus also
involves removing old ALLOW messages.

Vector clocks

Lamport’s logical clocks lead to a situation where all events in a distributed
system are totally ordered with the property that if event a happened before
event b, then a will also be positioned in that ordering before b, that is,
C(a) < C(b).

However, with Lamport clocks, nothing can be said about the relationship
between two events a and b by merely comparing their time values C(a)
and C(b), respectively. In other words, if C(a) < C(b), then this does not
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necessarily imply that a indeed happened before b. Something more is needed
for that.

To explain, consider the messages as sent by the three processes shown
in Figure 6.12. Denote by Tsnd(mi) the logical time at which message mi was
sent, and likewise, by Trcv(mi) the time of its receipt. By construction, we
know that for each message Tsnd(mi) < Trcv(mi). But what can we conclude
in general from Trcv(mi) < Tsnd(mj) for different messages mi and mj?

Figure 6.12: Concurrent message transmission using logical clocks.

In the case for which mi = m1 and mj = m3, we know that these values
correspond to events that took place at process P2, meaning that m3 was
indeed sent after the receipt of message m1. This may indicate that the
sending of message m3 depended on what was received through message m1.
At the same time, we also know that Trcv(m1) < Tsnd(m2). However, as far as
we can tell from Figure 6.12, the sending of m2 has nothing to do with the
receipt of m1.

The problem is that Lamport clocks do not capture causality. In practice,
causality is captured by means of vector clocks. To better understand where
these come from, we follow the explanation as given by Baquero and Preguica
[2016]. In fact, tracking causality is simple if we assign each event a unique
name such as the combination of a process ID and a locally incrementing
counter: pk is the kth event that happened at process P. The problem then
boils down to keeping track of causal histories. For example, if two local
events happened at process P, then the causal history H(p2) of event p2 is
{p1, p2}.

Now assume that process P sends a message to process Q (which is an
event at P and thus recorded as pk from some k), and that at the time of arrival
(and event for Q), the most recent causal history of Q was {q1}. To track
causality, P also sends its most recent causal history (assume it was {p1, p2},
extended with p3 expressing the sending of the message). Upon arrival, Q
records the event (q2), and merges the two causal histories into a new one:
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{p1, p2, p3, q1, q2}.
Checking whether an event p causally precedes an event q can be done

by checking whether H(p) ⊂ H(q) (i.e., it should be a proper subset). In fact,
with our notation, it even suffices to check whether p ∈ H(q), assuming that
q is always the last local event in H(q).

The problem with causal histories, is that their representation is not very
efficient. However, there is no need to keep track of all successive events from
the same process: the last one will do. If we subsequently assign an index to
each process, we can represent a causal history as a vector, in which the jth

entry represents the number of events that happened at process Pj. Causality
can then be captured by means of vector clocks, which are constructed by
letting each process Pi maintain a vector VCi with the following two properties:

1. VCi[i] is the number of events that have occurred so far at Pi. In other
words, VCi[i] is the local logical clock at process Pi.

2. If VCi[j] = k then Pi knows that k events have occurred at Pj. It is thus
Pi’s knowledge of the local time at Pj.

The first property is maintained by incrementing VCi[i] at the occurrence of
each new event that happens at process Pi. The second property is maintained
by piggybacking vectors along with messages that are sent. In particular, the
following steps are performed:

1. Before executing an event (i.e., sending a message over the network,
delivering a message to an application, or some other internal event), Pi

executes VCi[i]← VCi[i] + 1. This is equivalent to recording a new event
that happened at Pi.

2. When process Pi sends a message m to Pj, it sets m’s (vector) timestamp
ts(m) equal to VCi after having executed the previous step (i.e., it also
records the sending of the message as an event that takes place at Pi).

3. Upon the receipt of a message m, process Pj adjusts its own vector by
setting VCj[k] ← max{VCj[k], ts(m)[k]} for each k (which is equivalent
to merging causal histories), after which it executes the first step (record-
ing the receipt of the message) and then delivers the message to the
application.

Note that if an event a has timestamp ts(a), then ts(a)[i]− 1 denotes the
number of events processed at Pi that causally precede a. As a consequence,
when Pj receives a message m from Pi with timestamp ts(m), it knows about
the number of events that have occurred at Pi that causally preceded the
sending of m. More important, however, is that Pj is also told how many
events at other processes have taken place, known to Pi, before Pi sent message
m. In other words, timestamp ts(m) tells the receiver how many events in
other processes have preceded the sending of m, and on which m may causally
depend.
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To see what this means, consider Figure 6.13 which shows three processes.
In Figure 6.13(a), P2 sends a message m1 at logical time VC2 = (0, 1, 0) to
process P1. Message m1 thus receives timestamp ts(m1) = (0, 1, 0). Upon
its receipt, P1 adjusts its logical time to VC1 ← (1, 1, 0) and delivers it. Mes-
sage m2 is sent by P1 to P3 with timestamp ts(m2) = (2, 1, 0). Before P1

sends another message, m3, an event happens at P1, eventually leading to
timestamping m3 with value (4, 1, 0). After receiving m3, process P2 sends
message m4 to P3, with timestamp ts(m4) = (4, 3, 0).

(a)

(b)

Figure 6.13: Capturing potential causality when exchanging messages.

Now consider the situation shown in Figure 6.13(b). Here, we have delayed
sending message m2 until after message m3 has been sent, and after the
event had taken place. It is not difficult to see that ts(m2) = (4, 1, 0), while
ts(m4) = (2, 3, 0). Compared to Figure 6.13(a), we have the following situation:

Situation ts(m2) ts(m4) ts(m2) ts(m2) Conclusion
< >

ts(m4) ts(m4)

Figure 6.13(a) (2, 1, 0) (4, 3, 0) Yes No m2 may causally precede m4

Figure 6.13(b) (4, 1, 0) (2, 3, 0) No No m2 and m4 may conflict

We use the notation ts(a) < ts(b) if and only if for all k, ts(a)[k] ≤ ts(b)[k]
and there is at least one index k′ for which ts(a)[k′] < ts(b)[k′]. Thus, by using
vector clocks, process P3 can detect whether m4 may be causally dependent
on m2, or whether there may be a potential conflict. Note, by the way, that
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without knowing the actual information contained in messages, it is not
possible to state with certainty that there is indeed a causal relationship, or
perhaps a conflict.

Note 6.4 (Advanced: Enforcing causal communication)
Using vector clocks, it is now possible to ensure that a message is delivered only
if all messages that may have causally precede it have been received as well.
To enable such a scheme, we will assume that messages are multicast within a
group of processes. Note that this causal-ordered multicasting is weaker than
total-ordered multicasting. Specifically, if two messages are not in any way related
to each other, we do not care in which order they are delivered to applications.
They may even be delivered in different order at different locations.

For enforcing causal message delivery, we assume that clocks are adjusted
only when sending and delivering messages (note, again, that messages are not
adjusted when they are received by a process, but only when they are delivered
to an application). In particular, upon sending a message, process Pi will only
increment VCi[i] by 1. When it delivers a message m with timestamp ts(m), it
only adjusts VCi[k] to max{VCi[k], ts(m)[k]} for each k.

Now suppose that Pj receives a message m from Pi with (vector) timestamp
ts(m). The delivery of the message to the application layer will then be delayed
until the following two conditions are met:

1. ts(m)[i] = VCj[i] + 1
2. ts(m)[k] ≤ VCj[k] for all k 6= i

The first condition states that m is the next message that Pj was expecting from
process Pi. The second condition states that Pj has delivered all the messages that
have been delivered by Pi when it sent message m. Note that there is no need for
process Pj to delay the delivery of its own messages.

Figure 6.14: Enforcing causal communication.

As an example, consider three processes P1, P2, and P3 as shown in Figure 6.14.
At local time (1, 0, 0), P1 sends message m to the other two processes. Note that
ts(m) = (1, 0, 0). Its receipt and subsequent delivery by P2, will bring the logical
clock at P2 to (1, 0, 0), effectively indicating that it has received one message from
P1, has itself sent no message so far, and has not yet received a message from P3.
P2 then decides to send m∗, at updated time (1, 1, 0), which arrives at P3 sooner
than m.

When comparing the timestamp of m with its current time, which is (0, 0, 0),
P3 concludes that it is still missing a message from P1 which P2 apparently had
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delivered before sending m∗. P3 therefore decides to postpone the delivery of m∗

(and will also not adjust its local, logical clock). Later, after m has been received
and delivered by P3, which brings its local clock to (1, 0, 0), P3 can deliver message
m∗ and also update its clock.

A note on ordered message delivery. Some middleware systems, notably ISIS
and its successor Horus [Birman and van Renesse, 1994], provide support for
total-ordered and causal-ordered (reliable) multicasting. There has been some
controversy whether such support should be provided as part of the message-
communication layer, or whether applications should handle ordering (see, e.g.,
Cheriton and Skeen [1993]; Birman [1994]). Matters have not been settled, but
more important is that the arguments still hold today.

There are two main problems with letting the middleware deal with message
ordering. First, because the middleware cannot tell what a message actually
contains, only potential causality is captured. For example, two messages from the
same sender that are completely independent will always be marked as causally
related by the middleware layer. This approach is overly restrictive and may lead
to efficiency problems.

A second problem is that not all causality may be captured. Consider an
electronic bulletin board. Suppose Alice posts an article. If she then phones Bob
telling about what she just wrote, Bob may post another article as a reaction
without having seen Alice’s posting on the board. In other words, there is a
causality between Bob’s posting and that of Alice due to external communication.
This causality is not captured by the bulletin board system.

In essence, ordering issues, like many other application-specific communi-
cation issues, can be adequately solved by looking at the application for which
communication is taking place. This is also known as the end-to-end argument in
systems design [Saltzer et al., 1984]. A drawback of having only application-level
solutions is that a developer is forced to concentrate on issues that do not immedi-
ately relate to the core functionality of the application. For example, ordering may
not be the most important problem when developing a messaging system such as
an electronic bulletin board. In that case, having an underlying communication
layer handle ordering may turn out to be convenient. We will come across the
end-to-end argument a number of times.

6.3 Mutual exclusion

Fundamental to distributed systems is the concurrency and collaboration
among multiple processes. In many cases, this also means that processes
will need to simultaneously access the same resources. To prevent that such
concurrent accesses corrupt the resource, or make it inconsistent, solutions are
needed to grant mutual exclusive access by processes. In this section, we take
a look at some important and representative distributed algorithms that have
been proposed. Surveys of distributed algorithms for mutual exclusion are
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provided by Saxena and Rai [2003] and Velazquez [1993]. Various algorithms
are also presented in [Kshemkalyani and Singhal, 2008].

Overview

Distributed mutual exclusion algorithms can be classified into two different
categories. In token-based solutions mutual exclusion is achieved by passing
a special message between the processes, known as a token. There is only one
token available and who ever has that token is allowed to access the shared
resource. When finished, the token is passed on to a next process. If a process
having the token is not interested in accessing the resource, it passes it on.

Token-based solutions have a few important properties. First, depending
on how the processes are organized, they can fairly easily ensure that every
process will get a chance at accessing the resource. In other words, they avoid
starvation. Second, deadlocks by which several processes are indefinitely
waiting for each other to proceed, can easily be avoided, contributing to their
simplicity. The main drawback of token-based solutions is a rather serious
one: when the token is lost (e.g., because the process holding it crashed), an
intricate distributed procedure needs to be started to ensure that a new token
is created, but above all, that it is also the only token.

As an alternative, many distributed mutual exclusion algorithms follow
a permission-based approach. In this case, a process wanting to access the
resource first requires the permission from other processes. There are many
different ways toward granting such a permission and in the sections that
follow we will consider a few of them.

A centralized algorithm

A straightforward way to achieve mutual exclusion in a distributed system is
to simulate how it is done in a one-processor system. One process is elected
as the coordinator. Whenever a process wants to access a shared resource, it
sends a request message to the coordinator stating which resource it wants to
access and asking for permission. If no other process is currently accessing
that resource, the coordinator sends back a reply granting permission, as
shown in Figure 6.15(a). When the reply arrives, the requester can go ahead.

Now suppose that another process, P2 in Figure 6.15(b) asks for permission
to access the resource. The coordinator knows that a different process is
already at the resource, so it cannot grant permission. The exact method used
to deny permission is system dependent. In Figure 6.15(b) the coordinator just
refrains from replying, thus blocking process P2, which is waiting for a reply.
Alternatively, it could send a reply saying “permission denied.” Either way, it
queues the request from P2 for the time being and waits for more messages.

When process P1 is finished with the resource, it sends a message to the
coordinator releasing its exclusive access, as shown in Figure 6.15(c). The
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(a) (b) (c)

Figure 6.15: (a) Process P1 asks for permission to access a shared resource. Per-
mission is granted. (b) Process P2 asks permission to access the same resource,
but receives no reply. (c) When P1 releases the resource, the coordinator
replies to P2.

coordinator takes the first item off the queue of deferred requests and sends
that process a grant message. If the process was still blocked (i.e., this is
the first message to it), it unblocks and accesses the resource. If an explicit
message has already been sent denying permission, the process will have to
poll for incoming traffic or block later. Either way, when it sees the grant, it
can go ahead as well.

It is easy to see that the algorithm guarantees mutual exclusion: the
coordinator lets only one process at a time access the resource. It is also fair,
since requests are granted in the order in which they are received. No process
ever waits forever (no starvation). The scheme is easy to implement, too, and
requires only three messages per use of resource (request, grant, release). Its
simplicity makes it an attractive solution for many practical situations.

The centralized approach also has shortcomings. The coordinator is a
single point of failure, so if it crashes, the entire system may go down. If
processes normally block after making a request, they cannot distinguish a
dead coordinator from “permission denied” since in both cases no message
comes back. In addition, in a large system, a single coordinator can become a
performance bottleneck. Nevertheless, the benefits coming from its simplicity
outweigh in many cases the potential drawbacks. Moreover, distributed
solutions are not necessarily better, as we illustrate in Section 6.3.

A distributed algorithm

Using Lamport’s logical clocks, and inspired by Lamport’s original solution
for distributed mutual exclusion (which we discussed in ) Note 6.3, Ricart and
Agrawala [1981] provided the following algorithm. Their solution requires a
total ordering of all events in the system. That is, for any pair of events, such
as messages, it must be unambiguous which one actually happened first.

The algorithm works as follows. When a process wants to access a shared
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resource, it builds a message containing the name of the resource, its process
number, and the current (logical) time. It then sends the message to all other
processes, conceptually including itself. The sending of messages is assumed
to be reliable; that is, no message is lost.

When a process receives a request message from another process, the
action it takes depends on its own state with respect to the resource named in
the message. Three different cases have to be clearly distinguished:

• If the receiver is not accessing the resource and does not want to access
it, it sends back an OK message to the sender.

• If the receiver already has access to the resource, it simply does not reply.
Instead, it queues the request.

• If the receiver wants to access the resource as well but has not yet done
so, it compares the timestamp of the incoming message with the one
contained in the message that it has sent everyone. The lowest one wins.
If the incoming message has a lower timestamp, the receiver sends back
an OK message. If its own message has a lower timestamp, the receiver
queues the incoming request and sends nothing.

After sending out requests asking permission, a process sits back and waits
until everyone else has given permission. As soon as all the permissions are
in, it may go ahead. When it is finished, it sends OK messages to all processes
in its queue and deletes them all from the queue. If there is no conflict, it
clearly works. However, suppose that two processes try to simultaneously
access the resource, as shown in Figure 6.16(a).

(a) (b) (c)

Figure 6.16: (a) Two processes want to access a shared resource at the same
moment. (b) P0 has the lowest timestamp, so it wins. (c) When process P0 is
done, it sends an OK also, so P2 can now go ahead.

Process P0 sends everyone a request with timestamp 8, while at the same
time, process P2 sends everyone a request with timestamp 12. P1 is not
interested in the resource, so it sends OK to both senders. Processes P0 and
P2 both see the conflict and compare timestamps. P2 sees that it has lost,
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so it grants permission to P0 by sending OK. Process P0 now queues the
request from P2 for later processing and accesses the resource, as shown
in Figure 6.16(b). When it is finished, it removes the request from P2 from
its queue and sends an OK message to P2, allowing the latter to go ahead,
as shown in Figure 6.16(c). The algorithm works because in the case of a
conflict, the lowest timestamp wins and everyone agrees on the ordering of
the timestamps.

With this algorithm, mutual exclusion is guaranteed without deadlock or
starvation. If the total number of processes is N, then the number of messages
that a process needs to send and receive before it can enter its critical section
is 2 · (N− 1): N− 1 request messages to all other processes, and subsequently
N − 1 OK messages, one from each other process.

Unfortunately, this algorithm has N points of failure. If any process
crashes, it will fail to respond to requests. This silence will be interpreted
(incorrectly) as denial of permission, thus blocking all subsequent attempts by
all processes to enter any of their respective critical regions. The algorithm can
be patched up as follows. When a request comes in, the receiver always sends
a reply, either granting or denying permission. Whenever either a request or a
reply is lost, the sender times out and keeps trying until either a reply comes
back or the sender concludes that the destination is dead. After a request is
denied, the sender should block waiting for a subsequent OK message.

Another problem with this algorithm is that either a multicast commu-
nication primitive must be used, or each process must maintain the group
membership list itself, including processes entering the group, leaving the
group, and crashing. The method works best with small groups of processes
that never change their group memberships. Finally, note that all processes are
involved in all decisions concerning accessing the shared resource, which may
impose a burden on processes running on resource-constrained machines.

Various minor improvements are possible to this algorithm. For example,
getting permission from everyone is overkill. All that is needed is a method to
prevent two processes from accessing the resource at the same time. The algo-
rithm can be modified to grant permission when it has collected permission
from a simple majority of the other processes, rather than from all of them.

A token-ring algorithm

A completely different approach to deterministically achieving mutual ex-
clusion in a distributed system is illustrated in Figure 6.17. In software, we
construct an overlay network in the form of a logical ring in which each
process is assigned a position in the ring. All that matters is that each process
knows who is next in line after itself.

When the ring is initialized, process P0 is given a token. The token
circulates around the ring. Assuming there are N processes, the token is
passed from process Pk to process P(k+1) mod N in point-to-point messages.
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Figure 6.17: An overlay network constructed as a logical ring with a token
circulating between its members.

When a process acquires the token from its neighbor, it checks to see if it
needs to access the shared resource. If so, the process goes ahead, does all the
work it needs to, and releases the resources. After it has finished, it passes
the token along the ring. It is not permitted to immediately enter the resource
again using the same token.

If a process is handed the token by its neighbor and is not interested in the
resource, it just passes the token along. As a consequence, when no processes
need the resource, the token just circulates around the ring.

The correctness of this algorithm is easy to see. Only one process has the
token at any instant, so only one process can actually get to the resource. Since
the token circulates among the processes in a well-defined order, starvation
cannot occur. Once a process decides it wants to have access to the resource,
at worst it will have to wait for every other process to use the resource.

This algorithm has its own problems. If the token is ever lost, for example,
because its holder crashes or due to a lost message containing the token, it
must be regenerated. In fact, detecting that it is lost may be difficult, since the
amount of time between successive appearances of the token on the network
is unbounded. The fact that the token has not been spotted for an hour does
not mean that it has been lost; somebody may still be using it.

The algorithm also runs into trouble if a process crashes, but recovery is
relatively easy. If we require a process receiving the token to acknowledge
receipt, a dead process will be detected when its neighbor tries to give it the
token and fails. At that point the dead process can be removed from the group,
and the token holder can throw the token over the head of the dead process to
the next member down the line, or the one after that, if necessary. Of course,
doing so requires that everyone maintains the current ring configuration.

A decentralized algorithm

Let us take a look at fully decentralized solution. Lin et al. [2004] propose to
use a voting algorithm. Each resource is assumed to be replicated N times.
Every replica has its own coordinator for controlling the access by concurrent
processes.

However, whenever a process wants to access the resource, it will simply
need to get a majority vote from m > N/2 coordinators. We assume that
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when a coordinator does not give permission to access a resource (which it
will do when it had granted permission to another process), it will tell the
requester.

The assumption is that when a coordinator crashes, it recovers quickly
but will have forgotten any vote it gave before it crashed. Another way of
viewing this is that a coordinator resets itself at arbitrary moments. The risk
that we are taking is that a reset will make the coordinator forget that it had
previously granted permission to some process to access the resource. As a
consequence, it may incorrectly grant this permission again to another process
after its recovery.

Let p = ∆t/T be the probability that a coordinator resets during a time
interval ∆t, while having a lifetime of T. The probability P[k] that k out of m
coordinators reset during the same interval is then

P[k] =
(

m
k

)
pk(1− p)m−k

If f coordinators reset, then the correctness of the voting mechanism will be
violated when we have only a minority of nonfaulty coordinators, that is, when
m− f ≤ N/2, or, in other words, when f ≥ m− N/2. The probability that
such a violation occurs is then ∑m

k=m−N/2 P[k]. To give an impression of what
this could mean, Figure 6.18 shows the probability of violating correctness for
different values of N, m, and p. Note that we compute p by considering the
number of seconds per hour that a coordinator resets, and also taking this
value to be the average time needed to access a resource. Our values for p are
considered to be (very) conservative. The conclusion is that, in general, the
probability of violating correctness can be so low that it can be neglected in
comparison to other types of failure.

N m p Violation
8 5 3 sec/hour < 10−15

8 6 3 sec/hour < 10−18

16 9 3 sec/hour < 10−27

16 12 3 sec/hour < 10−36

32 17 3 sec/hour < 10−52

32 24 3 sec/hour < 10−73

N m p Violation
8 5 30 sec/hour < 10−10

8 6 30 sec/hour < 10−11

16 9 30 sec/hour < 10−18

16 12 30 sec/hour < 10−24

32 17 30 sec/hour < 10−35

32 24 30 sec/hour < 10−49

Figure 6.18: Violation probabilities for various parameter values of decentral-
ized mutual exclusion.

To implement this scheme, we can use a system in which a resource is
replicated N times. Assume that the resource is known under its unique
name rname. We can then assume that the i-th replica is named rnamei which
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is then used to compute a unique key using a known hash function. As a
consequence, every process can generate the N keys given a resource’s name,
and subsequently look up each node responsible for a replica (and controlling
access to that replica) using some commonly used naming system.

If permission to access the resource is denied (i.e., a process gets less than
m votes), it is assumed that it will back off for some randomly chosen time,
and make a next attempt later. The problem with this scheme is that if many
nodes want to access the same resource, it turns out that the utilization rapidly
drops. In that case, there are so many nodes competing to get access that
eventually no one is able to get enough votes leaving the resource unused. A
solution to solve this problem can be found in [Lin et al., 2004].

Note 6.5 (More information: A comparison of the mutual-exclusion algorithms)

Messages per Delay before entry
Algorithm entry/exit (in message times)
Centralized 3 2
Distributed 2 · (N − 1) 2 · (N − 1)
Token ring 1, . . . , ∞ 0, . . . , N − 1
Decentralized 2 ·m · k + m, k = 1, 2, . . . 2 ·m · k
Figure 6.19: A comparison of four mutual exclusion algorithms.

A brief comparison of the mutual exclusion algorithms we have looked at is
instructive. In Figure 6.19 we have listed the algorithms and two performance
properties: the number of messages required for a process to access and release a
shared resource, and the delay before access can occur (assuming messages are
passed sequentially over a network).

In the following, we assume only point-to-point messages (or, equivalently,
count a multicast to N processes as N messages).

• The centralized algorithm is simplest and also most efficient. It requires
only three messages to enter and leave a critical region: a request, a grant
to enter, and a release to exit.

• The distributed algorithm requires N − 1 request messages, one to each of
the other processes, and an additional N − 1 grant messages, for a total of
2 · (N − 1).

• With the token ring algorithm, the number is variable. If every process
constantly wants to enter a critical region, then each token pass will result
in one entry and exit, for an average of one message per critical region
entered. At the other extreme, the token may sometimes circulate for hours
without anyone being interested in it. In this case, the number of messages
per entry into a critical region is unbounded.

• In the decentralized case, we see that a request message needs to be sent to
m coordinators, followed by a response message. However, it is possible
that several attempts need to be made (for which we introduce the variable
k). An exit requires sending a message to each of the m coordinators.
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The delay from the moment a process needs to enter a critical region until its
actual entry also varies. For a worst-case analysis, we assume that messages are
sent one after the other (i.e., there are never two or more messages in transit at
the same time), and that message transfer time is roughly the same everywhere.
Delay can then be expressed in message transfer time units, or simply MTTU.
Under these assumptions, when the time using a resource is short, the dominant
factor in the delay is determined by the total number of messages sent through
the system before access can be granted. When resources are used for a long
period of time, the dominant factor is waiting for everyone else to take their turn.
In Figure 6.19 we show the former case.

• It takes only two MTTUs to enter a critical region in the centralized case,
caused by a request message and the subsequent grant message sent by the
coordinator.

• The distributed algorithm requires sending N − 1 request messages, and
receiving another N − 1 grant messages, adding up to 2 · (N − 1) MTTUs.

• For the token ring, the delay varies from 0 MTTU (in case the token had
just arrived) to N − 1 (for when the token had just departed).

• The decentralized case requires sending m messages to coordinators, and
another m responses, but a process may need to go through k ≥ 1 attempts,
adding up to 2 ·m · k MTTUs.

Virtually all algorithms suffer badly in the event of crashes. Special measures
and additional complexity must be introduced to avoid having a crash bring down
the entire system. It is somewhat ironic that distributed algorithms are generally
more sensitive to crashes than centralized ones. In this sense, it should not come
as a surprise that, indeed, centralized mutual exclusion is widely applied: it
is simple to understand the behavior, and relatively easy to increase the fault
tolerance of the centralized server. However, centralized solutions may suffer
from scalability problems.

6.4 Election algorithms

Many distributed algorithms require one process to act as coordinator, initiator,
or otherwise perform some special role. In general, it does not matter which
process takes on this special responsibility, but one of them has to do it. In
this section we will look at algorithms for electing a coordinator (using this as
a generic name for the special process).

If all processes are exactly the same, with no distinguishing characteristics,
there is no way to select one of them to be special. Consequently, we will
assume that each process P has a unique identifier id(P). In general, elec-
tion algorithms attempt to locate the process with the highest identifier and
designate it as coordinator. The algorithms differ in the way they locate the
coordinator.
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Furthermore, we also assume that every process knows the identifier of
every other process. In other words, each process has complete knowledge of
the process group in which a coordinator must be elected. What the processes
do not know is which ones are currently up and which ones are currently
down. The goal of an election algorithm is to ensure that when an election
starts, it concludes with all processes agreeing on who the new coordinator is
to be. There are many algorithms and variations, of which several important
ones are discussed in the text books by Tel [2000] and Lynch [1996].

The bully algorithm

A well-known solution for electing a coordinator is the bully algorithm de-
vised by Garcia-Molina [1982]. In the following, we consider N processes
{P0, . . . , PN−1} and let id(Pk) = k. When any process notices that the coordi-
nator is no longer responding to requests, it initiates an election. A process,
Pk, holds an election as follows:

1. Pk sends an ELECTION message to all processes with higher identifiers:
Pk+1, Pk+2, . . . , PN−1.

2. If no one responds, Pk wins the election and becomes coordinator.
3. If one of the higher-ups answers, it takes over and Pk’s job is done.

At any moment, a process can get an ELECTION message from one of its
lower-numbered colleagues. When such a message arrives, the receiver sends
an OK message back to the sender to indicate that he is alive and will take
over. The receiver then holds an election, unless it is already holding one.
Eventually, all processes give up but one, and that one is the new coordinator.
It announces its victory by sending all processes a message telling them that
starting immediately it is the new coordinator.

If a process that was previously down comes back up, it holds an election.
If it happens to be the highest-numbered process currently running, it will
win the election and take over the coordinator’s job. Thus the biggest guy in
town always wins, hence the name “bully algorithm.”

In Figure 6.20 we see an example of how the bully algorithm works. The
group consists of eight processes, with identifiers numbered from 0 to 7.
Previously process P7 was the coordinator, but it has just crashed. Process
P4 is the first one to notice this, so it sends ELECTION messages to all the
processes higher than it, namely P5, P6, and P7, as shown in Figure 6.20(a).
Processes P5 and P6 both respond with OK, as shown in Figure 6.20(b). Upon
getting the first of these responses, P4 knows that its job is over, knowing that
either one of P5 or P6 will take over and become coordinator. Process P4 just
sits back and waits to see who the winner will be (although at this point it
can make a pretty good guess).

In Figure 6.20(c) both P5 and P6 hold elections, each one sending messages
only to those processes with identifiers higher than itself. In Figure 6.20(d),
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(a) (b)

(c)

(d) (e)

Figure 6.20: The bully election algorithm. (a) Process 4 holds an election. (b)
Processes 5 and 6 respond, telling 4 to stop. (c) Now 5 and 6 each hold an
election. (d) Process 6 tells 5 to stop. (e) Process 6 wins and tells everyone.

P6 tells P5 that it will take over. At this point P6 knows that P7 is dead and
that it (P6) is the winner. If there is state information to be collected from disk
or elsewhere to pick up where the old coordinator left off, P6 must now do
what is needed. When it is ready to take over, it announces the takeover by
sending a COORDINATOR message to all running processes. When P4 gets
this message, it can now continue with the operation it was trying to do when
it discovered that P7 was dead, but using P6 as the coordinator this time. In
this way the failure of P7 is handled and the work can continue.
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If process P7 is ever restarted, it will send all the others a COORDINATOR
message and bully them into submission.

A ring algorithm

Consider the following election algorithm that is based on the use of a (logical)
ring. Unlike some ring algorithms, this one does not use a token. We assume
that each process knows who its successor is. When any process notices that
the coordinator is not functioning, it builds an ELECTION message containing
its own process identifier and sends the message to its successor. If the
successor is down, the sender skips over the successor and goes to the next
member along the ring, or the one after that, until a running process is located.
At each step along the way, the sender adds its own identifier to the list in the
message effectively making itself a candidate to be elected as coordinator.

Eventually, the message gets back to the process that started it all. That pro-
cess recognizes this event when it receives an incoming message containing its
own identifier. At that point, the message type is changed to COORDINATOR
and circulated once again, this time to inform everyone else who the coordi-
nator is (the list member with the highest identifier) and who the members of
the new ring are. When this message has circulated once, it is removed and
everyone goes back to work.

Figure 6.21: Election algorithm using a ring. The solid line shows the election
messages initiated by P6; the dashed one those by P3.

In Figure 6.21 we see what happens if two processes, P3 and P6, discover
simultaneously that the previous coordinator, process P7, has crashed. Each
of these builds an ELECTION message and each of them starts circulating its
message, independent of the other one. Eventually, both messages will go all
the way around, and both P3 and P6 will convert them into COORDINATOR
messages, with exactly the same members and in the same order. When both
have gone around again, both will be removed. It does no harm to have extra
messages circulating; at worst it consumes a little bandwidth, but this is not
considered wasteful.
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Elections in wireless environments

Traditional election algorithms are generally based on assumptions that are
not realistic in wireless environments. For example, they assume that message
passing is reliable and that the topology of the network does not change.
These assumptions are false in most wireless environments, especially those
for mobile ad hoc networks.

Only few protocols for elections have been developed that work in ad hoc
networks. Vasudevan et al. [2004] propose a solution that can handle failing
nodes and partitioning networks. An important property of their solution is
that the best leader can be elected rather than just a random one as was more
or less the case in the previously discussed solutions. Their protocol works as
follows. To simplify our discussion, we concentrate only on ad hoc networks
and ignore that nodes can move.

Consider a wireless ad hoc network. To elect a leader, any node in the
network, called the source, can initiate an election by sending an ELECTION
message to its immediate neighbors (i.e., the nodes in its range). When a
node receives an ELECTION for the first time, it designates the sender as its
parent, and subsequently sends out an ELECTION message to all its immediate
neighbors, except for the parent. When a node receives an ELECTION message
from a node other than its parent, it merely acknowledges the receipt.

When node R has designated node Q as its parent, it forwards the
ELECTION message to its immediate neighbors (excluding Q) and waits for
acknowledgments to come in before acknowledging the ELECTION message
from Q. This waiting has an important consequence. First, note that neighbors
that have already selected a parent will immediately respond to R. More
specifically, if all neighbors already have a parent, R is a leaf node and will be
able to report back to Q quickly. In doing so, it will also report information
such as its battery lifetime and other resource capacities.

This information will later allow Q to compare R’s capacities to that of
other downstream nodes, and select the best eligible node for leadership. Of
course, Q had sent an ELECTION message only because its own parent P had
done so as well. In turn, when Q eventually acknowledges the ELECTION
message previously sent by P, it will pass the most eligible node to P as well.
In this way, the source will eventually get to know which node is best to be
selected as leader, after which it will broadcast this information to all other
nodes.

This process is illustrated in Figure 6.22. Nodes have been labeled a to
j, along with their capacity. Node a initiates an election by broadcasting
an ELECTION message to nodes b and j, as shown in Figure 6.22(b) After
that step, ELECTION messages are propagated to all nodes, ending with the
situation shown in Figure 6.22(e), where we have omitted the last broadcast
by nodes f and i. From there on, each node reports to its parent the node
with the best capacity, as shown in Figure 6.22(f). For example, when node g
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(a) (b)

(c) (d)

(e) (f)

Figure 6.22: Election algorithm in a wireless network, with node a as the
source. (a) Initial network. (b)–(e) The build-tree phase (last broadcast step by
nodes f and i not shown). (f) Reporting of best node to source.
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receives the acknowledgments from its children e and h, it will notice that h
is the best node, propagating [h, 8] to its own parent, node b. In the end, the
source will note that h is the best leader and will broadcast this information
to all other nodes.

When multiple elections are initiated, each node will decide to join only
one election. To this end, each source tags its ELECTION message with a
unique identifier. Nodes will participate only in the election with the highest
identifier, stopping any running participation in other elections.

With some minor adjustments, the protocol can be shown to operate also
when the network partitions, and when nodes join and leave. The details can
be found in Vasudevan et al. [2004].

Elections in large-scale systems

Many leader-election algorithms apply to only relatively small distributed
systems. Moreover, algorithms often concentrate on the selection of only
a single node. There are situations when several nodes should actually be
selected, such as in the case of super peers in peer-to-peer networks, which
we discussed in Section 2.3. In this section, we concentrate specifically on the
problem of selecting super peers.

The following requirements need to be met for super-peer selection (see
also [Lo et al., 2005]):

1. Normal nodes should have low-latency access to super peers.
2. Super peers should be evenly distributed across the overlay network.
3. There should be a predefined portion of super peers relative to the total

number of nodes in the overlay network.
4. Each super peer should not need to serve more than a fixed number of

normal nodes.

Fortunately, these requirements are relatively easy to meet in most peer-to-
peer systems, given the fact that the overlay network is either structured (as
in DHT-based systems), or randomly unstructured (as, for example, can be
realized with gossip-based solutions). Let us take a look at solutions proposed
by Lo et al. [2005].

In the case of DHT-based systems, the basic idea is to reserve a fraction
of the identifier space for super peers. In a DHT-based system, each node
receives a random and uniformly assigned m-bit identifier. Now suppose we
reserve the first (i.e., leftmost) k bits to identify super peers. For example, if
we need N superpeers, then the first dlog2(N)e bits of any key can be used to
identify these nodes.

To explain, assume we have a (small) Chord system with m = 8 and
k = 3. When looking up the node responsible for a specific key K, we can
first decide to route the lookup request to the node responsible for the pattern
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K∧ 11100000 which is then treated as the superpeer.1 Note that each node with
identifier ID can check whether it is a super peer by looking up ID∧ 11100000
to see if this request is routed to itself. Provided node identifiers are uniformly
assigned to nodes, it can be seen that with a total of N nodes the number of
super peers is, on average, equal to 2k−mN.

A completely different approach is based on positioning nodes in an m-
dimensional geometric space. In this case, assume we need to place N super
peers evenly throughout the overlay. The basic idea is simple: a total of N
tokens are spread across N randomly chosen nodes. No node can hold more
than one token. Each token represents a repelling force by which another
token is inclined to move away. The net effect is that if all tokens exert the same
repulsion force, they will move away from each other and spread themselves
evenly in the geometric space.

This approach requires that nodes holding a token learn about other
tokens. To this end, we can use a gossiping protocol by which a token’s force
is disseminated throughout the network. If a node discovers that the total
forces that are acting on it exceed a threshold, it will move the token in the
direction of the combined forces, as shown in Figure 6.23. When a token is
held by a node for a given amount of time, that node will promote itself to
superpeer.

Figure 6.23: Moving tokens in a two-dimensional space using repulsion forces.

6.5 Location systems

When looking at very large distributed systems that are dispersed across a
wide-area network, it is often necessary to take proximity into account. Just
imagine a distributed system organized as an overlay network in which two
processes are neighbors in the overlay network, but are actually placed far
apart in the underlying network. If these two processes communicate a lot, it
may have been better to ensure that they are also physically placed in each

1We use the binary operator “∧” to denote a bitwise and.
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other’s proximity. In this section, we take a look at location-based techniques
to coordinate the placement of processes and their communication.

GPS: Global Positioning System

Let us start by considering how to determine your geographical position
anywhere on Earth. This positioning problem is by itself solved through
a highly specific, dedicated distributed system, namely GPS, which is an
acronym for Global Positioning System. GPS is a satellite-based distributed
system that was launched in 1978. Although it initially was used mainly for
military applications, it by now has found its way to many civilian applications,
notably for traffic navigation. However, many more application domains exist.
For example, modern smartphones now allow owners to track each other’s
position. This principle can easily be applied to tracking other things as well,
including pets, children, cars, boats, and so on.

GPS uses up to 72 satellites each circulating in an orbit at a height of
approximately 20,000 km. Each satellite has up to four atomic clocks, which
are regularly calibrated from special stations on Earth. A satellite continuously
broadcasts its position, and time stamps each message with its local time. This
broadcasting allows every receiver on Earth to accurately compute its own
position using, in principle, only four satellites. To explain, let us first assume
that all clocks, including the receiver’s, are synchronized.

In order to compute a position, consider first the two-dimensional case,
as shown in Figure 6.24, in which three satellites are drawn, along with the
circles representing points at the same distance from each respective satellite.
We see that the intersection of the three circles is a unique point.

Figure 6.24: Computing a node’s position in a two-dimensional space.
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This principle of intersecting circles can be expanded to three dimensions,
meaning that we need to know the distance to four satellites to determine the
longitude, latitude, and altitude of a receiver on Earth. This positioning is
all fairly straightforward, but determining the distance to a satellite becomes
complicated when we move from theory to practice. There are at least two
important real-world facts that we need to take into account:

1. It takes a while before data on a satellite’s position reaches the receiver.
2. The receiver’s clock is generally not in sync with that of a satellite.

Assume that the timestamp from a satellite is completely accurate. Let
∆r denote the deviation of the receiver’s clock from the actual time. When a
message is received from satellite Si with timestamp Ti, then the measured
delay ∆i by the receiver consists of two components: the actual delay, along
with its own deviation:

∆i = (Tnow − Ti) + ∆r

where Tnow is the actual current time. As signals travel with the speed of light,
c, the measured distance d̃i to satellite Si is equal to c · ∆i. With

di = c · (Tnow − Ti)

being the real distance between the receiver and satellite Si, the measured
distance can be rewritten to d̃i = di + c ·∆r. The real distance is now computed
as:

d̃i − c · ∆r =
√
(xi − xr)2 + (yi − yr)2 + (zi − zr)2

where xi, yi, and zi denote the coordinates of satellite Si. What we see now is
a system of quadratic equations with four unknowns (xr, yr, zr, and also ∆r).
We thus need four reference points (i.e., satellites) to find a unique solution
that will also give us ∆r. A GPS measurement will thus also give an account
of the actual time.

So far, we have assumed that measurements are perfectly accurate. Of
course, they are not. There are many sources of errors, starting with the
fact that the atomic clocks in the satellites are not always in perfect sync, the
position of a satellite is not known precisely, the receiver’s clock has a finite
accuracy, the signal propagation speed is not constant (as signals appear to
slow down when entering, e.g., the ionosphere), and so on. On average, this
leads to an error of some 5–10 meters. Special modulation techniques, as
well as special receivers, are needed to improve accuracy. Using so-called
differential GPS, by which corrective information is sent through wide-area
links, accuracy can be further improved. More information can be found in
[LaMarca and de Lara, 2008], as well as an excellent overview by Zogg [2002].
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When GPS is not an option

A major drawback of GPS is that it can generally not be used indoors. For that
purpose, other techniques are necessary. An increasingly popular technique
is to make use of the numerous WiFi access points available. The basic idea
is simple: if we have a database of known access points along with their
coordinates, and we can estimate our distance to an access point, then with
only three detected access points, we should be able to compute our position.
Of course, it really is not that simple at all.

A major problem is determining the coordinates of an access point. A
popular approach is to do this through war driving: using a WiFi-enabled
device along with a GPS receiver, someone drives or walks through an area
and records observed access points. An access point can be identified through
its SSID or its MAC-level network address. An access point AP should
be detected at several locations before its coordinates can be estimated. A
simple method is to compute the centroid: assume we have detected AP
at N different locations {~x1, ~x2, . . . , ~xN}, where each location ~xi consists of
a (latitude, longitude)-pair as provided by the GPS receiver. We then simply
estimate AP’s location ~xAP as

~xAP =
∑N

i=1 ~xi

N
.

Accuracy can be improved by taking the observed signal strength into account,
and giving more weight to a location with relatively high observed signal
strength than to a location where only a weak signal was detected. In the end,
we obtain an estimation of the coordinates of the access point. The accuracy
of this estimation is strongly influenced by:

• the accuracy of each GPS detection point ~xi
• the fact that an access point has a nonuniform transmission range
• the number of sampled detection points N.

Studies show that estimates of the coordinates of an access point may be
tens of meters off from the actual location (see, e.g., Kim et al. [2006a] or
Tsui et al. [2010]). Moreover, access points come and go at a relatively high
rate. Nevertheless, locating and positioning access points is widely popular,
exemplified by the open-access Wigle database which is populated through
crowd sourcing.2

Logical positioning of nodes

Instead of trying to find the absolute location of a node in a distributed system,
an alternative is to use a logical, proximity-based location. In geometric

2See wigle.net.
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overlay networks each node is given a position in an m-dimensional geometric
space, such that the distance between two nodes in that space reflects a real-
world performance metric. Computing such a position is the core business of a
Network Coordinates System, or simply NCS, which are surveyed by Donnet
et al. [2010]. The simplest, and most applied example, is where distance
corresponds to internode latency. In other words, given two nodes P and Q,
then the distance d̂(P, Q) reflects how long it would take for a message to
travel from P to Q and vice versa. We use the notation d̂ to denote distance in
a system where nodes have been assigned coordinates.

There are many applications of geometric overlay networks. Consider the
situation where a Web site at server O has been replicated to multiple servers
S1, . . . , SN on the Internet. When a client C requests a page from O, the latter
may decide to redirect that request to the server closest to C, that is, the one
that will give the best response time. If the geometric location of C is known,
as well as those of each replica server, O can then simply pick that server Si
for which d̂(C, Si) is minimal. Note that such a selection requires only local
processing at O. In other words, there is, for example, no need to sample all
the latencies between C and each of the replica servers.

Another example is optimal replica placement. Consider again a Web
site that has gathered the positions of its clients. If the site were to replicate
its content to N servers, it can compute the N best positions where to place
replicas such that the average client-to-replica response time is minimal.
Performing such computations is almost trivially feasible if clients and servers
have geometric positions that reflect internode latencies.

As a last example, consider position-based routing (see, e.g., [Popescu
et al., 2012] or [Bilal et al., 2013]). In such schemes, a message is forwarded
to its destination using only positioning information. For example, a naive
routing algorithm to let each node forward a message to the neighbor closest
to the destination. Although it can be easily shown that this specific algorithm
need not converge, it illustrates that only local information is used to take a
decision. There is no need to propagate link information or such to all nodes
in the network, as is the case with conventional routing algorithms.

Centralized positioning

Positioning a node in an m-dimensional geometric space requires m + 1
distance measures to nodes with known positions. Assuming that node P
wants to compute its own position, it contacts three other nodes with known
positions and measures its distance to each of them. Contacting only one node
would tell P about the circle it is located on; contacting only two nodes would
tell it about the position of the intersection of two circles (which generally
consists of two points); a third node would subsequently allow P to compute
its actual location.

DS 3.02 downloaded by OLEXANDER.PERIG@GMAIL.COM



6.5. LOCATION SYSTEMS 341

Node P can compute its own coordinates (xP, yP) by solving the three
quadratic equations with the two unknowns xP and yP:

d̃i =
√
(xi − xP)2 + (yi − yP)2 (i = 1, 2, 3)

Here, we use d̃ to denote measured, or estimated distance. As said, d̃i generally
corresponds to measuring the latency between P and the node at (xi, yi). This
latency can be estimated as being half the round-trip delay, but it should
be clear that its value will be different over time. The effect is a different
positioning whenever P would want to recompute its position. Moreover, if
other nodes would use P’s current position to compute their own coordinates,
then it should be clear that the error in positioning P will affect the accuracy
of the positioning of other nodes.

It should also be clear that measured distances between a set of nodes
will generally not even be consistent. For example, assume we are computing
distances in a one-dimensional space as shown in Figure 6.25. In this example,
we see that although R measures its distance to Q as 2.0, and d̃(P, Q) has been
measured to be 1.0, when R measures d̃(P, R) it finds 2.8, which is clearly
inconsistent with the other two measurements.

Figure 6.25: Inconsistent distance measurements in a one-dimensional space.

Figure 6.25 also suggests how this situation can be improved. In our simple
example, we could solve the inconsistencies by merely computing positions
in a two-dimensional space. This by itself, however, is not a general solution
when dealing with many measurements. In fact, considering that Internet
latency measurements may violate the triangle inequality, it is generally
impossible to resolve inconsistencies completely. The triangle inequality states
that in a geometric space, for any arbitrary three nodes P, Q, and R it must
always be true that

d(P, R) ≤ d(P, Q) + d(Q, R).

There are various ways to approach these issues. One common approach,
proposed by Ng and Zhang [2002], is to use N special nodes L1, . . . , LN, known
as landmarks. Landmarks measure their pairwise latencies d̃(Li, Lj) and
subsequently let a central node compute the coordinates for each landmark.
To this end, the central node seeks to minimize the following aggregated error
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function:
N

∑
i=1

N

∑
j=i+1

(
d̃(Li, Lj)− d̂(Li, Lj)

d̃(Li, Lj)

)2

where, again, d̂(Li, Lj) corresponds to the distance after nodes Li and Lj have
been positioned.

The hidden parameter in minimizing the aggregated error function is the
dimension m. Obviously, we have that N > m, but nothing prevents us from
choosing a value for m that is much smaller than N. In that case, a node P
measures its distance to each of the N landmarks and computes its coordinates
by minimizing

N

∑
i=1

(
d̃(Li, P)− d̂(Li, P)

d̃(Li, P)

)2

As it turns out, with well-chosen landmarks, m can be as small as 6 or 7, with
d̂(P, Q) being no more than a factor 2 different from the actual latency d(P, Q)
for arbitrary nodes P and Q [Szymaniak et al., 2004; 2008].

Decentralized positioning

Another way to tackle this problem is to view the collection of nodes as a huge
system in which nodes are attached to each other through springs. In this
case, |d̃(P, Q)− d̂(P, Q)| indicates to what extent nodes P and Q are displaced
relative to the situation in which the system of springs would be at rest. By
letting each node (slightly) change its position, it can be shown that the system
will eventually converge to an optimal organization in which the aggregated
error is minimal. This approach is followed in Vivaldi, described in [Dabek
et al., 2004a].

In a system with N nodes P1, . . . , PN, Vivaldi aims at minimizing the
following aggregated error:

N

∑
i=1

N

∑
j=1
|d̃(Pi, Pj)− d̂(Pi, Pj)|2

where d̃(Pi, Pj) is the measured distance (i.e., latency) between nodes Pi and
Pj, and d̂(Pi, Pj) the distance computed from the network coordinates of each
node. Let ~xi denote the coordinates of node Pi. In a situation that each node
is placed in a geometric space, the force that node Pi exerts on node Pj is
computed as:

~Fij =
(
d̃(Pi, Pj)− d̂(Pi, Pj)

)
× u(~xi − ~xj)

with u(~xi − ~xj) denoting the unit vector in the direction of ~xi − ~xj. In other
words, if Fij > 0, node Pi will push Pj away from itself, and will otherwise
pull it toward itself. Node Pi now repeatedly executes the following steps:
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1. Measure the latency d̃ij to node Pj, and also receive Pj’s coordinates ~xj.
2. Compute the error e = d̃(Pi, Pj)− d̂(Pi, Pj)
3. Compute the direction ~u = u(~xi − ~xj).
4. Compute the force vector Fij = e · ~u
5. Adjust own position by moving along the force vector: ~xi ← ~xi + δ · ~u.

A crucial element is the choice of δ: too large and the system will oscillate;
too small and convergence to a stable situation will take a long time. The
trick is to have an adaptive value, which is large when the error is large as
well, but small when only small adjustments are needed. Details can be found
in [Dabek et al., 2004a].

6.6 Distributed event matching

As a final subject concerning the coordination among processes, we consider
distributed event matching. Event matching, or more precisely, notification
filtering, is at the heart of publish-subscribe systems. The problem boils down
to the following:

• A process specifies through a subscription S in which events it is inter-
ested.

• When a process publishes a notification N on the occurrence of an event,
the system needs to see if S matches N.

• In the case of a match, the system should send the notification N, possibly
including the data associated with the event that took place, to the
subscriber.

As a consequence, we need to facilitate at least two things: (1) matching
subscriptions against events, and (2) notifying a subscriber in the case of a
match. The two can be separated, but this need not always be the case. In the
following, we assume the existence of a function match(S, N) which returns
true when subscription S matches the notification N, and false otherwise.

Centralized implementations

A simple, naive implementation of event matching is to have a fully centralized
server that handles all subscriptions and notifications. In such a scheme, a
subscriber simply submits a subscription, which is subsequently stored. When
a publisher submits a notification, that notification is checked against each
and every subscription, and when a match is found, the notification is copied
and forwarded to the associated subscriber.

Obviously, this is not a very scalable solution. Nevertheless, provided the
matching can be done efficiently and the server itself has enough processing
power, the solution is feasible for many cases. For example, using a centralized
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server is the canonical solution for implementing Linda tuple spaces or Java
Spaces. Likewise, many publish-subscribe systems that run within a single
department or organization can be implemented through a central server.
Important in these cases, is that the matching function can be implemented
efficiently. In practice, this is often the case when dealing with topic-based
filtering: matching then resorts to checking for equality of attribute values.

Note that a simple way to scale up a centralized implementation, is to de-
terministically divide the work across multiple servers. A standard approach
is to make use of two functions, as explained by Baldoni et al. [2009]:

• a function sub2node(S), which takes a subscription S and maps it to a
nonempty subset of servers

• a function not2node(N), which takes a notification N and maps it to a
nonempty subset of servers.

The servers to which sub2node(S) is mapped are called the rendezvous nodes
for S. Likewise, sub2node(N) are the rendezvous nodes for N. The only
constraint that needs to be satisfied, is that for any subscription S and matching
notification N, sub2node(S) ∩ not2node(N) 6= ∅. In other words, there must be
at least one server that can handle the subscription when there is a matching
notification. In practice, this constraint is satisfied by topic-based publish-
subscribe systems by using a hashing function on the names of the topics.

The idea of having a central server can be extended by distributing the
matching across multiple servers and dividing the work. The servers, gener-
ally referred to as brokers, are organized into an overlay network. The issue
then becomes how to route notifications to the appropriate set of subscribers.
Following Baldoni et al. [2009], we distinguish three different classes: (1) flood-
ing, (2) selective routing, and (3) gossip-based dissemination. An extensive
survey on combining peer-to-peer networks and publish-subscribe systems is
provided by Kermarrec and Triantafillou [2013].

A straightforward way to make sure that notifications reach their sub-
scribers, is to deploy broadcasting. There are essentially two approaches. First,
we store each subscription at every broker, while publishing notifications only
a single broker. The latter will handle identifying the matching subscriptions
and subsequently copy and forward the notification. The alternative is to
store a subscription only at one broker while broadcasting notifications to all
brokers. In that case, matching is distributed across the brokers which may
lead to a more balanced workload among the brokers.

Note 6.6 (Example: TIB/Rendezvous)
Flooding notifications is used in TIB/Rendezvous, of which the basic archi-
tecture is shown in Figure 6.26 [TIBCO]. In this approach, a notification is
a message tagged with a compound keyword describing its content, such as
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news.comp.os.books. A subscriber provides (parts of) a keyword, or indicating the
messages it wants to receive, such as news.comp. ∗ .books. These keywords are
said to indicate the subject of a message.

Figure 6.26: The principle of a publish/subscribe system as implemented
in TIB/Rendezvous.

Fundamental to its implementation is the use of broadcasting common in
local-area networks, although it also uses more efficient communication facilities
when possible. For example, if it is known exactly where a subscriber resides,
point-to-point messages will generally be used. Each host on such a network will
run a rendezvous daemon, which takes care that messages are sent and delivered
according to their subject. Whenever a message is published, it is multicast to
each host on the network running a rendezvous daemon. Typically, multicasting
is implemented using the facilities offered by the underlying network, such as
IP-multicasting or hardware broadcasting.

Processes that subscribe to a subject pass their subscription to their local
daemon. The daemon constructs a table of (process, subject), entries and whenever
a message on subject S arrives, the daemon simply checks in its table for local
subscribers, and forwards the message to each one. If there are no subscribers for
S, the message is discarded immediately.

When using multicasting as is done in TIB/Rendezvous, there is no reason
why subscriptions cannot be elaborate and be more than string comparison as
is currently the case. The crucial observation here is that because messages are
forwarded to every node anyway, the potentially complex matching of published
data against subscriptions can be done entirely locally without further network
communication. needed.

When systems become big, flooding is not the best way to go, if even
possible. Instead, routing notifications across the overlay network of brokers
may be necessary. This is typically the way to go in information-centric
networking, which makes use of name-based routing [Ahlgren et al., 2012;
Xylomenos et al., 2014]. Name-based routing is a special case of selective
notification routing. Crucial in this setup is that brokers can take routing
decisions by considering the content of a notification message. More precisely,
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it is assumed that each notification carries enough information that can be
used to cut-off routes for which it is known that they do not lead to its
subscribers.

A practical approach toward selective routing is proposed by Carzaniga
et al. [2004]. Consider a publish-subscribe system consisting of N brokers
to which clients (i.e., applications) can send subscriptions and retrieve noti-
fications. Carzaniga et al. propose a two-layered routing scheme in which
the lowest layer consists of a shared broadcast tree connecting the N brokers.
There are various ways for setting up such a tree, ranging from network-
level multicast support to application-level multicast trees as we discussed
in Chapter 4. Here, we also assume that such a tree has been set up with
the N brokers as end nodes, along with a collection of intermediate nodes
forming routers. Note that the distinction between a server and a router is
only a logical one: a single machine may host both kinds of processes.

Figure 6.27: Naive content-based routing.

Every broker broadcasts its subscriptions to all other brokers. As a result,
every broker will be able to compile a list of (subject, destination) pairs. Then,
whenever a process publishes a notification N, its associated broker prepends
the destination brokers to that message. When the message reaches a router,
the latter can use the list to decide on the paths that the message should
follow, as shown in Figure 6.27.

We can refine the capabilities of routers for deciding where to forward
notifications to. To that end, each broker broadcasts its subscription across
the network so that routers can compose routing filters. For example, assume
that node 3 in Figure 6.27 subscribes to notifications for which an attribute a
lies in the range [0, 3], but that node 4 wants messages with a ∈ [2, 5]. In this
case, router R2 will create a routing filter as a table with an entry for each of
its outgoing links (in this case three: one to node 3, one to node 4, and one
toward router R1), as shown in Figure 6.28.

More interesting is what happens at router R1. In this example, the
subscriptions from nodes 3 and 4 dictate that any notification with a lying in
the interval [0, 3] ∪ [2, 5] = [0, 5] should be forwarded along the path to router
R2, and this is precisely the information that R1 will store in its table. It is
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Interface Filter
To node 3 a ∈ [0, 3]
To node 4 a ∈ [2, 5]
Toward router R1 (unspecified)

Figure 6.28: A partially filled routing table.

not difficult to imagine that more intricate subscription compositions can be
supported.

This simple example also illustrates that whenever a node leaves the
system, or when it is no longer interested in specific notifications, it should
cancel its subscription and essentially broadcast this information to all routers.
This cancellation, in turn, may lead to adjusting various routing filters. Late
adjustments will at worst lead to unnecessary traffic as notifications may be
forwarded along paths for which there are no longer subscribers. Nevertheless,
timely adjustments are needed to keep performance at an acceptable level.

The last type of distributed event matching is based on gossiping. The
basic idea is that subscribers interested in the same notifications form their
own overlay network (which is constructed through gossiping), so that once
a notification is published, it merely needs to be routed to the appropriate
overlay. For the latter, a random walk can be deployed. This approach is
following in TERA [Baldoni et al., 2007]. As an alternative, in PolderCast [Setty
et al., 2012] a publisher first joins the overlay of subscribers before flooding its
notification. The subscriber overlay is built per topic and constitutes a ring
with shortcuts to facilitate efficient dissemination of a notification.

Note 6.7 (Advanced: Gossiping for content-based event matching)
A more sophisticated approach toward combining gossiping and event matching
is followed in Sub-2-Sub [Voulgaris et al., 2006]. Consider a publish-subscribe
system in which data items can be described by means of N attributes a1, . . . , aN
whose value can be directly mapped to a floating-point number. Such values
include, for example, floats, integers, enumerations, booleans, and strings. A
subscription S takes the form of a tuple of (attribute, value/range) pairs, such as

S = 〈a1 → 3.0, a4 → [0.0, 0.5)〉

In this example, S specifies that a1 should be equal to 3.0, and a4 should lie in the
interval [0.0, 0.5). Other attributes are allowed to take on any value. For clarity,
assume that every node i enters only one subscription Si.

Note that each subscription Si actually specifies a subset Si in the N-
dimensional space of floating-point numbers. Such a subset is also called a
hyperspace. For the system as a whole, notifications that fall in the union S = ∪Si
of these hyperspaces are the only ones of interest. The whole idea is to auto-
matically partition S into M disjoint hyperspaces S1, . . . , SM such that each falls
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completely in one of the subscription hyperspaces Si, and together they cover all
subscriptions. More formally, we have that:

(Sm ∩ Si 6= ∅)⇒ (Sm ⊆ Si)

Sub-2-Sub keeps M minimal in the sense that there is no partitioning with fewer
parts Sm. To this end, for each hyperspace Sm, it registers exactly those nodes i

for which Sm ⊆ Si. In that case, when a notification is published, the system need
merely find the Sm to which the associated event belongs, from which point it
can forward the notification to the appropriate nodes.

To this end, nodes regularly exchange subscriptions through gossiping. If
two nodes i and j notice that their respective subscriptions intersect, that is,
Sij ≡ Si ∩ Sj 6= ∅ they will record this fact and keep references to each other.
If they discover a third node k with Sijk ≡ Sij ∩ Sk 6= ∅, the three of them
will connect to each other so that a notification N from Sijk can be efficiently
disseminated. Note that if Sij − Sijk 6= ∅, nodes i and j will maintain their mutual
references, but now associate it strictly with Sij − Sijk.

In essence, what we are seeking is a means to cluster nodes into M different
groups, such that nodes i and j belong to the same group if and only if their
subscriptions Si and Sj intersect. Moreover, nodes in the same group should be
organized into an overlay network that will allow efficient dissemination of a data
item in the hyperspace associated with that group. This situation for a single
attribute is sketched in Figure 6.29.

Figure 6.29: Grouping nodes for supporting range queries in a gossip-
based publish-subscribe system.

Here, we see a total of seven nodes in which the horizontal line for node i

indicates its range of interest for the value of the single attribute. Also shown is the
grouping of nodes into disjoint ranges of interests for values of the attribute. For
example, nodes 3, 4, 7, and 10 will be grouped together representing the interval
[16.5, 21.0]. Any data item with a value in this range should be disseminated to
only these four nodes.

To construct these groups, the nodes are organized into a gossip-based un-
structured network. Each node maintains a list of references to other neighbors
(i.e., a partial view), which it periodically exchanges with one of its neighbors.
Such an exchange will allow a node to learn about random other nodes in the sys-
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tem. Every node keeps track of the nodes it discovers with overlapping interests
(i.e., with an intersecting subscription).

At a certain moment, every node i will generally have references to other
nodes with overlapping interests. As part of exchanging information with a node
j, node i orders these nodes by their identifiers and selects the one with the lowest
identifier i1 > j, such that its subscription overlaps with that of node j, that is,
Sj,i1 ≡ Si1 ∩ Sj 6= ∅.

The next one to be selected is i2 > i1 such that its subscription also overlaps
with that of j, but only if it contains elements not yet covered by node i1. In
other words, we should have that Sj,i1 ,i2 ≡ (Si2 − Sj,i1 ) ∩ Sj 6= ∅. This process is
repeated until all nodes that have an overlapping interest with node i have been
inspected, leading to an ordered list i1 < i2 < · · · < in. Note that a node ik is in
this list because it covers a region R of common interest to node i and j not yet
jointly covered by nodes with a lower identifier than ik. In effect, node ik is the
first node that node j should forward a notification to that falls in this unique
region R. This procedure can be expanded to let node i construct a bidirectional
ring. Such a ring is also shown in Figure 6.29.

Whenever a notification N is published, it is disseminated as quickly as
possible to any node that is interested in it. As it turns out, with the information
available at every node finding a node i interested in N is simple. From there
on, node i need simply forward N along the ring of subscribers for the particular
range that N falls into. To speed up dissemination, shortcuts are maintained for
each ring as well.

6.7 Gossip-based coordination

As a final topic in coordination, we take a look at a few important examples
in which gossiping is deployed. In the following, we look at aggregation,
large-scale peer sampling, and overlay construction, respectively.

Aggregation

Let us take a look at some interesting applications of epidemic protocols. We
already mentioned spreading updates, which is perhaps the most widely-
deployed application. In the same light, gossiping can be used to discover
nodes that have a few outgoing wide-area links, to subsequently apply direc-
tional gossiping.

Another interesting application area is simply collecting, or actually aggre-
gating information [Jelasity et al., 2005]. Consider the following information
exchange. Every node Pi initially chooses an arbitrary number, say vi. When
node Pi contacts node Pj, they each update their value as:

vi, vj ← (vi + vj)/2
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Obviously, after this exchange, both Pi and Pj will have the same value. In
fact, it is not difficult to see that eventually all nodes will have the same
value, namely the average of all initial values. Propagation speed is again
exponential.

What use does computing the average have? Consider the situation that
all nodes Pi have set vi to zero, except for P1 who has set v1 to 1:

vi ←
{

1 if i = 1
0 otherwise

If there are N nodes, then eventually each node will compute the average,
which is 1/N. As a consequence, every node Pi can estimate the size of the
system as being 1/vi.

Computing the average may prove to be difficult when nodes regularly join
and leave the system. One practical solution to this problem is to introduce
epochs. Assuming that node P1 is stable, it simply starts a new epoch now
and then. When node Pi sees a new epoch for the first time, it resets its own
variable vi to zero and starts computing the average again.

Of course, other results can also be computed. For example, instead of
having a fixed node such as P1 start the computation of the average, we
can easily pick a random node as follows. Every node Pi initially sets vi
to a random number from the same interval, say (0, 1], and also stores it
permanently as mi. Upon an exchange between nodes Pi and Pj, each change
their value to:

vi, vj ← max{vi, vj}

Each node Pi for which mi < vi will lose the competition for being the initiator
in starting the computation of the average. In the end, there will be a single
winner. Of course, although it is easy to conclude that a node has lost, it is
much more difficult to decide that it has won, as it remains uncertain whether
all results have come in. The solution to this problem is to be optimistic: a
node always assumes it is the winner until proven otherwise. At that point,
it simply resets the variable it is using for computing the average to zero.
Note that by now, several different computations (in our example computing
a maximum and computing an average) may be executing simultaneously.

A peer-sampling service

An important aspect in epidemic protocols is the ability of a node P to choose
another node Q at random from all available nodes in the network. When
giving the matter some thought, we may actually have a serious problem:
if the network consists of thousands of nodes, how can P ever pick one of
these nodes at random without having a complete overview of the network?
For smaller networks, one could often resort to a central service that had
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registered every participating node. Obviously, this approach can never scale
to large networks.

A solution is to construct a fully decentralized peer-sampling service, or
PSS for short. As it turns out, and somewhat counter-intuitive, a PSS can be
built using an epidemic protocol. As explored by Jelasity et al. [2007], each
node maintains a list of c neighbors, where, ideally, each of these neighbors
represents a randomly chosen live node from the current set of nodes. This
list of neighbors is also referred to as a partial view. There are many ways
to construct such a partial view. In their solution, it is assumed that nodes
regularly exchange entries from their partial view. Each entry identifies
another node in the network, and has an associated age that indicates how old
the reference to that node is. Two threads are used, as shown in Figure 6.30.

1 selectPeer(&Q);
2 selectToSend(&bufs);
3 sendTo(Q, bufs);
4

5 receiveFrom(Q, &bufr);
6 selectToKeep(p_view, bufr);

−→

←−

1

2

3 receiveFromAny(&P, &bufr);
4 selectToSend(&bufs);
5 sendTo(P, bufs);
6 selectToKeep(p_view, bufr);

(a) (b)

Figure 6.30: Communication between the (a) active and (b) passive thread in
a peer-sampling service.

The different selection operations are specified as follows:

• selectPeer: Randomly select a neighbor from the local partial view
• selectToSend: Select some other entries from the partial view, and add

to the list intended for the selected neighbor.
• selectToKeep: Add received entries to partial view, remove repeated

items, and shrink view to c items.

The active thread takes the initiative to communicate with another node. It
selects that node from its current partial view. It continues by constructing a
list containing c/2 + 1 entries, including an entry identifying itself. The other
entries are taken from the current partial view. After sending the list to the
selected neighbor, it waits for a response.

That neighbor, in the meantime, will also have constructed a list by means
of the passive thread shown in Figure 6.30(b) whose activities strongly resem-
ble that of the active thread.

The crucial point is the construction of a new partial view. This view, for
contacting as well as for the contacted peer, will contain exactly c entries, part
of which will come from the received list. In essence, there are two ways to
construct the new view. First, the two nodes may decide to discard the entries
that they had sent to each other. Effectively, this means that they will swap
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part of their original views. The second approach is to discard as many old
entries as possible (meaning, in practice, that after every gossiping round, the
age of each entry in every partial view is incremented by one).

As it turns out, as long as peers regularly run the exchange algorithm
just described, selecting a random peer from a thus dynamically changing
partial view, is indistinguishable from randomly selecting a peer from the
entire network. Of course, selecting a peer from a partial view should occur
at approximately the same frequency as the refreshing of partial views. We
have thus constructed a fully decentralized gossip-based peer-sampling ser-
vice. A simple, and often-used implementation of a peer-sampling service is
Cyclon [Voulgaris et al., 2005].

Gossip-based overlay construction

Although it would seem that structured and unstructured peer-to-peer systems
form strict independent classes, this need actually not be case (see also Castro
et al. [2005]). One key observation is that by carefully exchanging and selecting
entries from partial views, it is possible to construct and maintain specific
topologies of overlay networks. This topology management is achieved by
adopting a two-layered approach, as shown in Figure 6.31.

Figure 6.31: A two-layered approach for constructing and maintaining specific
overlay topologies using techniques from unstructured peer-to-peer systems.

The lowest layer constitutes an unstructured peer-to-peer system in which
nodes periodically exchange entries of their partial views with the aim to
provide a peer-sampling service. Accuracy in this case refers to the fact that
the partial view should be filled with entries referring to randomly selected
live nodes.

The lowest layer passes its partial view to the higher layer, where an
additional selection of entries takes place. This then leads to a second list
of neighbors corresponding to the desired topology. Jelasity and Kermarrec
[2006] propose to use a ranking function by which nodes are ordered according
to some criterion relative to a given node. A simple ranking function is to
order a set of nodes by increasing distance from a given node P. In that case,
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node P will gradually build up a list of its nearest neighbors, provided the
lowest layer continues to pass randomly selected nodes.

As an illustration, consider a logical grid of size N× N with a node placed
on each point of the grid. Every node is required to maintain a list of c
nearest neighbors, where the distance between a node at (a1, a2) and (b1, b2)
is defined as d1 + d2, with di = min(N − |ai − bi|, |ai − bi|). If the lowest layer
periodically executes the protocol as outlined in Figure 6.30, the topology that
will evolve is a torus, shown in Figure 6.31.

Figure 6.32: Generating a specific overlay network using a two-layered un-
structured peer-to-peer system (adapted with permission from [Jelasity and
Babaoglu, 2006]).

6.8 Summary

Strongly related to communication between processes is the issue of how
processes in distributed systems synchronize. Synchronization is all about
doing the right thing at the right time. A problem in distributed systems, and
computer networks in general, is that there is no notion of a globally shared
clock. In other words, processes on different machines have their own idea of
what time it is.

There are various way to synchronize clocks in a distributed system, but
all methods are essentially based on exchanging clock values, while taking
into account the time it takes to send and receive messages. Variations in
communication delays and the way those variations are dealt with, largely
determine the accuracy of clock synchronization algorithms.

In many cases, knowing the absolute time is not necessary. What counts is
that related events at different processes happen in the correct order. Lamport
showed that by introducing a notion of logical clocks, it is possible for a
collection of processes to reach global agreement on the correct ordering of
events. In essence, each event e, such as sending or receiving a message,
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is assigned a globally unique logical timestamp C(e) such that when event
a happened before b, C(a) < C(b). Lamport timestamps can be extended
to vector timestamps: if C(a) < C(b), we even know that event a causally
preceded b.

An important class of synchronization algorithms is that of distributed
mutual exclusion. These algorithms ensure that in a distributed collection
of processes, at most one process at a time has access to a shared resource.
Distributed mutual exclusion can easily be achieved if we make use of a
coordinator that keeps track of whose turn it is. Fully distributed algorithms
also exist, but have the drawback that they are generally more susceptible to
communication and process failures.

Synchronization between processes often requires that one process acts as
a coordinator. In those cases where the coordinator is not fixed, it is necessary
that processes in a distributed computation decide on who is going to be
that coordinator. Such a decision is taken by means of election algorithms.
Election algorithms are primarily used in cases where the coordinator can
crash. However, they can also be applied for the selection of superpeers in
peer-to-peer systems.

Related to these synchronization problems is positioning nodes in a ge-
ometric overlay. The basic idea is to assign each node coordinates from an
m-dimensional space such that the geometric distance can be used as an
accurate measure for the latency between two nodes. The method of assigning
coordinates strongly resembles the one applied in determining the location
and time in GPS.

Particularly challenging when it comes to coordination is distributed event
matching, which sits at the core of publish-subscribe systems. Relatively
simple is the case when we have a central implementations where matching
subscriptions against notifications can be done by essentially doing one-to-one
comparisons. However, as soon as we aim at distributing the load, we are
faced with the problem on deciding beforehand which node is responsible for
which part of the subscriptions, without knowing what kind of notifications
to expect. This is particularly problematic for content-based matching, which
in the end, requires advanced filtering techniques to route notifications to the
proper subscribers.

Finally, the most important aspect in gossip-based coordination is being
able to select another peer randomly from an entire overlay. As it turns out,
we can implement such a peer-sampling service using gossiping, by ensuring
that the partial view is refreshed regularly and in a random way. Combining
peer sampling with a selective replacement of entries in a partial view allows
us to efficiently construct structured overlay networks.
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Chapter 7

Consistency and replication

An important issue in distributed systems is the replication of data. Data
are generally replicated to enhance reliability or improve performance. One
of the major problems is keeping replicas consistent. Informally, this means
that when one copy is updated we need to ensure that the other copies are
updated as well; otherwise the replicas will no longer be the same. In this
chapter, we take a detailed look at what consistency of replicated data actually
means and the various ways that consistency can be achieved.

We start with a general introduction discussing why replication is useful
and how it relates to scalability. We then continue by focusing on what consis-
tency actually means. An important class of what are known as consistency
models assumes that multiple processes simultaneously access shared data.
Consistency for these situations can be formulated with respect to what pro-
cesses can expect when reading and updating the shared data, knowing that
others are accessing that data as well.

Consistency models for shared data are often hard to implement efficiently
in large-scale distributed systems. Moreover, in many cases simpler models
can be used, which are also often easier to implement. One specific class is
formed by client-centric consistency models, which concentrate on consis-
tency from the perspective of a single (possibly mobile) client. Client-centric
consistency models are discussed in a separate section.

Consistency is only half of the story. We also need to consider how
consistency is actually implemented. There are essentially two, more or
less independent, issues we need to consider. First of all, we start with
concentrating on managing replicas, which takes into account not only the
placement of replica servers, but also how content is distributed to these
servers.

The second issue is how replicas are kept consistent. In most cases,
applications require a strong form of consistency. Informally, this means that
updates are to be propagated more or less immediately between replicas.
There are various alternatives for implementing strong consistency, which are
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discussed in a separate section. Also, attention is paid to caching protocols,
which form a special case of consistency protocols.

Being arguably the largest distributed system, we pay separate attention
to caching and replication in Web-based systems, notably looking at content
delivery networks as well as edge-server caching techniques.

7.1 Introduction

In this section, we start with discussing the important reasons for wanting to
replicate data in the first place. We concentrate on replication as a technique
for achieving scalability, and motivate why reasoning about consistency is so
important.

Reasons for replication

There are two primary reasons for replicating data. First, data are replicated
to increase the reliability of a system. If a file system has been replicated
it may be possible to continue working after one replica crashes by simply
switching to one of the other replicas. Also, by maintaining multiple copies,
it becomes possible to provide better protection against corrupted data. For
example, imagine there are three copies of a file and every read and write
operation is performed on each copy. We can safeguard ourselves against a
single, failing write operation, by considering the value that is returned by at
least two copies as being the correct one.

The other reason for replicating data is performance. Replication for
performance is important when a distributed system needs to scale in terms of
size or in terms of the geographical area it covers. Scaling with respect to size
occurs, for example, when an increasing number of processes needs to access
data that are managed by a single server. In that case, performance can be
improved by replicating the server and subsequently dividing the workload
among the processes accessing the data.

Scaling with respect to a geographical area may also require replication.
The basic idea is that by placing a copy of data in proximity of the process
using them, the time to access the data decreases. As a consequence, the
performance as perceived by that process increases. This example also illus-
trates that the benefits of replication for performance may be hard to evaluate.
Although a client process may perceive better performance, it may also be the
case that more network bandwidth is now consumed keeping all replicas up
to date.

If replication helps to improve reliability and performance, who could be
against it? Unfortunately, there is a price to be paid when data are replicated.
The problem with replication is that having multiple copies may lead to
consistency problems. Whenever a copy is modified, that copy becomes
different from the rest. Consequently, modifications have to be carried out on
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all copies to ensure consistency. Exactly when and how those modifications
need to be carried out determines the price of replication.

To understand the problem, consider improving access times to Web pages.
If no special measures are taken, fetching a page from a remote Web server
may sometimes even take seconds to complete. To improve performance,
Web browsers often locally store a copy of a previously fetched Web page
(i.e., they cache a Web page). If a user requires that page again, the browser
automatically returns the local copy. The access time as perceived by the user
is excellent. However, if the user always wants to have the latest version of
a page, he may be in for bad luck. The problem is that if the page has been
modified in the meantime, modifications will not have been propagated to
cached copies, making those copies out-of-date.

One solution to the problem of returning a stale copy to the user is to
forbid the browser to keep local copies in the first place, effectively letting the
server be fully in charge of replication. However, this solution may still lead
to poor access times if no replica is placed near the user. Another solution is
to let the Web server invalidate or update each cached copy, but this requires
that the server keeps track of all caches and sending them messages. This,
in turn, may degrade the overall performance of the server. We return to
performance versus scalability issues below.

In the following we will mainly concentrate on replication for performance.
Replication for reliability is discussed in Chapter 8.

Replication as scaling technique

Replication and caching for performance are widely applied as scaling tech-
niques. Scalability issues generally appear in the form of performance prob-
lems. Placing copies of data close to the processes using them can improve
performance through reduction of access time and thus solve scalability prob-
lems.

A possible trade-off that needs to be made is that keeping copies up to date
may require more network bandwidth. Consider a process P that accesses
a local replica N times per second, whereas the replica itself is updated M
times per second. Assume that an update completely refreshes the previous
version of the local replica. If N � M, that is, the access-to-update ratio is
very low, we have the situation where many updated versions of the local
replica will never be accessed by P, rendering the network communication
for those versions useless. In this case, it may have been better not to install
a local replica close to P, or to apply a different strategy for updating the
replica.

A more serious problem, however, is that keeping multiple copies con-
sistent may itself be subject to serious scalability problems. Intuitively, a
collection of copies is consistent when the copies are always the same. This
means that a read operation performed at any copy will always return the
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same result. Consequently, when an update operation is performed on one
copy, the update should be propagated to all copies before a subsequent
operation takes place, no matter at which copy that operation is initiated or
performed.

This type of consistency is sometimes informally (and imprecisely) re-
ferred to as tight consistency as provided by what is also called synchronous
replication. (In Section 7.2, we will provide precise definitions of consistency
and introduce a range of consistency models.) The key idea is that an update
is performed at all copies as a single atomic operation, or transaction. Unfor-
tunately, implementing atomicity involving a large number of replicas that
may be widely dispersed across a large-scale network is inherently difficult
when operations are also required to complete quickly.

Difficulties come from the fact that we need to synchronize all replicas. In
essence, this means that all replicas first need to reach agreement on when
exactly an update is to be performed locally. For example, replicas may need
to decide on a global ordering of operations using Lamport timestamps, or
let a coordinator assign such an order. Global synchronization simply takes
a lot of communication time, especially when replicas are spread across a
wide-area network.

We are now faced with a dilemma. On the one hand, scalability problems
can be alleviated by applying replication and caching, leading to improved per-
formance. On the other hand, to keep all copies consistent generally requires
global synchronization, which is inherently costly in terms of performance.
The cure may be worse than the disease.

In many cases, the only real solution is to relax the consistency constraints.
In other words, if we can relax the requirement that updates need to be
executed as atomic operations, we may be able to avoid (instantaneous) global
synchronizations, and may thus gain performance. The price paid is that
copies may not always be the same everywhere. As it turns out, to what
extent consistency can be relaxed depends highly on the access and update
patterns of the replicated data, as well as on the purpose for which those data
are used.

There are a range of consistency models and many different ways to
implement models through what are called distribution and consistency
protocols. Approaches to classifying consistency and replication can be found
in [Gray et al., 1996; Wiesmann et al., 2000] and [Aguilera and Terry, 2016].

7.2 Data-centric consistency models

Traditionally, consistency has been discussed in the context of read and write
operations on shared data, available by means of (distributed) shared memory,
a (distributed) shared database, or a (distributed) file system. Here, we use
the broader term data store. A data store may be physically distributed across
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multiple machines. In particular, each process that can access data from the
store is assumed to have a local (or nearby) copy available of the entire store.
Write operations are propagated to the other copies, as shown in Figure 7.1. A
data operation is classified as a write operation when it changes the data, and
is otherwise classified as a read operation.

Figure 7.1: The general organization of a logical data store, physically dis-
tributed and replicated across multiple processes.

A consistency model is essentially a contract between processes and the
data store. It says that if processes agree to obey certain rules, the store
promises to work correctly. Normally, a process that performs a read operation
on a data item, expects the operation to return a value that shows the results
of the last write operation on that data.

In the absence of a global clock, it is difficult to define precisely which
write operation is the last one. As an alternative, we need to provide other
definitions, leading to a range of consistency models. Each model effectively
restricts the values that a read operation on a data item can return. As is to be
expected, the ones with major restrictions are easy to use, for example when
developing applications, whereas those with minor restrictions are generally
considered to be difficult to use in practice. The trade-off is, of course, that the
easy-to-use models do not perform nearly as well as the difficult ones. Such
is life.

Continuous consistency

There is no such thing as a best solution to replicating data. Replicating data
poses consistency problems that cannot be solved efficiently in a general way.
Only if we loosen consistency can there be hope for attaining efficient solutions.
Unfortunately, there are also no general rules for loosening consistency: exactly
what can be tolerated is highly dependent on applications.

There are different ways for applications to specify what inconsistencies
they can tolerate. Yu and Vahdat [2002] take a general approach by distin-
guishing three independent axes for defining inconsistencies: deviation in
numerical values between replicas, deviation in staleness between replicas,
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and deviation with respect to the ordering of update operations. They refer to
these deviations as forming continuous consistency ranges.

Measuring inconsistency in terms of numerical deviations can be used
by applications for which the data have numerical semantics. One obvious
example is the replication of records containing stock market prices. In this
case, an application may specify that two copies should not deviate more than
$0.02, which would be an absolute numerical deviation. Alternatively, a relative
numerical deviation could be specified, stating that two copies should differ by
no more than, for example, 0.5%. In both cases, we would see that if a stock
goes up (and one of the replicas is immediately updated) without violating
the specified numerical deviations, replicas would still be considered to be
mutually consistent.

Numerical deviation can also be understood in terms of the number of
updates that have been applied to a given replica, but have not yet been seen
by others. For example, a Web cache may not have seen a batch of operations
carried out by a Web server. In this case, the associated deviation in the value
is also referred to as its weight.

Staleness deviations relate to the last time a replica was updated. For some
applications, it can be tolerated that a replica provides old data as long as it is
not too old. For example, weather reports typically stay reasonably accurate
over some time, say a few hours. In such cases, a main server may receive
timely updates, but may decide to propagate updates to the replicas only once
in a while.

Finally, there are classes of applications in which the ordering of updates
are allowed to be different at the various replicas, as long as the differences
remain bounded. One way of looking at these updates is that they are applied
tentatively to a local copy, awaiting global agreement from all replicas. As
a consequence, some updates may need to be rolled back and applied in a
different order before becoming permanent. Intuitively, ordering deviations
are much harder to grasp than the other two consistency metrics.

The notion of a conit

To define inconsistencies, Yu and Vahdat introduce a consistency unit, ab-
breviated to conit. A conit specifies the unit over which consistency is to
be measured. For example, in our stock-exchange example, a conit could
be defined as a record representing a single stock. Another example is an
individual weather report.

To give an example of a conit, and at the same time illustrate numerical
and ordering deviations, consider the situation of keeping track of a fleet of
cars. In particular, the fleet owner is interested in knowing how much he pays
on average for gas. To this end, whenever a driver tanks gasoline, he reports
the amount of gasoline that has been tanked (recorded as g), the price paid
(recorded as p), and the total distance since the last time he tanked (recorded
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by the variable d). Technically, the three variables g, p, and d form a conit.
This conit is replicated across two servers, as shown in Figure 7.2, and a driver
regularly reports his gas usage to one of the servers by separately updating
each variable (without further considering the car in question).

The task of the servers is to keep the conit “consistently” replicated. To
this end, each replica server maintains a two-dimensional vector clock. We
use the notation 〈T, R〉 to express an operation that was carried out by replica
R at (its) logical time T.

Figure 7.2: An example of keeping track of consistency deviations.

In this example we see two replicas that operate on a conit containing the
data items g, p, and d from our example. All variables are assumed to have
been initialized to 0. Replica A received the operation

〈5, B〉 : g← g + 45

from replica B. We have shaded this operation gray to indicate that A has
committed this operation to its local store. In other words, it has been made
permanent and cannot be rolled back. Replica A also has three tentative
update operations listed: 〈8, A〉, 〈9, A〉, and 〈10, A〉, respectively. In terms of
continuous consistency, the fact that A has three tentative operations pending
to be committed is referred to as an order deviation of, in this case, value 3.
Analogously, with in total three operations of which two have been committed,
B has an order deviation of 1.

From this example, we see that A’s logical clock value is now 11. Because
the last operation from B that A had received had timestamp 5, the vector
clock at A will be (11, 5), where we assume the first component of the vector
is used for A and the second for B. Along the same lines, the logical clock at
B is (0, 8).
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The numerical deviation at a replica R consists of two components: the
number of operations at all other replicas that have not yet been seen by
R, along with the sum of corresponding missed values (more sophisticated
schemes are, of course, also possible). In our example, A has not yet seen
operations 〈6, B〉 and 〈7, B〉 with a total value of 70 + 412 units, leading to a
numerical deviation of (2, 482). Likewise, B is still missing the three tentative
operations at A, with a total summed value of 686, bringing B’s numerical
deviation to (3, 686).

Using these notions, it becomes possible to specify specific consistency
schemes. For example, we may restrict order deviation by specifying an
acceptable maximal value. Likewise, we may want two replicas to never nu-
merically deviate by more than 1000 units. Having such consistency schemes
does require that a replica knows how much it is deviating from other replicas,
implying that we need separate communication to keep replicas informed.
The underlying assumption is that such communication is much less expen-
sive than communication to keep replicas synchronized. Admittedly, it is
questionable if this assumption also holds for our example.

Note 7.1 (Advanced: On the granularity of conits)
There is a trade-off between maintaining fine-grained and coarse-grained conits.
If a conit represents a lot of data, such as a complete database, then updates are
aggregated for all the data in the conit. As a consequence, this may bring replicas
sooner in an inconsistent state. For example, assume that in Figure 7.3 two replicas
may differ in no more than one outstanding update. In that case, when the data
items in Figure 7.3 have each been updated once at the first replica, the second
one will need to be updated as well. This is not the case when choosing a smaller
conit, as shown in Figure 7.3 There, the replicas are still considered to be up to
date. This problem is particularly important when the data items contained in a
conit are used completely independently, in which case they are said to falsely
share the conit.

(a) (b)

Figure 7.3: Choosing the appropriate granularity for a conit. (a) Two
updates lead to update propagation. (b) No update propagation is needed.

Unfortunately, making conits very small is not a good idea, for the simple
reason that the total number of conits that need to be managed grows as well.
In other words, there is an overhead related to managing the conits that needs
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to be taken into account. This overhead, in turn, may adversely affect overall
performance, which has to be taken into account.

Although from a conceptual point of view conits form an attractive means
for capturing consistency requirements, there are two important issues that
need to be dealt with before they can be put to practical use. First, in order
to enforce consistency we need to have protocols. Protocols for continuous
consistency are discussed later in this chapter.

A second issue is that program developers must specify the consistency
requirements for their applications. Practice indicates that obtaining such
requirements may be extremely difficult. Programmers are generally not used
to handling replication, let alone understanding what it means to provide
detailed information on consistency. Therefore, it is mandatory that there are
simple and easy-to-understand programming interfaces.

Note 7.2 (Advanced: Programming conits)
Continuous consistency can be implemented as a toolkit which appears to pro-
grammers as just another library that they link with their applications. A conit is
simply declared alongside an update of a data item. For example, the fragment of
pseudocode

AffectsConit(ConitQ, 1, 1);

append message m to queue Q;

states that appending a message to queue Q belongs to a conit named ConitQ.
Likewise, operations may now also be declared as being dependent on conits:

DependsOnConit(ConitQ, 4, 0, 60);

read message m from head of queue Q;

In this case, the call to DependsOnConit() specifies that the numerical deviation,
ordering deviation, and staleness should be limited to the values 4, 0, and 60
(seconds), respectively. This can be interpreted as that there should be at most
4 unseen update operations at other replicas, there should be no tentative local
updates, and the local copy of Q should have been checked for staleness no more
than 60 seconds ago. If these requirements are not fulfilled, the underlying
middleware will attempt to bring the local copy of Q to a state such that the read
operation can be carried out.

The question, of course, is how does the system know that Q is associated
with ConitQ? For practical reasons, we can avoid explicit declarations of conits
and concentrate only on the grouping of operations. The data to be replicated is
collectively considered to belong together. By subsequently associating a write
operation with a named conit, and likewise for a read operation, we tell the
middleware layer when to start synchronizing the entire replica. Indeed, there may
be a considerable amount of false sharing in such a case. If false sharing needs
to be avoided, we would have to introduce a separate programming construct to
explicitly declare conits.
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Consistent ordering of operations

There is a huge body of work on data-centric consistency models from the
past decades. An important class of models comes from the field of parallel
programming. Confronted with the fact that in parallel and distributed
computing multiple processes will need to share resources and access these
resources simultaneously, researchers have sought to express the semantics
of concurrent accesses when shared resources are replicated. The models
that we discuss here all deal with consistently ordering operations on shared,
replicated data.

In principle, the models augment those of continuous consistency in the
sense that when tentative updates at replicas need to be committed, replicas
will need to reach agreement on a global, that is, consistent ordering of those
updates.

Sequential consistency

In the following, we will use a special notation in which we draw the opera-
tions of a process along a time axis. The time axis is always drawn horizontally,
with time increasing from left to right. We use the notation Wi(x)a to denote
that process Pi writes value a to data item x. Similarly, Ri(x)b represents the
fact that process Pi reads x and is returned the value b. We assume that each
data item has initial value NIL. When there is no confusion concerning which
process is accessing data, we omit the index from the symbols W and R.

Figure 7.4: Behavior of two processes operating on the same data item. The
horizontal axis is time.

As an example, in Figure 7.4 P1 does a write to a data item x, modifying
its value to a. Note that, according to our system model the operation W1(x)a
is first performed on a copy of the data store that is local to P1, and only then
is it propagated to the other local copies. In our example, P2 later reads the
value NIL, and some time after that a (from its local copy of the store). What
we are seeing here is that it took some time to propagate the update of x to
P2, which is perfectly acceptable.

Sequential consistency is an important data-centric consistency model,
which was first defined by Lamport [1979] in the context of shared memory
for multiprocessor systems. A data store is said to be sequentially consistent
when it satisfies the following condition:

The result of any execution is the same as if the (read and write) opera-
tions by all processes on the data store were executed in some sequential
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order and the operations of each individual process appear in this se-
quence in the order specified by its program.

What this definition means is that when processes run concurrently on
(possibly) different machines, any valid interleaving of read and write op-
erations is acceptable behavior, but all processes see the same interleaving of
operations. Note that nothing is said about time; that is, there is no reference
to the “most recent” write operation on a data item. Also, a process “sees”
the writes from all processes but only through its own reads.

That time does not play a role can be seen from Figure 7.5. Consider four
processes operating on the same data item x. In Figure 7.5(a) process P1 first
performs W1(x)a on x. Later (in absolute time), process P2 also performs
a write operation W2(x)b, by setting the value of x to b. However, both
processes P3 and P4 first read value b, and later value a. In other words,
the write operation W2(x)b of process P2 appears to have taken place before
W1(x)a of P1.

(a) (b)

Figure 7.5: (a) A sequentially consistent data store. (b) A data store that is not
sequentially consistent.

In contrast, Figure 7.5(b) violates sequential consistency because not all
processes see the same interleaving of write operations. In particular, to
process P3, it appears as if the data item has first been changed to b, and later
to a. On the other hand, P4 will conclude that the final value is b.

Process P1 Process P2 Process P3

x ← 1; y ← 1; z ← 1;
print(y,z); print(x,z); print(x,y);

Figure 7.6: Three concurrently executing processes.

To make the notion of sequential consistency more concrete, consider
three concurrently executing processes P1, P2, and P3, shown in Figure 7.6
(taken from [Dubois et al., 1988]). The data items in this example are formed
by the three integer variables x, y, and z, which are stored in a (possibly
distributed) shared sequentially consistent data store. We assume that each
variable is initialized to 0. In this example, an assignment corresponds to a
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write operation, whereas a print statement corresponds to a simultaneous read
operation of its two arguments. All statements are assumed to be indivisible.

Various interleaved execution sequences are possible. With six indepen-
dent statements, there are potentially 720 (6!) possible execution sequences,
although some of these violate program order. Consider the 120 (5!) sequences
that begin with x ← 1. Half of these have print(x,z) before y ← 1 and
thus violate program order. Half also have print(x,y) before z ← 1 and
also violate program order. Only 1/4 of the 120 sequences, or 30, are valid.
Another 30 valid sequences are possible starting with y ← 1 and another 30
can begin with z ← 1, for a total of 90 valid execution sequences. Four of
these are shown in Figure 7.7.

Execution 1 Execution 2 Execution 3 Execution 4

P1: x ← 1; P1: x ← 1; P2: y ← 1; P2: y ← 1;
P1: print(y,z); P2: y ← 1; P3: z ← 1; P1: x ← 1;
P2: y ← 1; P2: print(x,z); P3: print(x,y); P3: z ← 1;
P2: print(x,z); P1: print(y,z); P2: print(x,z); P2: print(x,z);
P3: z ← 1; P3: z ← 1; P1: x ← 1; P1: print(y,z);
P3: print(x,y); P3: print(x,y); P1: print(y,z); P3: print(x,y);

Prints: 001011 Prints: 101011 Prints: 010111 Prints: 111111
Signature: 0 0 1 0 1 1 Signature: 1 0 1 0 1 1 Signature: 1 1 0 1 0 1 Signature: 1 1 1 1 1 1

(a) (b) (c) (d)

Figure 7.7: Four valid execution sequences for the processes of Figure 7.6. The
vertical axis is time.

In Figure 7.7(a) the three processes are run in order, first P1, then P2,
then P3. The other three examples demonstrate different, but equally valid,
interleavings of the statements in time. Each of the three processes prints
two variables. Since the only values each variable can take on are the initial
value (0), or the assigned value (1), each process produces a 2-bit string. The
numbers after Prints are the actual outputs that appear on the output device.

If we concatenate the output of P1, P2, and P3 in that order, we get a 6-bit
string that characterizes a particular interleaving of statements. This is the
string listed as the Signature in Figure 7.7. Below we will characterize each
ordering by its signature rather than by its printout.

Not all 64 signature patterns are allowed. As a trivial example, 00 00 00
is not permitted, because that would imply that the print statements ran
before the assignment statements, violating the requirement that statements
are executed in program order. A more subtle example is 00 10 01. The first
two bits, 00, mean that y and z were both 0 when P1 did its printing. This
situation occurs only when P1 executes both statements before P2 or P3 starts.
The next two bits, 10, mean that P2 must run after P1 has started but before
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P3 has started. The last two bits, 01, mean that P3 must complete before P1

starts, but we have already seen that P1 must go first. Therefore, 00 10 01 is
not allowed.

In short, the 90 different valid statement orderings produce a variety of
different program results (less than 64, though) that are allowed under the
assumption of sequential consistency. The contract between the processes and
the distributed shared data store is that the processes must accept all of these
as valid results. In other words, the processes must accept the four results
shown in Figure 7.7 and all the other valid results as proper answers, and
must work correctly if any of them occurs. A program that works for some of
these results and not for others violates the contract with the data store and is
incorrect.

Note 7.3 (Advanced: The importance and intricacies of sequential consistency)
There is no doubt that sequential consistency is an important model. In essence,
of all consistency models that exist and have been developed, it is the easiest
one to understand when developing concurrent and parallel applications. This is
due to the fact that the model matches best our expectations when we let several
programs operate on shared data simultaneously. At the same time, implementing
sequential consistency is far from trivial [Adve and Boehm, 2010]. To illustrate,
consider the example involving two variables x and y, shown in Figure 7.8.

Figure 7.8: Both x and y are each handled in a sequentially consistent
manner, but taken together, sequential consistency is violated.

If we just consider the write and read operations on x, the fact that P1 reads
the value a is perfectly consistent. The same holds for the operation R2(y)b by
process P2. However, when taken together, there is no way that we can order the
write operations on x and y such that we can have R1(x)a and R2(y)b (note that
we need to keep the ordering as executed by each process):

Ordering of operations Result
W1(x)a; W1(y)a; W2(y)b; W2(x)b R1(x)b R2(y)b
W1(x)a; W2(y)b; W1(y)a; W2(x)b R1(x)b R2(y)a
W1(x)a; W2(y)b; W2(x)b; W1(y)a R1(x)b R2(y)a
W2(y)b; W1(x)a; W1(y)a; W2(x)b R1(x)b R2(y)a
W2(y)b; W1(x)a; W2(x)b; W1(y)a R1(x)b R2(y)a
W2(y)b; W2(x)b; W1(x)a; W1(y)a R1(x)a R2(y)a

In terms of transactions, the operations carried out by P1 and P2 are not serializ-
able. Our example shows that sequential consistency is not compositional: when
having data items that are each kept sequentially consistent, their composition as
a set need not be so [Herlihy and Shavit, 2008]. The problem of noncompositional
consistency can be solved by assuming linearizability. This is best explained
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by making a distinction between the start and completion of an operation, and
assuming that it may take some time. Linearizability states that:

Each operation should appear to take effect instantaneously at some moment
between its start and completion.

Returning to our example, Figure 7.9 shows the same set of write operations, but
we have now also indicated when they take place: the shaded area designates
the time the operation is being executed. Linearizability states that the effect of
an operation should take place somewhere during the interval indicated by the
shaded area. In principle, this means that at the time of completion of a write
operation, the results should be propagated to the other data stores.

Figure 7.9: An example of taking linearizable sequential consistency into
account, with only one possible outcome for x and y.

With that in mind, the possibilities for properly ordering become limited:

Ordering of operations Result
W1(x)a; W2(y)b; W1(y)a; W2(x)b R1(x)b R2(y)a
W1(x)a; W2(y)b; W2(x)b; W1(y)a R1(x)b R2(y)a
W2(y)b; W1(x)a; W1(y)a; W2(x)b R1(x)b R2(y)a
W2(y)b; W1(x)a; W2(x)b; W1(y)a R1(x)b R2(y)a

In particular, W2(y)b is completed before W1(y)a starts, so that y will have the
value a. Likewise, W1(x)a completes before W2(x)b starts, so that x will have
value b. It should not come as a surprise that implementing linearizability on
a many-core architecture may impose serious performance problems. Yet at the
same time, it eases programmability considerably, so a trade-off needs to be made.

Causal consistency

The causal consistency model [Hutto and Ahamad, 1990] represents a weak-
ening of sequential consistency in that it makes a distinction between events
that are potentially causally related and those that are not. We already came
across causality when discussing vector timestamps in the previous chapter.
If event b is caused or influenced by an earlier event a, causality requires that
everyone else first see a, then see b.

Consider a simple interaction by means of a distributed shared database.
Suppose that process P1 writes a data item x. Then P2 reads x and writes
y. Here the reading of x and the writing of y are potentially causally related
because the computation of y may have depended on the value of x as read by
P2 (i.e., the value written by P1).

On the other hand, if two processes spontaneously and simultaneously
write two different data items, these are not causally related. Operations that
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are not causally related are said to be concurrent.
For a data store to be considered causally consistent, it is necessary that

the store obeys the following condition:

Writes that are potentially causally related must be seen by all processes
in the same order. Concurrent writes may be seen in a different order on
different machines.

As an example of causal consistency, consider Figure 7.10. Here we have an
event sequence that is allowed with a causally consistent store, but which is
forbidden with a sequentially consistent store or a strictly consistent store.
The thing to note is that the writes W2(x)b and W1(x)c are concurrent, so it is
not required that all processes see them in the same order.

Figure 7.10: This sequence is allowed with a causally-consistent store, but not
with a sequentially consistent store.

Now consider a second example. In Figure 7.11(a) we have W2(x)b poten-
tially depending on W1(x)a because writing the value b into x may be a result
of a computation involving the previously read value by R2(x)a. The two
writes are causally related, so all processes must see them in the same order.
Therefore, Figure 7.11(a) is incorrect. On the other hand, in Figure 7.11(b) the
read has been removed, so W1(x)a and W2(x)b are now concurrent writes. A
causally consistent store does not require concurrent writes to be globally or-
dered, so Figure 7.11(b) is correct. Note that Figure 7.11(b) reflects a situation
that would not be acceptable for a sequentially consistent store.

Implementing causal consistency requires keeping track of which processes
have seen which writes. There are many subtle issues to take into account. To
illustrate, assume we replace W2(x)b in Figure 7.11(a) with W2(y)b, and like-
wise R3(x)b with R3(y)b, respectively. This situation is shown in Figure 7.12.

Let us first look at operation R3(x). Process P3 executes this operation
after R3(y)b. We know at this point for sure that W(x)a happened before W(y)b.
In particular, W(x)a → R(x)a → W(y)b, meaning that if we are to preserve
causality, reading x after reading b from y can return only a. If the system
would return NIL to P3 it would violate the preservation of causal relation-
ships.

What about R4(y)? Could it return the initial value of y, namely NIL? The
answer is affirmative: although we have the formal happened-before relationship
W(x)a→ W(y)b, without having read b from y, process P4 can still justifiably
observe that W(x)a took place independently from the initialization of y.
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(a)

(b)

Figure 7.11: (a) A violation of a causally-consistent store. (b) A correct
sequence of events in a causally-consistent store.

Figure 7.12: A slight modification of Figure 7.11(a). What should R3(x) or
R4(y) return?

Implementationwise, preserving causality introduces some interesting
questions. Consider, for example, the middleware underlying process P3

from Figure 7.12. At the point that this middleware returns the value b from
reading y, it must know about the relationship W(x)a → W(y)b. In other
words, when the most recent value of y was propagated to P3’s middleware,
at the very least metadata on y’s dependency should have been propagated
as well. Alternatively, the propagation may have also been done together
with updating x at P3’s node. By-and-large, the bottom line is that we need a
dependency graph of which operation is dependent on which other operations.
Such a graph may be pruned at the moment that dependent data is also locally
stored.

Grouping operations

Many consistency models are defined at the level of elementary read and write
operations. This level of granularity is for historical reasons: these models
have initially been developed for shared-memory multiprocessor systems and
were actually implemented at the hardware level.

The fine granularity of these consistency models in many cases does not
match the granularity as provided by applications. What we see there is that
concurrency between programs sharing data is generally kept under control
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through synchronization mechanisms for mutual exclusion and transactions.
Effectively, what happens is that at the program level read and write operations
are bracketed by the pair of operations ENTER_CS and LEAVE_CS. A process that
has successfully executed ENTER_CS will be ensured that all the data in its local
store is up to date. At that point, it can safely execute a series of read and
write operations on that store, and subsequently wrap things up by calling
LEAVE_CS. Data and instructions between ENTER_CS and LEAVE_CS is denoted
as a critical section.

In essence, what happens is that within a program the data that are
operated on by a series of read and write operations are protected against
concurrent accesses that would lead to seeing something else than the result
of executing the series as a whole. Put differently, the bracketing turns the
series of read and write operations into an atomically executed unit, thus
raising the level of granularity.

In order to reach this point, we do need to have precise semantics concern-
ing the operations ENTER_CS and LEAVE_CS. These semantics can be formulated
in terms of shared synchronization variables, or simply locks. A lock has
shared data items associated with it, and each shared data item is associated
with at most one lock. In the case of course-grained synchronization, all
shared data items would be associated to just a single lock. Fine-grained
synchronization is achieved when each shared data item has its own unique
lock. Of course, these are just two extremes of associating shared data to a
lock. When a process enters a critical section it should acquire the relevant
locks, and likewise when it leaves the critical section, it releases these locks.

Each lock has a current owner, namely, the process that last acquired it. A
process not currently owning a lock but wanting to acquire it has to send a
message to the current owner asking for ownership and the current values of
the data associated with that lock. While having exclusive access to a lock, a
process is allowed to perform read and write operations. It is also possible for
several processes to simultaneously have nonexclusive access to a lock, meaning
that they can read, but not write, the associated data. Of course, nonexclusive
access can be granted if and only if there is no other process having exclusive
access.

We now demand that the following criteria are met [Bershad et al., 1993]:

• Acquiring a lock can succeed only when all updates to its associated
shared data have completed.

• Exclusive access to a lock can succeed only if no other process has
exclusive or nonexclusive access to that lock.

• Nonexclusive access to a lock is allowed only if any previous exclusive
access has been completed, including updates on the lock’s associated
data.

Note that we are effectively demanding that the usage of locks is linearized,
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adhering to sequential consistency. Figure 7.13 shows an example of what
is known as entry consistency. We associate a lock with each data item
separately. We use the notation L(x) as an abbreviation for acquiring the lock
for x, that is, locking x. Likewise, U(x) stands for releasing the lock on x, or
unlocking it. In this case, P1 locks x, changes x once, after which it locks y.
Process P2 also acquires the lock for x but not for y, so that it will read value
a for x, but may read NIL for y. However, because process P3 first acquires the
lock for y, it will read the value b when y was unlocked by P1. It is important
to note here that each process has a copy of a variable, but that this copy
need not be instantly or automatically updated. When locking or unlocking a
variable, a process is explicitly telling the underlying distributed system that
the copies of that variable need to be synchronized. A simple read operation
without locking may thus result in reading a local value that is effectively
stale.

Figure 7.13: A valid event sequence for entry consistency.

One of the programming problems with entry consistency is properly
associating data with locks. One straightforward approach is to explicitly tell
the middleware which data are going to be accessed, as is generally done
by declaring which database tables will be affected by a transaction. In an
object-based approach, we could associate a unique lock with each declared
object, effectively serializing all invocations to such objects.

Consistency versus coherence

At this point, it is useful to clarify the difference between two closely related
concepts. The models we have discussed so far all deal with the fact that a
number of processes execute read and write operations on a set of data items.
A consistency model describes what can be expected with respect to that set
when multiple processes concurrently operate on that data. The set is then
said to be consistent if it adheres to the rules described by the model.

Where data consistency is concerned with a set of data items, coher-
ence models describe what can be expected to hold for only a single data
item [Cantin et al., 2005]. In this case, we assume that a data item is replicated;
it is said to be coherent when the various copies abide to the rules as defined
by its associated consistency model. A popular model is that of sequential
consistency, but now applied to only a single data item. In effect, it means
that in the case of concurrent writes, all processes will eventually see the same
order of updates taking place.
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Eventual consistency

To what extent processes actually operate in a concurrent fashion, and to
what extent consistency needs to be guaranteed, may vary. There are many
examples in which concurrency appears only in a restricted form. For exam-
ple, in many database systems, most processes hardly ever perform update
operations; they mostly read data from the database. Only one, or very few
processes perform update operations. The question then is how fast updates
should be made available to only-reading processes. In the advent of globally
operating content delivery networks, developers often choose to propagate
updates slowly, implicitly assuming that most clients are always redirected to
the same replica and will therefore never experience inconsistencies.

Another example is the Web. In virtually all cases, Web pages are updated
by a single authority, such as a webmaster or the actual owner of the page.
There are normally no write-write conflicts to resolve. On the other hand, to
improve efficiency, browsers and Web proxies are often configured to keep a
fetched page in a local cache and to return that page upon the next request.
An important aspect of both types of Web caches is that they may return
out-of-date Web pages. In other words, the cached page that is returned to
the requesting client is an older version compared to the one available at
the actual Web server. As it turns out, many users find this inconsistency
acceptable (to a certain degree), as long as they have access only to the same
cache. In effect, they remain unaware of the fact that an update had taken
place, just as in the previous case of content delivery networks.

Yet another example, is a worldwide naming system such as DNS. The DNS
name space is partitioned into domains, where each domain is assigned to a
naming authority, which acts as owner of that domain. Only that authority is
allowed to update its part of the name space. Consequently, conflicts resulting
from two operations that both want to perform an update on the same data
(i.e., write-write conflicts), never occur. The only situation that needs to be
handled are read-write conflicts, in which one process wants to update a data
item while another is concurrently attempting to read that item. As it turns
out, also in this case is it often acceptable to propagate an update in a lazy
fashion, meaning that a reading process will see an update only after some
time has passed since the update took place.

These examples can be viewed as cases of (large scale) distributed and
replicated databases that tolerate a relatively high degree of inconsistency.
They have in common that if no updates take place for a long time, all replicas
will gradually become consistent, that is, have exactly the same data stored.
This form of consistency is called eventual consistency [Vogels, 2009].

Data stores that are eventually consistent thus have the property that in
the absence of write-write conflicts, all replicas will converge toward identical
copies of each other. Eventual consistency essentially requires only that
updates are guaranteed to propagate to all replicas. Write-write conflicts
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are often relatively easy to solve when assuming that only a small group of
processes can perform updates. In practice, we often also see that in the case
of conflicts, one specific write operation is (globally) declared as “winner,”
overwriting the effects of any other conflicting write operation. Eventual
consistency is therefore often cheap to implement.

Note 7.4 (Advanced: Making eventual consistency stronger)
Eventual consistency is a relatively easy model to understand, but equally im-
portant is the fact that it is also relatively easy to implement. Nevertheless, it
is a weak-consistency model with its own peculiarities. Consider a calendar
shared between Alice, Bob, and Chuck. A meeting M has two attributes: a pro-
posed starting time and a set of people who have confirmed their attendance.
When Alice proposes to start meeting M at time T, and assuming no one else
has confirmed attendance, she executes the operation WA(M)[T, {A}]. When
Bob confirms his attendance, he will have read the tuple [T, {A}] and update M

accordingly: WB(M)[T, {A,B}]. In our example two meetings M1 and M2 need to
be planned.

Assume the sequence of events

WA(M1)[T1, {A}]→ RB(M1)[T1, {A}]→

WB(M1)[T1, {A,B}]→WB(M2)[T2, {B}].
In other words, Bob confirms his attendance at M1 and then immediately proposes
to schedule M2 at T2. Unfortunately, Chuck concurrently proposes to schedule M1

at T3 when Bob confirms he can attend M1 at T1. Formally, using the symbol “‖”
to denote concurrent operations, we have,

WB(M1)[T1, {A,B}] ‖WC(M1)[T3, {C}]

Using our usual notation, these operations can be illustrated as shown in Fig-
ure 7.14.

Figure 7.14: The situation of updating two meetings M1 and M2.

Eventual consistency may lead to very different scenarios. There is a number
of write-write conflicts, but in any case, eventually [T2, {B}] will be stored for
meeting M2, as the result of the associated write operation by Bob. For the value
of meeting M1 there are different options. In principle, we have three possible
outcomes: [T1, {A}], [T1, {A,B}], and [T3, {C}]. Assuming we can maintain some
notion of a global clock, it is not very likely that WA(M1)[T1, {A}] will prevail.
However, the two write operations WB(M1)[T1, {A,B}] and WC(M1)[T1, {C}] are
truly in conflict. In practice, one of them will win, presumably through a decision
by a central coordinator.

Researchers have been seeking to combine eventual consistency with stricter
guarantees on ordering. Bailis et al. [2013] propose to use a separate layer
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that operates on top of an eventually consistent, distributed store. This layer
implements causal consistency, of which it has been formerly proven that it is the
best attainable consistency in the presence of network partitioning [Mahajan et al.,
2011]. In our example, we have only one chain of dependencies:

WA(M1)[T1, {A}]→ RB(M1)[T1, {A}]→

WB(M1)[T1, {A,B}]→WB(M2)[T2, {B}].
An important observation is that with causal consistency in place, once a pro-
cess reads [T2, {B}] for meeting M2, obtaining the value for M1 returns ei-
ther [T1, {A,B}] or [T3, {C}], but certainly not [T1, {A}]. The reason is that
W(M1)[T1, {A,B}] immediately precedes W(M2)[T2, {B}], and at worse may
have been overwritten by W(M1)[T3, {C}]. Causal consistency rules out that the
system could return [T1, {A}].

However, eventual consistency may overwrite previously stored data items.
In doing so, dependencies may be lost. To make this point clear, it is impor-
tant to realize that in practice an operation at best keeps track of the immedi-
ate preceding operation it depends on. As soon as Wc(M1)[T3, {C}] overwrites
WB(M1)[T1, {A,B}] (and propagates to all replicas), we also break the chain of
dependencies

WA(M1)[T1, {A}]→ RB(M1)[T1, {A}]→ · · · →WB(M2)[T2, {B}]

which would normally prevent WA(M1)[T1, {A}] ever overtaking
WB(M1)[T1, {A,B}] and any operation depending on it. As a consequence,
maintaining causal consistency requires that we do maintain a history of
dependencies, instead of just keeping track of immediately preceding operations.

7.3 Client-centric consistency models

Data-centric consistency models aim at providing a systemwide consistent
view on a data store. An important assumption is that concurrent processes
may be simultaneously updating the data store, and that it is necessary to
provide consistency in the face of such concurrency. For example, in the case
of object-based entry consistency, the data store guarantees that when an
object is called, the calling process is provided with a copy of the object that
reflects all changes to the object that have been made so far, possibly by other
processes. During the call, it is also guaranteed that no other process can
interfere, that is, mutual exclusive access is provided to the calling process.

Being able to handle concurrent operations on shared data while maintain-
ing strong consistency is fundamental to distributed systems. For performance
reasons, strong consistency may possibly be guaranteed only when processes
use mechanisms such as transactions or synchronization variables. Along the
same lines, it may be impossible to guarantee strong consistency, and weaker
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forms need to be accepted, such as causal consistency in combination with
eventual consistency.

In this section, we take a look at a special class of distributed data stores.
The data stores we consider are characterized by the lack of simultaneous
updates, or when such updates happen, it is assumed that they can be
relatively easily resolved. Most operations involve reading data. These data
stores offer a weak consistency model, such as eventual consistency. By
introducing special client-centric consistency models, it turns out that many
inconsistencies can be hidden in a relatively cheap way.

Figure 7.15: The principle of a mobile user accessing different replicas of a
distributed database.

Eventually consistent data stores generally work fine as long as clients
always access the same replica. However, problems arise when different
replicas are accessed over a short period of time. This is best illustrated
by considering a mobile user accessing a distributed database, as shown in
Figure 7.15.

The mobile user, say, Alice, accesses the database by connecting to one
of the replicas in a transparent way. In other words, the application running
on Alice’s mobile device is unaware on which replica it is actually operating.
Assume Alice performs several update operations and then disconnects again.
Later, she accesses the database again, possibly after moving to a different
location or by using a different access device. At that point, she may be
connected to a different replica than before, as shown in Figure 7.15. However,
if the updates performed previously have not yet been propagated, Alice
will notice inconsistent behavior. In particular, she would expect to see all
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previously made changes, but instead, it appears as if nothing at all has
happened.

This example is typical for eventually consistent data stores and is caused
by the fact that users may sometimes operate on different replicas while
updates have not been fully propagated. The problem can be alleviated by
introducing client-centric consistency. In essence, client-centric consistency
provides guarantees for a single client concerning the consistency of accesses
to a data store by that client. No guarantees are given concerning concurrent
accesses by different clients. If Bob modifies data that is shared with Alice
but which is stored at a different location, we may easily create write-write
conflicts. Moreover, if neither Alice nor Bob access the same location for some
time, such conflicts may take a long time before they are discovered.

Client-centric consistency models originate from the work on Bayou and,
more general, from mobile-data systems (see, for example, Terry et al. [1994],
Terry et al. [1998], or Terry [2008]). Bayou is a database system developed
for mobile computing, where it is assumed that network connectivity is
unreliable and subject to various performance problems. Wireless networks
and networks that span large areas, such as the Internet, fall into this category.

Bayou essentially distinguishes four different consistency models. To ex-
plain these models, we again consider a data store that is physically distributed
across multiple machines. When a process accesses the data store, it generally
connects to the locally (or nearest) available copy, although, in principle, any
copy will do just fine. All read and write operations are performed on that
local copy. Updates are eventually propagated to the other copies.

Client-centric consistency models are described using the following nota-
tions. Let xi denote the version of data item x. Version xi is the result of a series
of write operations that took place since initialization, its write set WS(xi). By
appending write operations to that series we obtain another version xj and say
that xj follows from xi. We use the notation WS(xi; xj) to indicate that xj follows
from xi. If we do not know if xj follows from xi, we use the notation WS(xi|xj).

Monotonic reads

The first client-centric consistency model is that of monotonic reads. A
(distributed) data store is said to provide monotonic-read consistency if the
following condition holds:

If a process reads the value of a data item x, any successive read operation
on x by that process will always return that same value or a more recent
value.

In other words, monotonic-read consistency guarantees that once a process
has seen a value of x, it will never see an older version of x.

As an example where monotonic reads are useful, consider a distributed
e-mail database. In such a database, each user’s mailbox may be distributed
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and replicated across multiple machines. Mail can be inserted in a mailbox
at any location. However, updates are propagated in a lazy (i.e., on demand)
fashion. Only when a copy needs certain data for consistency are those data
propagated to that copy. Suppose a user reads his mail in San Francisco.
Assume that only reading mail does not affect the mailbox, that is, messages
are not removed, stored in subdirectories, or even tagged as having already
been read, and so on. When the user later flies to New York and opens his
mailbox again, monotonic-read consistency guarantees that the messages that
were in the mailbox in San Francisco will also be in the mailbox when it is
opened in New York.

Using a notation similar to that for data-centric consistency models,
monotonic-read consistency can be graphically represented as shown in Fig-
ure 7.16. Rather than showing processes along the vertical axis, we now show
local data stores, in our example L1 and L2. A write or read operation is in-
dexed by the process that executed the operation, that is, W1(x)a denotes that
process P1 wrote value a to x. As we are not interested in specific values
of shared data items, but rather their versions, we use the notation W1(x2)
to indicate that process P1 produces version x2 without knowing anything
about other versions. W2(x1; x2) indicates that process P2 is responsible for
producing version x2 that follows from x1. Likewise, W2(x1|x2) denotes that
process P2 producing version x2 concurrently to version x1 (and thus poten-
tially introducing a write-write conflict). R1(x2) simply means that P1 reads
version x2.

(a) (b)

Figure 7.16: The read operations performed by a single process P at two
different local copies of the same data store. (a) A monotonic-read consistent
data store. (b) A data store that does not provide monotonic reads.

In Figure 7.16(a) process P1 first performs a write operation on x at L1,
producing version x1 and later reads this version. At L2 process P2 first
produces version x2, following from x1. When process P1 moves to L2 and
reads x again, it finds a more recent value, but one that at least took its
previous write into account.

Figure 7.16(b) shows a situation in which monotonic-read consistency is
violated. After process P1 has read x1 at L1, it later performs the operation
R1(x2) at L2. However, the preceding write operation W2(x1|x2) by process
P2 at L2 is known to produce a version that does not follow from x1. As a
consequence, P1’s read operation at L2 is known not to include the effect of
the write operations when it performed R1(x1) at location L1.
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Monotonic writes

In many situations, it is important that write operations are propagated in
the correct order to all copies of the data store. This property is expressed
in monotonic-write consistency. In a monotonic-write consistent store, the
following condition holds:

A write operation by a process on a data item x is completed before any
successive write operation on x by the same process.

More formally, if we have two successive operations Wk(xi) and Wk(xj) by
process Pk, then, regardless where Wk(xj) takes place, we also have WS(xi; xj).
Thus, completing a write operation means that the copy on which a successive
operation is performed reflects the effect of a previous write operation by the
same process, no matter where that operation was initiated. In other words, a
write operation on a copy of item x is performed only if that copy has been
brought up to date by means of any preceding write operation by that same
process, which may have taken place on other copies of x. If need be, the new
write must wait for old ones to finish.

Note that monotonic-write consistency resembles data-centric FIFO consis-
tency. The essence of FIFO consistency is that write operations by the same
process are performed in the correct order everywhere. This ordering con-
straint also applies to monotonic writes, except that we are now considering
consistency only for a single process instead of for a collection of concurrent
processes.

Bringing a copy of x up to date need not be necessary when each write
operation completely overwrites the present value of x. However, write
operations are often performed on only part of the state of a data item.
Consider, for example, a software library. In many cases, updating such a
library is done by replacing one or more functions, leading to a next version.
With monotonic-write consistency, guarantees are given that if an update is
performed on a copy of the library, all preceding updates will be performed
first. The resulting library will then indeed become the most recent version
and will include all updates that have led to previous versions of the library.

Monotonic-write consistency is shown in Figure 7.17. In Figure 7.17(a)
process P1 performs a write operation on x at L1, presented as the operation
W1(x1). Later, P1 performs another write operation on x, but this time at
L2, shown as W1(x2; x3). The version produced by P1 at L2 follows from an
update by process P2, in turn based on version x1. The latter is expressed
by the operation W2(x1; x2). To ensure monotonic-write consistency, it is
necessary that the previous write operation at L1 has already been propagated
to L2, and possibly updated.

In contrast, Figure 7.17(b) shows a situation in which monotonic-write
consistency is not guaranteed. Compared to Figure 7.17(a) what is missing is
the propagation of x1 to L2 before another version of x is produced, expressed
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(a) (b)

(c) (d)

Figure 7.17: The write operations performed at two different local copies
of the same data store. (a) A monotonic-write consistent data store. (b) A
data store that does not provide monotonic-write consistency. (c) Again, no
consistency as WS(x1|x2) and thus also WS(x1|x3). (d) Consistent as WS(x1; x3)
although x1 has apparently overwritten x2.

by the operation W2(x1|x2). In this case, process P2 produced a concurrent
version to x1, after which process P1 simply produces version x3, but again
concurrently to x1. Only slightly more subtle, but still violating monotonic-
write consistency, is the situation sketched in Figure 7.17(c). Process P1 now
produces version x3 which follows from x2. However, because x2 does not
incorporate the write operations that led to x1, that is, WS(x1|x2), we also
have WS(x1|x3).

An interesting case is shown in Figure 7.17(d). The operation W2(x1|x2)
produces version x2 concurrently to x1. However, later process P1 produces
version x3, but apparently based on the fact that version x1 had become
available at L2. How and when x1 was transferred to L2 is left unspecified,
but in any case a write-write conflict was created with version x2 and resolved
in favor of x1. A consequence is that the situation shown in Figure 7.17(d)
follows the rules for monotonic-write consistency. Note, however, that any
subsequent write by process P2 at L2 (without having read version x1) will
immediately violate consistency again. How such a violation can be prevented
is left as an exercise to the reader.

Note that, by the definition of monotonic-write consistency, write opera-
tions by the same process are performed in the same order as they are initiated.
A somewhat weaker form of monotonic writes is one in which the effects of a
write operation are seen only if all preceding writes have been carried out as
well, but perhaps not in the order in which they have been originally initiated.
This consistency is applicable in those cases in which write operations are
commutative, so that ordering is really not necessary. Details are found in
[Terry et al., 1994].

Read your writes

A data store is said to provide read-your-writes consistency, if the following
condition holds:
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The effect of a write operation by a process on data item x will always be
seen by a successive read operation on x by the same process.

In other words, a write operation is always completed before a successive read
operation by the same process, no matter where that read operation takes
place.

The absence of read-your-writes consistency is sometimes experienced
when updating Web documents and subsequently viewing the effects. Update
operations frequently take place by means of a standard editor or word
processor, perhaps embedded as part of a content management system, which
then saves the new version on a file system that is shared by the Web server.
The user’s Web browser accesses that same file, possibly after requesting it
from the local Web server. However, once the file has been fetched, either
the server or the browser often caches a local copy for subsequent accesses.
Consequently, when the Web page is updated, the user will not see the effects
if the browser or the server returns the cached copy instead of the original file.
Read-your-writes consistency can guarantee that if the editor and browser are
integrated into a single program, the cache is invalidated when the page is
updated, so that the updated file is fetched and displayed.

Similar effects occur when updating passwords. For example, to enter a
digital library on the Web, it is often necessary to have an account with an
accompanying password. However, changing a password may take some time
to come into effect, with the result that the library may be inaccessible to the
user for a few minutes. The delay can be caused because a separate server
is used to manage passwords and it may take some time to subsequently
propagate (encrypted) passwords to the various servers that constitute the
library.

Figure 7.18(a) shows a data store that provides read-your-writes consis-
tency. Note that Figure 7.18(a) is very similar to Figure 7.16(a), except that
consistency is now determined by the last write operation by process P1,
instead of its last read.

(a) (b)

Figure 7.18: (a) A data store that provides read-your-writes consistency. (b) A
data store that does not.

In Figure 7.18(a) process P1 performed a write operation W1(x1) and
later a read operation at a different local copy. Read-your-writes consistency
guarantees that the effects of the write operation can be seen by the succeeding
read operation. This is expressed by W2(x1; x2), which states that a process P2

produced a new version of x, yet one based on x1. In contrast, in Figure 7.18(b)
process P2 produces a version concurrently to x1, expressed as W2(x1|x2).
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This means that the effects of the previous write operation by process P1 have
not been propagated to L2 at the time x2 was produced. When P1 reads x2, it
will not see the effects of its own write operation at L1.

Writes follow reads

The last client-centric consistency model is one in which updates are propa-
gated as the result of previous read operations. A data store is said to provide
writes-follow-reads consistency, if the following holds.

A write operation by a process on a data item x following a previous read
operation on x by the same process is guaranteed to take place on the
same or a more recent value of x that was read.

In other words, any successive write operation by a process on a data item
x will be performed on a copy of x that is up to date with the value most
recently read by that process.

Writes-follow-reads consistency can be used to guarantee that users of a
network newsgroup see a posting of a reaction to an article only after they
have seen the original article [Terry et al., 1994]. To understand the problem,
assume that a user first reads an article A. Then, she reacts by posting a
response B. By requiring writes-follow-reads consistency, B will be written
to any copy of the newsgroup only after A has been written as well. Note
that users who only read articles need not require any specific client-centric
consistency model. The writes-follows-reads consistency assures that reactions
to articles are stored at a local copy only if the original is stored there as well.

(a) (b)

Figure 7.19: (a) A writes-follow-reads consistent data store. (b) A data store
that does not provide writes-follow-reads consistency.

This consistency model is shown in Figure 7.19. In Figure 7.19(a), process
P2 reads version x1 at local copy L1. This version of x was previously pro-
duced at L1 by process P1 through the operation W1(x1). That version was
subsequently propagated to L2, and used by another process P3 to produce a
new version x2, expressed as W3(x1; x2). When process P2 later updates its
version of x after moving to L2, it is known that it will operate on a version that
follows from x1, expressed as W2(x2; x3). Because we also have W3(x1; x2), we
known that WS(x1; x3).

The situation shown in Figure 7.19(b) is different. Process P3 produces a
version x2 concurrently to that of x1. As a consequence, when P2 updates x
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after reading x1, it will be updating a version it had not read before. Writes-
follow-reads consistency is then violated.

7.4 Replica management

A key issue for any distributed system that supports replication is to decide
where, when, and by whom replicas should be placed, and subsequently
which mechanisms to use for keeping the replicas consistent. The placement
problem itself should be split into two subproblems: that of placing replica
servers, and that of placing content. The difference is a subtle one and the two
issues are often not clearly separated. Replica-server placement is concerned
with finding the best locations to place a server that can host (part of) a
data store. Content placement deals with finding the best servers for placing
content. Note that this often means that we are looking for the optimal
placement of only a single data item. Obviously, before content placement can
take place, replica servers will have to be placed first.

Finding the best server location

Where perhaps over a decade ago one could be concerned about where to
place an individual server, matters have changed considerably with the advent
of the many large-scale data centers located across the Internet. Likewise, con-
nectivity continues to improve, making precisely locating servers less critical.

Note 7.5 (Advanced: Replica-server placement)
The placement of replica servers is not an intensively studied problem for the
simple reason that it is often more of a management and commercial issue than
an optimization problem. Nonetheless, analysis of client and network properties
are useful to come to informed decisions.

There are various ways to compute the best placement of replica servers, but
all boil down to an optimization problem in which the best K out of N locations
need to be selected (K < N). These problems are known to be computationally
complex and can be solved only through heuristics. Qiu et al. [2001] take the
distance between clients and locations as their starting point. Distance can be
measured in terms of latency or bandwidth. Their solution selects one server
at a time such that the average distance between that server and its clients is
minimal given that already k servers have been placed (meaning that there are
N − k locations left).

As an alternative, Radoslavov et al. [2001] propose to ignore the position of
clients and only take the topology of the Internet as formed by the autonomous
systems. An autonomous system (AS) can best be viewed as a network in which
the nodes all run the same routing protocol and which is managed by a single
organization. As of 2015, there were some 30,000 ASes. Radoslavov et al. first
consider the largest AS and place a server on the router with the largest number
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of network interfaces (i.e., links). This algorithm is then repeated with the second
largest AS, and so on.

As it turns out, client-unaware server placement achieves similar results as
client-aware placement, under the assumption that clients are uniformly dis-
tributed across the Internet (relative to the existing topology). To what extent this
assumption is true is unclear. It has not been well studied.

One problem with these algorithms is that they are computationally expensive.
For example, both the previous algorithms have a complexity that is higher than
O(N2), where N is the number of locations to inspect. In practice, this means
that for even a few thousand locations, a computation may need to run for tens of
minutes. This may be unacceptable.

Szymaniak et al. [2006] have developed a method by which a region for placing
replicas can be quickly identified. A region is identified to be a collection of nodes
accessing the same content, but for which the internode latency is low. The goal
of the algorithm is first to select the most demanding regions–that is, the one with
the most nodes–and then to let one of the nodes in such a region act as replica
server.

To this end, nodes are assumed to be positioned in an m-dimensional geomet-
ric space, as we discussed in the previous chapter. The basic idea is to identify the
K largest clusters and assign a node from each cluster to host replicated content.
To identify these clusters, the entire space is partitioned into cells. The K most
dense cells are then chosen for placing a replica server. A cell is nothing but an
m-dimensional hypercube. For a two-dimensional space, this corresponds to a
rectangle.

Figure 7.20: Choosing a proper cell size for server placement.

Obviously, the cell size is important, as shown in Figure 7.20. If cells are
chosen too large, then multiple clusters of nodes may be contained in the same
cell. In that case, too few replica servers for those clusters would be chosen. On
the other hand, choosing small cells may lead to the situation that a single cluster
is spread across a number of cells, leading to choosing too many replica servers.

As it turns out, an appropriate cell size can be computed as a simple function
of the average distance between two nodes and the number of required replicas.
With this cell size, it can be shown that the algorithm performs as well as the
close-to-optimal one described by Qiu et al. [2001], but having a much lower
complexity: O(N ×max{log(N), K}). To give an impression what this result
means: experiments show that computing the 20 best replica locations for a
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collection of 64,000 nodes is approximately 50,000 times faster. As a consequence,
replica-server placement can now be done in real time.

Content replication and placement

When it comes to content replication and placement, three different types of
replicas can be distinguished logically organized as shown in Figure 7.21.

Figure 7.21: The logical organization of different kinds of copies of a data
store into three concentric rings.

Permanent replicas

Permanent replicas can be considered as the initial set of replicas that con-
stitute a distributed data store. In many cases, the number of permanent
replicas is small. Consider, for example, a Web site. Distribution of a Web site
generally comes in one of two forms. The first kind of distribution is one in
which the files that constitute a site are replicated across a limited number of
servers at a single location. Whenever a request comes in, it is forwarded to
one of the servers, for instance, using a round-robin strategy.

The second form of distributed Web sites is what is called mirroring. In
this case, a Web site is copied to a limited number of servers, called mirror
sites, which are geographically spread across the Internet. In most cases,
clients simply choose one of the various mirror sites from a list offered to
them. Mirrored Web sites have in common with cluster-based Web sites that
there are only a few replicas, which are more or less statically configured.

Similar static organizations also appear with distributed databases [Kemme
et al., 2010; Özsu and Valduriez, 2011]. Again, the database can be distributed
and replicated across a number of servers that together form a cluster of
servers, often referred to as a shared-nothing architecture, emphasizing that
neither disks nor main memory are shared by processors. Alternatively, a
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database is distributed and possibly replicated across a number of geograph-
ically dispersed sites. This architecture is generally deployed in federated
databases [Sheth and Larson, 1990].

Server-initiated replicas

In contrast to permanent replicas, server-initiated replicas are copies of a data
store that exist to enhance performance, and created at the initiative of the
(owner of the) data store. Consider, for example, a Web server placed in
New York. Normally, this server can handle incoming requests quite easily,
but it may happen that over a couple of days a sudden burst of requests
come in from an unexpected location far from the server. In that case, it may
be worthwhile to install a number of temporary replicas in regions where
requests are coming from.

Note 7.6 (Advanced: An example of dynamic Web-content placement)
The problem of dynamically placing replicas has since long been addressed in
Web hosting services. These services offer an often relatively static collection of
servers spread across the Internet that can maintain and provide access to Web
files belonging to third parties. To provide optimal facilities such hosting services
can dynamically replicate files to servers where those files are needed to enhance
performance, that is, close to demanding (groups of) clients.

Given that the replica servers are already in place, deciding where to place
content is not that difficult. An early case toward dynamic replication of files in
the case of a Web hosting service is described by Rabinovich et al. [1999]. The
algorithm is designed to support Web pages for which reason it assumes that
updates are relatively rare compared to read requests. Using files as the unit of
data, the algorithm works as follows.

The algorithm for dynamic replication takes two issues into account. First,
replication can take place to reduce the load on a server. Second, specific files on
a server can be migrated or replicated to servers placed in the proximity of clients
that issue many requests for those files. In the following, we concentrate only on
this second issue. We also leave out a number of details, which can be found in
[Rabinovich et al., 1999].

Each server keeps track of access counts per file, and where access requests
come from. In particular, when a client C enters the service, it does so through
a server close to it. If client C1 and client C2 share the same closest server P, all
access requests for file F at server Q from C1 and C2 are jointly registered at Q as
a single access count cntQ(P,F). This situation is shown in Figure 7.22.

When the number of requests for a specific file F at server S drops below a
deletion threshold del(S,F), that file can be removed from S. As a consequence,
the number of replicas of that file is reduced, possibly leading to higher work
loads at other servers. Special measures are taken to ensure that at least one copy
of each file continues to exist.
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Figure 7.22: Counting access requests from different clients.

A replication threshold rep(S,F), which is always chosen higher than the
deletion threshold, indicates that the number of requests for a specific file is so
high that it may be worthwhile replicating it on another server. If the number of
requests lie somewhere between the deletion and replication threshold, the file is
allowed to be only migrated. In other words, in that case it is important to at least
keep the number of replicas for that file the same.

When a server Q decides to reevaluate the placement of the files it stores, it
checks the access count for each file. If the total number of access requests for F

at Q drops below the deletion threshold del(Q,F), it will delete F unless it is the
last copy. Furthermore, if for some server P, cntQ(P,F) exceeds more than half of
the total requests for F at Q, server P is requested to take over the copy of F. In
other words, server Q will attempt to migrate F to P.

Migration of file F to server P may not always succeed, for example, because
P is already heavily loaded or is out of disk space. In that case, Q will attempt to
replicate F on other servers. Of course, replication can take place only if the total
number of access requests for F at Q exceeds the replication threshold rep(Q,F).
Server Q checks all other servers in the Web hosting service, starting with the one
farthest away. If, for some server R, cntQ(R,F) exceeds a certain fraction of all
requests for F at Q, an attempt is made to replicate F to R.

Note that as long as guarantees can be given that each data item is hosted
by at least one server, it may suffice to use only server-initiated replication
and not have any permanent replicas. However, permanent replicas are often
useful as a back-up facility, or to be used as the only replicas that are allowed
to be changed to guarantee consistency. Server-initiated replicas are then used
for placing read-only copies close to clients.

Client-initiated replicas

An important kind of replica is the one initiated by a client. Client-initiated
replicas are more commonly known as (client) caches. In essence, a cache is a
local storage facility that is used by a client to temporarily store a copy of the
data it has just requested. In principle, managing the cache is left entirely to
the client. The data store from where the data had been fetched has nothing to
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do with keeping cached data consistent. However, there are many occasions
in which the client can rely on participation from the data store to inform it
when cached data has become stale.

Client caches are used only to improve access times to data. Normally,
when a client wants access to some data, it connects to the nearest copy of the
data store from where it fetches the data it wants to read, or to where it stores
the data it had just modified. When most operations involve only reading
data, performance can be improved by letting the client store requested data
in a nearby cache. Such a cache could be located on the client’s machine, or
on a separate machine in the same local-area network as the client. The next
time that same data needs to be read, the client can simply fetch it from this
local cache. This scheme works fine as long as the fetched data have not been
modified in the meantime.

Data are generally kept in a cache for a limited amount of time, for example,
to prevent extremely stale data from being used, or simply to make room
for other data. Whenever requested data can be fetched from the local cache,
a cache hit is said to have occurred. To improve the number of cache hits,
caches can be shared between clients. The underlying assumption is that a
data request from client C1 may also be useful for a request from another
nearby client C2.

Whether this assumption is correct depends very much on the type of data
store. For example, in traditional file systems, data files are rarely shared at all
(see, e.g., Muntz and Honeyman [1992] and Blaze [1993]) rendering a shared
cache useless. Likewise, it turns out that using Web caches to share data
has been losing ground, partly also because of the improvement in network
and server performance. Instead, server-initiated replication schemes are
becoming more effective.

Placement of client caches is relatively simple: a cache is normally placed
on the same machine as its client, or otherwise on a machine shared by clients
on the same local-area network. However, in some cases, extra levels of
caching are introduced by system administrators by placing a shared cache
between a number of departments or organizations, or even placing a shared
cache for an entire region such as a province or country.

Yet another approach is to place (cache) servers at specific points in a
wide-area network and let a client locate the nearest server. When the server is
located, it can be requested to hold copies of the data the client was previously
fetching from somewhere else [Noble et al., 1999].

Content distribution

Replica management also deals with propagation of (updated) content to the
relevant replica servers. There are various trade-offs to make.
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State versus operations

An important design issue concerns what is actually to be propagated. Basi-
cally, there are three possibilities:

• Propagate only a notification of an update.
• Transfer data from one copy to another.
• Propagate the update operation to other copies.

Propagating a notification is what invalidation protocols do. In an invali-
dation protocol, other copies are informed that an update has taken place
and that the data they contain are no longer valid. The invalidation may
specify which part of the data store has been updated, so that only part of
a copy is actually invalidated. The important issue is that no more than a
notification is propagated. Whenever an operation on an invalidated copy is
requested, that copy generally needs to be updated first, depending on the
specific consistency model that is to be supported.

The main advantage of invalidation protocols is that they use little network
bandwidth. The only information that needs to be transferred is a specification
of which data are no longer valid. Such protocols generally work best when
there are many update operations compared to read operations, that is, the
read-to-write ratio is relatively small.

Consider, for example, a data store in which updates are propagated by
sending the modified data to all replicas. If the size of the modified data is
large, and updates occur frequently compared to read operations, we may
have the situation that two updates occur after one another without any read
operation being performed between them. Consequently, propagation of the
first update to all replicas is effectively useless, as it will be overwritten by
the second update. Instead, sending a notification that the data have been
modified would have been more efficient.

Transferring the modified data among replicas is the second alternative,
and is useful when the read-to-write ratio is relatively high. In that case, the
probability that an update will be effective in the sense that the modified data
will be read before the next update takes place is high. Instead of propagating
modified data, it is also possible to log the changes and transfer only those
logs to save bandwidth. In addition, transfers are often aggregated in the
sense that multiple modifications are packed into a single message, thus
saving communication overhead.

The third approach is not to transfer any data modifications at all, but
to tell each replica which update operation it should perform (and sending
only the parameter values that those operations need). This approach, also
referred to as active replication, assumes that each replica is represented
by a process capable of “actively” keeping its associated data up to date by
performing operations [Schneider, 1990]. The main benefit of active replication
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is that updates can often be propagated at minimal bandwidth costs, provided
the size of the parameters associated with an operation are relatively small.
Moreover, the operations can be of arbitrary complexity, which may allow
further improvements in keeping replicas consistent. On the other hand, more
processing power may be required by each replica, especially in those cases
when operations are relatively complex.

Pull versus push protocols

Another design issue is whether updates are pulled or pushed. In a push-
based approach, also referred to as server-based protocols, updates are prop-
agated to other replicas without those replicas even asking for the updates.
Push-based approaches are often used between permanent and server-initiated
replicas, but can also be used to push updates to client caches. Server-based
protocols are generally applied when strong consistency is required.

This need for strong consistency is related to the fact that permanent and
server-initiated replicas, as well as large shared caches, are often shared by
many clients, which, in turn, mainly perform read operations. Consequently,
the read-to-update ratio at each replica is relatively high. In these cases, push-
based protocols are efficient in the sense that every pushed update can be
expected to be of use for at least one, but perhaps more readers. In addition,
push-based protocols make consistent data immediately available when asked
for.

In contrast, in a pull-based approach, a server or client requests another
server to send it any updates it has at that moment. Pull-based protocols, also
called client-based protocols, are often used by client caches. For example, a
common strategy applied to Web caches is first to check whether cached data
items are still up to date. When a cache receives a request for items that are
still locally available, the cache checks with the original Web server whether
those data items have been modified since they were cached. In the case of
a modification, the modified data are first transferred to the cache, and then
returned to the requesting client. If no modifications took place, the cached
data are returned. In other words, the client polls the server to see whether
an update is needed.

A pull-based approach is efficient when the read-to-update ratio is rela-
tively low. This is often the case with (nonshared) client caches, which have
only one client. However, even when a cache is shared by many clients, a
pull-based approach may also prove to be efficient when the cached data items
are rarely shared. The main drawback of a pull-based strategy in comparison
to a push-based approach is that the response time increases in the case of a
cache miss.

When comparing push-based and pull-based solutions, there are a number
of trade-offs to be made, as shown in Figure 7.23. For simplicity, consider
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a client-server system consisting of a single, nondistributed server, and a
number of client processes, each having their own cache.

Issue Push-based Pull-based
State at server List of client replicas and caches None
Messages sent Update (and possibly fetch update

later)
Poll and update

Response time
at client

Immediate (or fetch-update time) Fetch-update
time

Figure 7.23: A comparison between push-based and pull-based protocols in
the case of multiple-client, single-server systems.

An important issue is that in push-based protocols, the server needs to
keep track of all client caches. Apart from the fact that stateful servers are
often less fault tolerant, keeping track of all client caches may introduce a
considerable overhead at the server. For example, in a push-based approach, a
Web server may easily need to keep track of tens of thousands of client caches.
Each time a Web page is updated, the server will need to go through its list
of client caches holding a copy of that page, and subsequently propagate the
update. Worse yet, if a client purges a page due to lack of space, it has to
inform the server, leading to even more communication.

The messages that need to be sent between a client and the server also
differ. In a push-based approach, the only communication is that the server
sends updates to each client. When updates are actually only invalidations,
additional communication is needed by a client to fetch the modified data. In
a pull-based approach, a client will have to poll the server, and, if necessary,
fetch the modified data.

Finally, the response time at the client is also different. When a server
pushes modified data to the client caches, it is clear that the response time at
the client side is zero. When invalidations are pushed, the response time is
the same as in the pull-based approach, and is determined by the time it takes
to fetch the modified data from the server.

These trade-offs have lead to a hybrid form of update propagation based
on leases. In the case of replica management, a lease is a promise by the
server that it will push updates to the client for a specified time. When a
lease expires, the client is forced to poll the server for updates and pull in the
modified data if necessary. An alternative is that a client requests a new lease
for pushing updates when the previous lease expires.

Leases, originally introduced by Gray and Cheriton [1989], provide a
convenient mechanism for dynamically switching between a push-based
and pull-based strategy. Consider the following lease system that allows
the expiration time to be dynamically adapted depending on different lease
criteria, described in [Duvvuri et al., 2003]. We distinguish the following three
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types of leases. (Note that in all cases, updates are pushed by the server as
long as the lease has not expired.)

First, age-based leases are given out on data items depending on the last
time the item was modified. The underlying assumption is that data that
have not been modified for a long time can be expected to remain unmodified
for some time yet to come. This assumption has shown to be reasonable
in the case of, for example, Web-based data and regular files. By granting
long-lasting leases to data items that are expected to remain unmodified, the
number of update messages can be strongly reduced compared to the case
where all leases have the same expiration time.

Another lease criterion is how often a specific client requests its cached
copy to be updated. With renewal-frequency-based leases, a server will hand
out a long-lasting lease to a client whose cache often needs to be refreshed.
On the other hand, a client that asks only occasionally for a specific data item
will be handed a short-term lease for that item. The effect of this strategy is
that the server essentially keeps track only of those clients where its data are
popular; moreover, those clients are offered a high degree of consistency.

The last criterion is that of state-space overhead at the server. When
the server realizes that it is gradually becoming overloaded, it lowers the
expiration time of new leases it hands out to clients. The effect of this state-
based lease strategy is that the server needs to keep track of fewer clients as
leases expire more quickly. In other words, the server dynamically switches
to a more stateless mode of operation, thereby expecting to offload itself so
that it can handle requests more efficiently. The obvious drawback is that it
may need to do more work when the read-to-update ratio is high.

Unicasting versus multicasting

Related to pushing or pulling updates is deciding whether unicasting or
multicasting should be used. In unicast communication, when a server that is
part of the data store sends its update to N other servers, it does so by sending
N separate messages, one to each server. With multicasting, the underlying
network takes care of sending a message efficiently to multiple receivers.

In many cases, it is cheaper to use available multicasting facilities. An
extreme situation is when all replicas are located in the same local-area
network and that hardware broadcasting is available. In that case, broadcasting
or multicasting a message is no more expensive than a single point-to-point
message. Unicasting updates would then be less efficient.

Multicasting can often be efficiently combined with a push-based approach
to propagating updates. When the two are carefully integrated, a server that
decides to push its updates to a number of other servers simply uses a single
multicast group to send its updates. In contrast, with a pull-based approach, it
is generally only a single client or server that requests its copy to be updated.
In that case, unicasting may be the most efficient solution.

DS 3.02 downloaded by OLEXANDER.PERIG@GMAIL.COM



7.4. REPLICA MANAGEMENT 393

Managing replicated objects

As we mentioned, data-centric consistency for distributed objects comes
naturally in the form of entry consistency. Recall that in this case, the goal
is to group operations on shared data using synchronization variables (e.g.,
in the form of locks). As objects naturally combine data and the operations
on that data, locking objects during an invocation serializes access and keeps
them consistent.

Although conceptually associating a lock with an object is simple, it does
not necessarily provide a proper solution when an object is replicated. There
are two issues that need to be solved for implementing entry consistency. The
first one is that we need a means to prevent concurrent execution of multiple
invocations on the same object. In other words, when any method of an
object is being executed, no other methods may be executed. This requirement
ensures that access to the internal data of an object is indeed serialized. Simply
using local locking mechanisms will ensure this serialization.

The second issue is that in the case of a replicated object, we need to ensure
that all changes to the replicated state of the object are the same. In other
words, we need to make sure that no two independent method invocations
take place on different replicas at the same time. This requirement implies
that we need to order invocations such that each replica sees all invocations
in the same order. We describe a few general solutions in Section 7.5.

In many cases, designing replicated objects is done by first designing a
single object, possibly protecting it against concurrent access through local
locking, and subsequently replicating it. The role of middleware is to ensure
that if a client invokes a replicated object, the invocation is passed to the
replicas and handed to the their respective object servers in the same order
everywhere. However, we also need to ensure that all threads in those servers
process those requests in the correct order as well. The problem is sketched in
Figure 7.24.

Multithreaded (object) servers simply pick up an incoming request, pass
it on to an available thread, and wait for the next request to come in. The
server’s thread scheduler subsequently allocates the CPU to runnable threads.
Of course, if the middleware has done its best to provide a total ordering
for request delivery, the thread schedulers should operate in a deterministic
fashion in order not to mix the ordering of method invocations on the same
object. In other words, If threads T1

1 and T2
1 from Figure 7.24 handle the

same incoming (replicated) invocation request, they should both be scheduled
before T1

2 and T2
2, respectively.

Of course, simply scheduling all threads deterministically is not necessary.
In principle, if we already have total-ordered request delivery, we need only
to ensure that all requests for the same replicated object are handled in the
order they were delivered. Such an approach would allow invocations for
different objects to be processed concurrently, and without further restrictions
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Figure 7.24: Deterministic thread scheduling for replicated object servers.

from the thread scheduler. Unfortunately, only few systems exist that support
such concurrency.

One approach, described by Basile et al. [2002], ensures that threads
sharing the same (local) lock are scheduled in the same order on every replica.
At the basics lies a primary-based scheme in which one of the replica servers
takes the lead in determining, for a specific lock, which thread goes first.
An improvement that avoids frequent communication between servers is
described in [Basile et al., 2003]. Note that threads that do not share a lock
can thus operate concurrently on each server.

One drawback of this scheme is that it operates at the level of the under-
lying operating system, meaning that every lock needs to be managed. By
providing application-level information, a huge improvement in performance
can be made by identifying only those locks that are needed for serializing
access to replicated objects (see Taiani et al. [2005]).

Note 7.7 (Advanced: Replicated invocations)
Another problem that needs to be solved is that of replicated invocations. Consider
an object A calling another object B as shown in Figure 7.25. Object B is assumed
to call yet another object C. If B is replicated, each replica of B will, in principle,
call C independently. The problem is that C is now called multiple times instead
of only once. If the called method on C results in the transfer of $100,000, then
clearly, someone is going to complain sooner or later.
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Figure 7.25: The problem of replicated method invocations.

Figure 7.26: (a) Forwarding an invocation request from a replicated object
to another replicated object. (b) Returning a reply from one replicated
object to another.

There are not many general-purpose solutions to solve the problem of repli-
cated invocations. One solution is to simply forbid it [Maassen et al., 2001],
which makes sense when performance is at stake. However, when replicating for
fault tolerance, the following solution proposed by Mazouni et al. [1995] may be
deployed. Their solution is independent of the replication policy, that is, the exact
details of how replicas are kept consistent. The essence is to provide a replication-
aware communication layer on top of which (replicated) objects execute. When
a replicated object B invokes another replicated object C, the invocation request
is first assigned the same, unique identifier by each replica of B. At that point, a
coordinator of the replicas of B forwards its request to all the replicas of object C,
while the other replicas of B hold back their copy of the invocation request, as
shown in Figure 7.26. The result is that only a single request is forwarded to each
replica of C.

The same mechanism is used to ensure that only a single reply message is
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returned to the replicas of B. This situation is shown in Figure 7.26. A coordinator
of the replicas of C notices it is dealing with a replicated reply message that has
been generated by each replica of C. However, only the coordinator forwards that
reply to the replicas of object B, while the other replicas of C hold back their copy
of the reply message.

When a replica of B receives a reply message for an invocation request it had
either forwarded to C or held back because it was not the coordinator, the reply is
then handed to the actual object.

In essence, the scheme just described is based on using multicast communica-
tion, but in preventing that the same message is multicast by different replicas.
As such, it is essentially a sender-based scheme. An alternative solution is to let a
receiving replica detect multiple copies of incoming messages belonging to the
same invocation, and to pass only one copy to its associated object. Details of this
scheme are left as an exercise.

7.5 Consistency protocols

We now concentrate on the actual implementation of consistency models
by taking a look at several consistency protocols. A consistency protocol
describes an implementation of a specific consistency model. We follow the
organization of our discussion on consistency models by first taking a look at
data-centric models, followed by protocols for client-centric models.

Continuous consistency

As part of their work on continuous consistency, Yu and Vahdat [2000] have
developed a number of protocols to tackle the three forms of consistency. In
the following, we briefly consider a number of solutions, omitting details for
clarity.

Bounding numerical deviation

We first concentrate on one solution for keeping the numerical deviation
within bounds. Again, our purpose is not to go into all the details for each
protocol, but rather to give the general idea. Details for bounding numerical
deviation can be found in [Yu and Vahdat, 2000].

We concentrate on writes to a single data item x. Each write W(x) has an
associated value that represents the numerical value by which x is updated,
denoted as val(W(x)), or simply val(W). For simplicity, we assume that
val(W) > 0. Each write W is initially submitted to one out of the N available
replica servers, in which case that server becomes the write’s origin, denoted
as origin(W). If we consider the system at a specific moment in time we will
see several submitted writes that still need to be propagated to all servers.
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To this end, each server Si will keep track of a log Li of writes that it has
performed on its own local copy of x.

Let TW[i, j] be the effect of performing the writes executed by server Si
that originated from server Sj:

TW[i, j] = ∑{val(W)|origin(W) = Sj and W ∈ Li}

Note that TW[i, i] represents the aggregated writes submitted to Si. Our
goal is for any time t, to let the current value vi of x at server Si deviate
within bounds from the actual value v of x. This actual value is completely
determined by all submitted writes. That is, if v0 is the initial value of x, then

v = v0 +
N

∑
k=1

TW[k, k]

and

vi = v0 +
N

∑
k=1

TW[i, k]

Note that vi ≤ v. Let us concentrate only on absolute deviations. In particular,
for every server Si, we associate an upperbound δi such that we need to
enforce:

v− vi ≤ δi

Writes submitted to a server Si will need to be propagated to all other servers.
There are different ways in which this can be done, but typically an epidemic
protocol will allow rapid dissemination of updates. In any case, when a server
Si propagates a write originating from Sj to Sk, the latter will be able to learn
about the value TW[i, j] at the time the write was sent. In other words, Sk can
maintain a view TWk[i, j] of what it believes Si will have as value for TW[i, j].
Obviously,

0 ≤ TWk[i, j] ≤ TW[i, j] ≤ TW[j, j]

The whole idea is that when server Sk notices that Si has not been staying in
the right pace with the updates that have been submitted to Sk, it forwards
writes from its log to Si. This forwarding effectively advances the view TWk[i, k]
that Sk has of TW[i, k], making the deviation TW[i, k]− TWk[i, k] smaller. In
particular, Sk advances its view on TW[i, k] when an application submits a
new write that would increase TW[k, k]− TWk[i, k] beyond δi/(N − 1). We
leave it as an exercise to the reader to show that advancement always ensures
that v− vi ≤ δi.

Bounding staleness deviations

There are many ways to keep the staleness of replicas within specified bounds.
One simple approach is to let server Sk keep a real-time vector clock RVCk
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where RVCk[i] = ti means that Sk has seen all writes that have been submitted
to Si up to time ti. In this case, we assume that each submitted write is
timestamped by its origin server, and that ti denotes the time local to Si.

If the clocks between the replica servers are loosely synchronized, then an
acceptable protocol for bounding staleness would be the following. Whenever
server Sk notes that tk − RVCk[i] is about to exceed a specified limit, it simply
starts pulling in writes that originated from Si with a timestamp later than
RVCk[i].

Note that in this case a replica server is responsible for keeping its copy
of x up to date regarding writes that have been issued elsewhere. In contrast,
when maintaining numerical bounds, we followed a push approach by letting
an origin server keep replicas up to date by forwarding writes. The problem
with pushing writes in the case of staleness is that no guarantees can be given
for consistency when it is unknown in advance what the maximal propagation
time will be. This situation is somewhat improved by pulling in updates, as
multiple servers can help to keep a server’s copy of x fresh (i.e., up to date).

Bounding ordering deviations

Recall that ordering deviations in continuous consistency are caused by the
fact that a replica server tentatively applies updates that have been submitted
to it. As a result, each server will have a local queue of tentative writes for
which the actual order in which they are to be applied to the local copy of x
still needs to be determined. The ordering deviation is bounded by specifying
the maximal length of the queue of tentative writes.

As a consequence, detecting when ordering consistency needs to be en-
forced is simple: when the length of this local queue exceeds a specified
maximal length. At that point, a server will no longer accept any newly
submitted writes, but will instead attempt to commit tentative writes by ne-
gotiating with other servers in which order its writes should be executed. In
other words, we need to enforce a globally consistent ordering of tentative
writes.

Primary-based protocols

In practice, we see that distributed applications generally follow consistency
models that are relatively easy to understand. These models include those for
bounding staleness deviations, and to a lesser extent also those for bounding
numerical deviations. When it comes to models that handle consistent order-
ing of operations, sequential consistency, notably those in which operations
can be grouped through locking or transactions are popular.

As soon as consistency models become slightly difficult to understand for
application developers, we see that they are ignored even if performance could
be improved. The bottom line is that if the semantics of a consistency model
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are not intuitively clear, application developers will have a hard time building
correct applications. Simplicity is appreciated (and perhaps justifiably so).

In the case of sequential consistency, it turns out that primary-based
protocols prevail. In these protocols, each data item x in the data store has
an associated primary, which is responsible for coordinating write operations
on x. A distinction can be made as to whether the primary is fixed at a
remote server or if write operations can be carried out locally after moving
the primary to the process where the write operation is initiated.

Remote-write protocols

The simplest primary-based protocol that supports replication is the one in
which all write operations need to be forwarded to a fixed single server.
Read operations can be carried out locally. Such schemes are also known
as primary-backup protocols [Budhijara et al., 1993]. A primary-backup
protocol works as shown in Figure 7.27. A process wanting to perform a write
operation on data item x, forwards that operation to the primary server for
x. The primary performs the update on its local copy of x, and subsequently
forwards the update to the backup servers. Each backup server performs
the update as well, and sends an acknowledgment to the primary. When all
backups have updated their local copy, the primary sends an acknowledgment
to the initial process, which, in turn, informs the client.

Figure 7.27: The principle of a primary-backup protocol.

A potential performance problem with this scheme is that it may take a
relatively long time before the process that initiated the update is allowed to
continue. In effect, an update is implemented as a blocking operation. An
alternative is to use a nonblocking approach. As soon as the primary has
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updated its local copy of x, it returns an acknowledgment. After that, it tells
the backup servers to perform the update as well. Nonblocking primary-
backup protocols are discussed in [Budhiraja and Marzullo, 1992].

The main problem with nonblocking primary-backup protocols has to do
with fault tolerance. In a blocking scheme, the client process knows for sure
that the update operation is backed up by several other servers. This is not
the case with a nonblocking solution. The advantage, of course, is that write
operations may speed up considerably.

Primary-backup protocols provide a straightforward implementation of
sequential consistency, as the primary can order all incoming writes in a
globally unique time order. Evidently, all processes see all write operations
in the same order, no matter which backup server they use to perform read
operations. Also, with blocking protocols, processes will always see the effects
of their most recent write operation (note that this cannot be guaranteed with
a nonblocking protocol without taking special measures).

Local-write protocols

A variant of primary-backup protocols is one in which the primary copy
migrates between processes that wish to perform a write operation. As before,
whenever a process wants to update data item x, it locates the primary copy of
x, and subsequently moves it to its own location, as shown in Figure 7.28. The
main advantage of this approach is that multiple, successive write operations
can be carried out locally, while reading processes can still access their local
copy. However, such an improvement can be achieved only if a nonblocking
protocol is followed by which updates are propagated to the replicas after the
primary has finished with locally performing the updates.

This primary-backup local-write protocol can also be applied to mobile
computers that are able to operate in disconnected mode. Before disconnect-
ing, the mobile computer becomes the primary server for each data item it
expects to update. While being disconnected, all update operations are carried
out locally, while other processes can still perform read operations (but no
updates). Later, when connecting again, updates are propagated from the
primary to the backups, bringing the data store in a consistent state again.

As a last variant of this scheme, nonblocking local-write primary-based
protocols are also used for distributed file systems in general. In this case, there
may be a fixed central server through which normally all write operations
take place, as in the case of remote-write primary backup. However, the server
temporarily allows one of the replicas to perform a series of local updates,
as this may considerably speed up performance. When the replica server is
done, the updates are propagated to the central server, from where they are
then distributed to the other replica servers.
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Figure 7.28: Primary-backup protocol in which the primary migrates to the
process wanting to perform an update.

Replicated-write protocols

In replicated-write protocols, write operations can be carried out at multiple
replicas instead of only one, as in the case of primary-based replicas. A
distinction can be made between active replication, in which an operation is
forwarded to all replicas, and consistency protocols based on majority voting.

Active replication

In active replication, each replica has an associated process that carries out
update operations. In contrast to other protocols, updates are generally
propagated by means of the write operation that causes the update. In other
words, the operation is sent to each replica. However, it is also possible to
send the update.

One problem with active replication is that operations need to be carried
out in the same order everywhere. Consequently, what is needed is a total-
ordered multicast mechanism. A practical approach to accomplish total
ordering is by means of a central coordinator, also called a sequencer. One
approach is to first forward each operation to the sequencer, which assigns it
a unique sequence number and subsequently forwards the operation to all
replicas. Operations are carried out in the order of their sequence number.

Note 7.8 (Advanced: Achieving scalability)
Note that using a sequencer may easily introduce scalability problems. In fact, if
total-ordered multicasting is needed, a combination of symmetric multicasting
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using Lamport timestamps [Lamport, 1978] and sequencers may be necessary.
Such a solution is described by Rodrigues et al. [1996]. The essence of that
solution is to have multiple sequencers multicast update operations to each other
and order the updates using Lamport’s total-ordering mechanism, as described
in Section 6.2. Nonsequencing processes are grouped such that each group
uses a single sequencer. Any nonsequencing process sends update requests to
its sequencer and waits until it receives an acknowledgment that its request
has been processed (i.e., multicast to the other sequencers in a total-ordered
fashion). Obviously, there is a trade-off between the number of processes that act
as sequencer and those that do not, as well as the choice of processes to act as
sequencer. As it turns out, this trade-off depends very much on the application
and, in particular, the relative update rate at each process.

Quorum-based protocols

A different approach to supporting replicated writes is to use voting, as
originally proposed by Thomas [1979] and generalized by Gifford [1979].
The basic idea is to require clients to request and acquire the permission of
multiple servers before either reading or writing a replicated data item.

As a simple example of how the algorithm works, consider a distributed
file system and suppose that a file is replicated on N servers. We could make
a rule stating that to update a file, a client must first contact at least half the
servers plus one (a majority) and get them to agree to do the update. Once
they have agreed, the file is changed and a new version number is associated
with the new file. The version number is used to identify the version of the
file and is the same for all the newly updated files.

To read a replicated file, a client must also contact at least half the servers
plus one and ask them to send the version numbers associated with the file.
If all the version numbers are the same, this must be the most recent version
because an attempt to update only the remaining servers would fail because
there are not enough of them.

For example, if there are five servers and a client determines that three of
them have version 8, it is impossible that the other two have version 9. After
all, any successful update from version 8 to version 9 requires getting three
servers to agree to it, not just two.

When quorum-based replication was originally introduced, a somewhat
more general scheme was proposed. In it, to read a file of which N replicas
exist, a client needs to assemble a read quorum, an arbitrary collection of any
NR servers, or more. Similarly, to modify a file, a write quorum of at least
NW servers is required. The values of NR and NW are subject to the following
two constraints:

1. NR + NW > N
2. NW > N/2
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The first constraint is used to prevent read-write conflicts, whereas the
second prevents write-write conflicts. Only after the appropriate number of
servers has agreed to participate can a file be read or written.

To see how this algorithm works, consider Figure 7.29(a) which has NR = 3
and NW = 10. Imagine that the most recent write quorum consisted of the
10 servers C through L. All of these get the new version and the new version
number. Any subsequent read quorum of three servers will have to contain at
least one member of this set. When the client looks at the version numbers, it
will know which is most recent and take that one.

(a) (b) (c)

Figure 7.29: Three examples of the voting algorithm. The gray areas denote a
read quorum; the white ones a write quorum. Servers in the intersection are
denoted in boldface. (a) A correct choice of read and write set. (b) A choice
that may lead to write-write conflicts. (c) A correct choice, known as ROWA
(read one, write all).

In Figure 7.29 we see two more examples. In Figure 7.29(b) a write-write
conflict may occur because NW ≤ N/2. In particular, if one client chooses
{A, B, C, E, F, G} as its write set and another client chooses {D, H, I, J, K, L} as
its write set, then clearly we will run into trouble as the two updates will both
be accepted without detecting that they actually conflict.

The situation shown in Figure 7.29(c) is especially interesting because it
sets NR to one, making it possible to read a replicated file by finding any
copy and using it. The price paid for this good read performance, however,
is that write updates need to acquire all copies. This scheme is generally
referred to as Read-One, Write-All, (ROWA). There are several variations of
quorum-based replication protocols. Jalote [1994] provides a good overview.

Cache-coherence protocols

Caches form a special case of replication, in the sense that they are generally
controlled by clients instead of servers. However, cache-coherence protocols,
which ensure that a cache is consistent with the server-initiated replicas are,
in principle, not very different from the consistency protocols discussed so far.
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There has been much research in the design and implementation of caches,
especially in the context of shared-memory multiprocessor systems. Many
solutions are based on support from the underlying hardware, for example,
by assuming that snooping or efficient broadcasting can be done. In the
context of middleware-based distributed systems that are built on top of
general-purpose operating systems, software-based solutions to caches are
more interesting. In this case, two separate criteria are often maintained to
classify caching protocols (see also Min and Baer [1992], Lilja [1993], or Tartalja
and Milutinovic [1997]).

First, caching solutions may differ in their coherence detection strategy,
that is, when inconsistencies are actually detected. In static solutions, a com-
piler is assumed to perform the necessary analysis prior to execution, and to
determine which data may actually lead to inconsistencies because they may
be cached. The compiler simply inserts instructions that avoid inconsistencies.
Dynamic solutions are typically applied in the distributed systems studied
in this book. In these solutions, inconsistencies are detected at runtime. For
example, a check is made with the server to see whether the cached data have
been modified since they were cached.

In the case of distributed databases, dynamic detection-based protocols
can be further classified by considering exactly when during a transaction
the detection is done. Franklin et al. [1997] distinguish the following three
cases. First, when during a transaction a cached data item is accessed, the
client needs to verify whether that data item is still consistent with the version
stored at the (possibly replicated) server. The transaction cannot proceed to
use the cached version until its consistency has been definitively validated.

A second, optimistic, approach is to let the transaction proceed while
verification is taking place. In this case, it is assumed that the cached data
were up to date when the transaction started. If that assumption later proves
to be false, the transaction will have to abort.

The third approach is to verify whether the cached data are up to date only
when the transaction commits. In effect, the transaction just starts operating
on the cached data and hopes for the best. After all the work has been done,
accessed data are verified for consistency. When stale data were used, the
transaction is aborted.

Another design issue for cache-coherence protocols is the coherence en-
forcement strategy, which determines how caches are kept consistent with the
copies stored at servers. The simplest solution is to disallow shared data to be
cached at all. Instead, shared data are kept only at the servers, which maintain
consistency using one of the primary-based or replication-write protocols
discussed above. Clients are allowed to cache only private data. Obviously,
this solution can offer only limited performance improvements.

When shared data can be cached, there are two approaches to enforce
cache coherence. The first is to let a server send an invalidation to all caches
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whenever a data item is modified. The second is to simply propagate the
update. Most caching systems use one of these two schemes. Dynamically
choosing between sending invalidations or updates is sometimes supported
in client-server databases.

Finally, we also need to consider what happens when a process modifies
cached data. When read-only caches are used, update operations can be
performed only by servers, which subsequently follow some distribution
protocol to ensure that updates are propagated to caches. In many cases, a
pull-based approach is followed. In this case, a client detects that its cache is
stale, and requests a server for an update.

An alternative approach is to allow clients to directly modify the cached
data, and forward the update to the servers. This approach is followed
in write-through caches, which are often used in distributed file systems.
In effect, write-through caching is similar to a primary-based local-write
protocol in which the client’s cache has become a temporary primary. To
guarantee (sequential) consistency, it is necessary that the client has been
granted exclusive write permissions, or otherwise write-write conflicts may
occur.

Write-through caches potentially offer improved performance over other
schemes as all operations can be carried out locally. Further improvements can
be made if we delay the propagation of updates by allowing multiple writes
to take place before informing the servers. This leads to what is known as a
write-back cache, which is, again, mainly applied in distributed file systems.

Note 7.9 (Example: Client-side caching in NFS)
As a practical example, consider the general caching model in NFS as shown in
Figure 7.30. Each client can have a memory cache that contains data previously
read from the server. In addition, there may also be a disk cache that is added as
an extension to the memory cache, using the same consistency parameters.

Figure 7.30: Client-side caching in NFS.

Typically, clients cache file data, attributes, file handles, and directories. Dif-
ferent strategies exist to handle consistency of the cached data, cached attributes,
and so on. Let us first take a look at caching file data.

downloaded by OLEXANDER.PERIG@GMAIL.COM DS 3.02



406 CHAPTER 7. CONSISTENCY AND REPLICATION

NFSv4 supports two different approaches for caching file data. The simplest
approach is when a client opens a file and caches the data it obtains from the
server as the result of various read operations. In addition, write operations can
be carried out in the cache as well. When the client closes the file, NFS requires
that if modifications have taken place, the cached data must be flushed back
to the server. This approach corresponds to implementing session semantics as
discussed earlier.

Once (part of) a file has been cached, a client can keep its data in the cache
even after closing the file. Also, several clients on the same machine can share a
single cache. NFS requires that whenever a client opens a previously closed file
that has been (partly) cached, the client must immediately revalidate the cached
data. Revalidation takes place by checking when the file was last modified and
invalidating the cache in case it contains stale data.

In NFSv4 a server may delegate some of its rights to a client when a file
is opened. Open delegation takes place when the client machine is allowed to
locally handle open and close operations from other clients on the same machine.
Normally, the server is in charge of checking whether opening a file should
succeed or not, for example, because share reservations need to be taken into
account. With open delegation, the client machine is sometimes allowed to make
such decisions, avoiding the need to contact the server.

For example, if a server has delegated the opening of a file to a client that
requested write permissions, file locking requests from other clients on the same
machine can also be handled locally. The server will still handle locking requests
from clients on other machines, by simply denying those clients access to the file.
Note that this scheme does not work in the case of delegating a file to a client that
requested only read permissions. In that case, whenever another local client wants
to have write permissions, it will have to contact the server; it is not possible to
handle the request locally.

An important consequence of delegating a file to a client is that the server
needs to be able to recall the delegation, for example, when another client on a
different machine needs to obtain access rights to the file. Recalling a delegation
requires that the server can do a callback to the client, as illustrated in Figure 7.31.

Figure 7.31: Using the NFSv4 callback mechanism to recall file delegation.

A callback is implemented in NFS using its underlying RPC mechanisms.
Note, however, that callbacks require that the server keeps track of clients to
which it has delegated a file. Here, we see another example where an NFS server
can no longer be implemented in a stateless manner. Note, however, that the
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combination of delegation and stateful servers may lead to various problems in
the presence of client and server failures. For example, what should a server do
when it had delegated a file to a now unresponsive client?

Clients can also cache attribute values, but are largely left on their own when
it comes to keeping cached values consistent. In particular, attribute values of the
same file cached by two different clients may be different unless the clients keep
these attributes mutually consistent. Modifications to an attribute value should
be immediately forwarded to the server, thus following a write-through cache
coherence policy.

A similar approach is followed for caching file handles (or rather, the name-
to-file handle mapping) and directories. To mitigate the effects of inconsistencies,
NFS uses leases on cached attributes, file handles, and directories. After some
time has elapsed, cache entries are thus automatically invalidated and revalidation
is needed before they are used again.

Implementing client-centric consistency

For our last topic on consistency protocols, let us draw our attention to imple-
menting client-centric consistency. Implementing client-centric consistency is
relatively straightforward if performance issues are ignored.

In a naive implementation of client-centric consistency, each write opera-
tion W is assigned a globally unique identifier. Such an identifier is assigned
by the server to which the write had been submitted. We refer to this server
as the origin of W. Then, for each client, we keep track of two sets of writes.
The read set for a client consists of the writes relevant for the read operations
performed by a client. Likewise, the write set consists of the (identifiers of
the) writes performed by the client.

Monotonic-read consistency is implemented as follows. When a client
performs a read operation at a server, that server is handed the client’s read
set to check whether all the identified writes have taken place locally. If not,
it contacts the other servers to ensure that it is brought up to date before
carrying out the read operation. Alternatively, the read operation is forwarded
to a server where the write operations have already taken place. After the
read operation is performed, the write operations that have taken place at the
selected server and which are relevant for the read operation are added to the
client’s read set.

Note that it should be possible to determine exactly where the write
operations identified in the read set have taken place. For example, the write
identifier could include the identifier of the server to which the operation was
submitted. That server is required to, for example, log the write operation so
that it can be replayed at another server. In addition, write operations should
be performed in the order they were submitted. Ordering can be achieved by
letting the client generate a globally unique sequence number that is included
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in the write identifier. If each data item can be modified only by its owner,
the latter can supply the sequence number.

Monotonic-write consistency is implemented analogous to monotonic
reads. Whenever a client initiates a new write operation at a server, the
server is handed over the client’s write set. (Again, the size of the set may be
prohibitively large in the face of performance requirements. An alternative
solution is discussed below.) It then ensures that the identified write opera-
tions are performed first and in the correct order. After performing the new
operation, that operation’s write identifier is added to the write set. Note that
bringing the current server up to date with the client’s write set may introduce
a considerable increase in the client’s response time since the client then waits
for the operation to fully complete.

Likewise, read-your-writes consistency requires that the server where the
read operation is performed has seen all the write operations in the client’s
write set. The writes can simply be fetched from other servers before the
read operation is performed, although this may lead to a poor response
time. Alternatively, the client-side software can search for a server where
the identified write operations in the client’s write set have already been
performed.

Finally, writes-follow-reads consistency can be implemented by first bring-
ing the selected server up to date with the write operations in the client’s read
set, and then later adding the identifier of the write operation to the write set,
along with the identifiers in the read set (which have now become relevant
for the write operation just performed).

Note 7.10 (Advanced: Improving efficiency)
It is easy to see that the read set and write set associated with each client can
become very large. To keep these sets manageable, a client’s read and write
operations are grouped into sessions. A session is typically associated with an
application: it is opened when the application starts and is closed when it exits.
However, sessions may also be associated with applications that are temporarily
exited, such as user agents for e-mail. Whenever a client closes a session, the sets
are simply cleared. Of course, if a client opens a session that it never closes, the
associated read and write sets can still become very large.

The main problem with a naive implementation lies in the representation of
the read and write sets. Each set consists of a number of identifiers for write
operations. Whenever a client forwards a read or write request to a server, a set
of identifiers is handed to the server as well to see whether all write operations
relevant to the request have been carried out by that server.

This information can be more efficiently represented by means of vector
timestamps as follows. First, whenever a server accepts a new write operation W,
it assigns that operation a globally unique identifier along with a timestamp ts(W).
A subsequent write operation submitted to that server is assigned a higher-valued
timestamp. Each server Si maintains a vector timestamp WVCi, where WVCi[j] is
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equal to the timestamp of the most recent write operation originating from Sj that
has been processed by Si.

For clarity, assume that for each server, writes from Sj are processed in the
order that they were submitted. Whenever a client issues a request to perform
a read or write operation O at a specific server, that server returns its current
timestamp along with the results of O. Read and write sets are subsequently
represented by vector timestamps. More specifically, for each session A, we
construct a vector timestamp SVCA with SVCA[i] set equal to the maximum
timestamp of all write operations in A that originate from server Si:

SVCA[j] = max{ts(W)|W ∈ A and origin(W) = Sj}

In other words, the timestamp of a session always represents the latest write
operations that have been seen by the applications that are being executed as part
of that session. The compactness is obtained by representing all observed write
operations originating from the same server through a single timestamp.

As an example, suppose a client, as part of session A, logs in at server Si. To
that end, it passes SVCA to Si. Assume that SVCA[j] > WVCi[j]. What this means
is that Si has not yet seen all the writes originating from Sj that the client has
seen. Depending on the required consistency, server Si may now have to fetch
these writes before being able to consistently report back to the client. Once the
operation has been performed, server Si will return its current timestamp WVCi.
At that point, SVCA is adjusted to:

SVCA[j]← max{SVCA[j],WVCi[j]}

Again, we see how vector timestamps can provide an elegant and compact way of
representing history in a distributed system.

7.6 Example: Caching and replication in the Web

The Web is arguably the largest distributed system ever built. Originating from
a relatively simple client-server architecture, it is now a sophisticated system
consisting of many techniques to ensure stringent performance and availability
requirements. These requirements have led to numerous proposals for caching
and replicating Web content. Where the original schemes (which are still
largely deployed) have been targeted toward supporting static content, much
effort has also been put into supporting dynamic content, that is, supporting
documents that are generated on-the-spot as the result of a request, as well as
those containing scripts and such. An overview of traditional Web caching
and replication is provided by Rabinovich and Spastscheck [2002].

Client-side caching in the Web generally occurs at two places. In the first
place, most browsers are equipped with a relatively simple caching facility.
Whenever a document is fetched it is stored in the browser’s cache from where
it is loaded the next time. In the second place, a client’s site often runs a Web
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proxy. A Web proxy accepts requests from local clients and passes these to
Web servers. When a response comes in, the result is passed to the client. The
advantage of this approach is that the proxy can cache the result and return
that result to another client, if necessary. In other words, a Web proxy can
implement a shared cache. With so many documents being generated on the
fly, the server generally provides the document in pieces instructing the client
to cache only those parts that are not likely to change when the document is
requested a next time.

In addition to caching at browsers and proxies, ISPs generally also place
caches in their networks. Such schemes are mainly used to reduce network
traffic (which is good for the ISP) and to improve performance (which is
good for end users). However, with multiple caches along the request path
from client to server, there is a risk of increased latencies when caches do not
contain the requested information.

Note 7.11 (Advanced: Cooperative caching)
As an alternative to building hierarchical caches, one can also organize caches
for cooperative deployment as shown in Figure 7.32. In cooperative caching or
distributed caching, whenever a cache miss occurs at a Web proxy, the proxy
first checks a number of neighboring proxies to see if one of them contains the
requested document. If such a check fails, the proxy forwards the request to the
Web server responsible for the document. In more traditional settings, this scheme
is primarily deployed with Web caches belonging to the same organization or
institution.

Figure 7.32: The principle of cooperative caching.

A study by Wolman et al. [1999] shows that cooperative caching may be effec-
tive for only relatively small groups of clients (in the order of tens of thousands
of users). However, such groups can also be serviced by using a single proxy
cache, which is much cheaper in terms of communication and resource usage.
However, in a study from a decade later, Wendell and Freedman [2011] show
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that in a highly decentralized system, cooperative caching actually turned out be
highly effective. These studies do not necessarily contradict each other: in both
cases, the conclusion is that the effect of cooperative caching depends highly on
the demands from clients.

A comparison between hierarchical and cooperative caching by Rodriguez
et al. [2001] makes clear that there are various trade-offs to make. For example,
because cooperative caches are generally connected through high-speed links,
the transmission time needed to fetch a document is much lower than for a
hierarchical cache. Also, as is to be expected, storage requirements are less strict
for cooperative caches than hierarchical ones.

Different cache-consistency protocols have been deployed in the Web.
To guarantee that a document returned from the cache is consistent, some
Web proxies first send a conditional HTTP get request to the server with an
additional If-Modified-Since request header, specifying the last modification
time associated with the cached document. Only if the document has been
changed since that time, will the server return the entire document. Otherwise,
the Web proxy can simply return its cached version to the requesting local
client, which corresponds to a pull-based protocol.

Unfortunately, this strategy requires that the proxy contacts a server for
each request. To improve performance at the cost of weaker consistency,
the widely-used Squid Web proxy [Wessels, 2004] assigns an expiration time
Texpire that depends on how long ago the document was last modified when
it is cached. In particular, if Tlast_modified is the last modification time of a
document (as recorded by its owner), and Tcached is the time it was cached,
then

Texpire = α(Tcached − Tlast_modified) + Tcached

with α = 0.2 (this value has been derived from practical experience). Until
Texpire, the document is considered valid and the proxy will not contact the
server. After the expiration time, the proxy requests the server to send a fresh
copy, unless it had not been modified. We note that Squid also allows the
expiration time to be bounded by a minimum and a maximum time.

As an alternative to a pull-based protocol is that the server notifies proxies
that a document has been modified by sending an invalidation. The problem
with this approach for Web proxies is that the server may need to keep track
of a large number of proxies, inevitably leading to a scalability problem.
However, by combining leases and invalidations, the state to be maintained
at the server can be kept within acceptable bounds. Note that this state is
largely dictated by the expiration times set for leases: the lower, the less
caches a server needs to keep track of. Nevertheless, invalidation protocols
for Web proxy caches are hardly ever applied. A comparison of Web caching
consistency policies can be found in [Cao and Ozsu, 2002]. Their conclusion
is that letting the server send invalidations can outperform any other method
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in terms of bandwidth and perceived client latency, while maintaining cached
documents consistent with those at the origin server.

Finally, we should also mention that much research has been conducted to
find out what the best cache replacement strategies are. Numerous proposals
exist, but by-and-large, simple replacement strategies such as evicting the
least recently used object work well enough. An in-depth survey of replace-
ment strategies is presented by Podling and Boszormenyi [2003]; Ali et al.
[2011] provide a more recent overview which also includes Web prefetching
techniques.

As the importance of the Web continues to increase as a vehicle for organi-
zations to present themselves and to directly interact with end users, we see
a shift between maintaining the content of a Web site and making sure that
the site is easily and continuously accessible. This distinction has paved the
way for content delivery networks (CDN). The main idea underlying these
CDNs is that they act as a Web hosting service, providing an infrastructure
for distributing and replicating the Web documents of multiple sites across
the Internet. The size of the infrastructure can be impressive. For example,
as of 2016, Akamai is reported to have over 200,000 servers spread across 120
countries.

The sheer size of a CDN requires that hosted documents are automatically
distributed and replicated. In most cases, a large-scale CDN is organized
along the lines of a feedback-control loop, as shown in Figure 7.33 and which
is described extensively in [Sivasubramanian et al., 2004b].

Figure 7.33: The general organization of a CDN as a feedback-control system.

There are essentially three different kinds of aspects related to replication
in Web hosting systems: metric estimation, adaptation triggering, and taking
appropriate measures. The latter can be subdivided into replica placement de-
cisions, consistency enforcement, and client-request routing. In the following,
we briefly pay attention to each these.
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An interesting aspect of CDNs is that they need to make a trade-off between
many aspects when it comes to hosting replicated content. For example, access
times for a document may be optimal if a document is massively replicated,
but at the same time this incurs a financial cost, as well as a cost in terms of
bandwidth usage for disseminating updates. By and large, there are many
proposals for estimating how well a CDN is performing. These proposals can
be grouped into several classes.

First, there are latency metrics, by which the time is measured for an action,
for example, fetching a document, to take place. Trivial as this may seem,
estimating latencies becomes difficult when, for example, a process deciding
on the placement of replicas needs to know the delay between a client and
some remote server. Typically, an algorithm globally positioning nodes as
discussed in Chapter 6 will need to be deployed.

Instead of estimating latency, it may be more important to measure the
available bandwidth between two nodes. This information is particularly
important when large documents need to be transferred, as in that case the
responsiveness of the system is largely dictated by the time that a document
can be transferred. There are various tools for measuring available bandwidth,
but in all cases it turns out that accurate measurements can be difficult to
attain (see also Strauss et al. [2003], Shriram and Kaur [2007], Chaudhari and
Biradar [2015], and Atxutegi et al. [2016]).

Another class consists of spatial metrics which mainly consist of measuring
the distance between nodes in terms of the number of network-level routing
hops, or hops between autonomous systems. Again, determining the number
of hops between two arbitrary nodes can be very difficult, and may also not
even correlate with latency [Huffaker et al., 2002]. Moreover, simply looking
at routing tables is not going to work when low-level techniques such as
multi-protocol label switching (MPLS) are deployed. MPLS circumvents
network-level routing by using virtual-circuit techniques to immediately and
efficiently forward packets to their destination (see also Guichard et al. [2005]).
Packets may thus follow completely different routes than advertised in the
tables of network-level routers.

A third class is formed by network usage metrics which most often entails
consumed bandwidth. Computing consumed bandwidth in terms of the
number of bytes to transfer is generally easy. However, to do this correctly,
we need to take into account how often the document is read, how often it is
updated, and how often it is replicated.

Consistency metrics tell us to what extent a replica is deviating from its mas-
ter copy. We already discussed extensively how consistency can be measured
in the context of continuous consistency [Yu and Vahdat, 2002].

Finally, financial metrics form another class for measuring how well a CDN
is doing. Although not technical at all, considering that most CDN operate
on a commercial basis, it is clear that in many cases financial metrics will be
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decisive. Moreover, the financial metrics are closely related to the actual infra-
structure of the Internet. For example, most commercial CDNs place servers
at the edge of the Internet, meaning that they hire capacity from ISPs directly
servicing end users. At this point, business models become intertwined with
technological issues, an area that is not at all well understood. There is only
few material available on the relation between financial performance and
technological issues [Janiga et al., 2001].

From these examples it should become clear that simply measuring the
performance of a CDN, or even estimating its performance may by itself be
an extremely complex task. In practice, for commercial CDNs the issue that
really counts is whether they can meet the service-level agreements that have
been made with customers. These agreements are often formulated simply in
terms of how quickly customers are to be serviced. It is then up to the CDN
to make sure that these agreements are met.

Another question that needs to be addressed is when and how adaptations
are to be triggered. A simple model is to periodically estimate metrics and
subsequently take measures as needed. This approach is often seen in practice.
Special processes located at the servers collect information and periodically
check for changes.

Note 7.12 (Advanced: Flash crowds)
A major drawback of periodic evaluation is that sudden changes may be missed.
One type of sudden change that has received considerable attention is that of
flash crowds. A flash crowd is a legitimate sudden burst in requests for a specific
Web document. In many cases, these type of bursts can bring down an entire
service, in turn causing a cascade of service outages.

Handling flash crowds can be difficult. One solution is to massively replicate a
Web site and as soon as request rates start to rapidly increase, requests should be
redirected to the replicas to offload the master copy. This type of overprovisioning
is obviously not the way to go. Instead, what is needed is to dynamically create
replicas when demand goes up, and start redirecting requests when the going
gets tough. With cloud computing now properly in place, combined with the fact
that cloning virtual machines is relatively simple, reacting to sudden changes in
request demands is practically feasible. Also, as we shall discuss below, using
techniques for content delivery networks have proven to work well.

However, even better than reacting would be to predict flash crowds, yet this
is actually very difficult if not practically impossible. Figure 7.34 shows access
traces for three different Web sites that suffered from a flash crowd.

As a point of reference, Figure 7.34(a) shows regular access traces spanning
two days. There are also some very strong peaks, but otherwise there is nothing
shocking going on. In contrast, Figure 7.34(b) shows a two-day trace with four
sudden flash crowds. There is still some regularity, which may be discovered after
a while so that measures can be taken. However, the damage may be been done
before reaching that point.
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Figure 7.34: One normal and three different access patterns reflecting
flash-crowd behavior. Adapted from Baryshnikov et al. [2005].

Figure 7.34(c) shows a trace spanning six days with at least two flash crowds.
In this case, any predictor is going to have a serious problem, as it turns out that
both increases in request rate are almost instantaneously. Finally, Figure 7.34(d)
shows a situation in which the first peak should probably cause no adaptations,
but the second obviously should. This situation turns out to be the type of
behavior that can be dealt with quite well through runtime analysis.

As mentioned, there are essentially only three (related) measures that
can be taken to change the behavior of a Web hosting service: changing the
placement of replicas, changing consistency enforcement, and deciding on
how and when to redirect client requests. We already discussed the first two
measures extensively. Client-request redirection deserves some more attention.
Before we discuss some of the trade-offs, let us first consider how consistency
and replication are dealt with in a practical setting by considering the Akamai
situation [Dilley et al., 2002; Nygren et al., 2010].

The basic idea is that each Web document consists of a main HTML (or
XML) page in which several other documents such as images, video, and
audio have been embedded. To display the entire document, it is necessary
that the embedded documents are fetched by the user’s browser as well.
The assumption is that these embedded documents rarely change, for which
reason it makes sense to cache or replicate them.

Each embedded document is normally referenced through a URL. However,
in Akamai’s CDN, such a URL is modified such that it refers to a virtual
ghost, which is a reference to an actual server in the CDN. The URL also
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contains the host name of the origin server for reasons we explain next. The
modified URL is resolved as follows, as is also shown in Figure 7.35.

Figure 7.35: The principal working of the Akamai CDN.

The name of the virtual ghost includes a DNS name such as ghosting.com,
which is resolved by the regular DNS naming system to a CDN DNS server
(the result of step 3). Each such DNS server keeps track of servers close
to the client. To this end, any of the proximity metrics we have discussed
previously could be used. In effect, the CDN DNS servers redirect the client
to a replica server best for that client (step 4), which could mean the closest
one, the least-loaded one, or a combination of several such metrics (the actual
redirection policy is proprietary).

Finally, the client forwards the request for the embedded document to
the selected CDN server. If this server does not yet have the document, it
fetches it from the original Web server (shown as step 6), caches it locally,
and subsequently passes it to the client. If the document was already in the
CDN server’s cache, it can be returned forthwith. Note that in order to fetch
the embedded document, the replica server must be able to send a request
to the origin server, for which reason its host name is also contained in the
embedded document’s URL.

An interesting aspect of this scheme is the simplicity by which consistency
of documents can be enforced. Clearly, whenever a main document is changed,
a client will always be able to fetch it from the origin server. In the case of
embedded documents, a different approach needs to be followed as these
documents are, in principle, fetched from a nearby replica server. To this end,
a URL for an embedded document not only refers to a special host name that
eventually leads to a CDN DNS server, but also contains a unique identifier
that is changed every time the embedded document changes. In effect, this
identifier changes the name of the embedded document. As a consequence,

DS 3.02 downloaded by OLEXANDER.PERIG@GMAIL.COM



7.6. EXAMPLE: CACHING AND REPLICATION IN THE WEB 417

when the client is redirected to a specific CDN server, that server will not find
the named document in its cache and will thus fetch it from the origin server.
The old document will eventually be evicted from the server’s cache as it is
no longer referenced.

This example already shows the importance of client-request redirection.
In principle, by properly redirecting clients, a CDN can stay in control when
it comes to client-perceived performance, but also taking into account global
system performance by, for example, avoiding that requests are sent to heavily
loaded servers. These so-called adaptive redirection policies can be applied
when information on the system’s current behavior is provided to the pro-
cesses that take redirection decisions. This brings us partly back to the metric
estimation techniques discussed previously.

Besides the different policies, an important issue is whether request redi-
rection is transparent to the client or not. In essence, there are only three
redirection techniques: TCP handoff, DNS redirection, and HTTP redirection.
We already discussed TCP handoff. This technique is applicable only for
server clusters and does not scale to wide-area networks.

DNS redirection is a transparent mechanism by which the client can be
kept completely unaware of where documents are located. Akamai’s two-level
redirection is one example of this technique. We can also directly deploy DNS
to return one of several addresses as we discussed before. Note, however, that
DNS redirection can be applied only to an entire site: the name of individual
documents does not fit into the DNS name space.

HTTP redirection, finally, is a nontransparent mechanism. When a client
requests a specific document, it may be given an alternative URL as part
of an HTTP response message to which it is then redirected. An important
observation is that this URL is visible to the client’s browser. In fact, the
user may decide to bookmark the referral URL, potentially rendering the
redirection policy useless.

Up to this point we have mainly concentrated on caching and replicating
static Web content. In practice, we see that the Web is increasingly offering
more dynamically generated content, but that it is also expanding toward
offering services that can be called by remote applications. Also in these situa-
tions we see that caching and replication can help considerably in improving
the overall performance, although the methods to reach such improvements
are more subtle than what we discussed so far (see also Conti et al. [2005]).

When considering improving performance of Web applications through
caching and replication, matters are complicated by the fact that several so-
lutions can be deployed, with no single one standing out as the best. Let us
consider the edge-server situation as sketched in Figure 7.36 (see also Sivasub-
ramanian et al. [2007]). In this case, we assume a CDN in which each hosted
site has an origin server that acts as the authoritative site for all read and
update operations. An edge server is used to handle client requests, and has
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Figure 7.36: Alternatives for caching and replication with Web applications.

the ability to store (partial) information as also kept at an origin server.
Recall that in an edge-server architecture, Web clients request data through

an edge server, which, in turn, gets its information from the origin server
associated with the specific Web site referred to by the client. As also shown in
Figure 7.36 we assume that the origin server consists of a database from which
responses are dynamically created. Although we have shown only a single
Web server, it is common to organize each server according to a multitiered
architecture as we discussed before. An edge server can now be roughly
organized along the following lines.

First, to improve performance, we can decide to apply full replication of
the data stored at the origin server. This scheme works well whenever the
update ratio is low and when queries require an extensive database search.
As mentioned above, we assume that all updates are carried out at the origin
server, which takes responsibility for keeping the replicas and the edge servers
in a consistent state. Read operations can thus take place at the edge servers.
Here we see that replicating for performance will fail when the update ratio
is high, as each update will incur communication over a wide-area network
to bring the replicas into a consistent state. As shown by Sivasubramanian
et al. [2004a], the read/update ratio is the determining factor to what extent
the origin database in a wide-area setting should be replicated.

Another case for full replication is when queries are generally complex. In
the case of a relational database, this means that a query requires that multiple
tables need to be searched and processed, as is generally the case with a join
operation. Opposed to complex queries are simple ones that generally require
access to only a single table in order to produce a response. In the latter case,
partial replication by which only a subset of the data is stored at the edge
server may suffice.
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An alternative to partial replication is to make use of content-aware caches.
The basic idea in this case is that an edge server maintains a local database
that is now tailored to the type of queries that can be handled at the origin
server. To explain, in a full-fledged database system a query will operate
on a database in which the data has been organized into tables such that,
for example, redundancy is minimized. Such databases are also said to be
normalized.

In such databases, any query that adheres to the data schema can, in
principle, be processed, although perhaps at considerable costs. With content-
aware caches, an edge server maintains a database that is organized according
to the structure of queries. What this means is that queries are assumed to
adhere to a limited number of templates, effectively meaning that the different
kinds of queries that can be processed is restricted. In these cases, whenever
a query is received, the edge server matches the query against the available
templates, and subsequently looks in its local database to compose a response,
if possible. If the requested data is not available, the query is forwarded to
the origin server after which the response is cached before returning it to the
client.

In effect, what the edge server is doing is checking whether a query can be
answered with the data that is stored locally. This is also referred to as a query
containment check. Note that such data was stored locally as responses to
previously issued queries. This approach works best when queries tend to be
repeated.

Part of the complexity of content-aware caching comes from the fact
that the data at the edge server needs to be kept consistent. To this end,
the origin server needs to know which records are associated with which
templates, so that any update of a record, or any update of a table, can be
properly addressed by, for example, sending an invalidation message to the
appropriate edge servers. Another source of complexity comes from the fact
that queries still need to be processed at edge servers. In other words, there is
nonnegligible computational power needed to handle queries. Considering
that databases often form a performance bottleneck in Web servers, alternative
solutions may be needed. Finally, caching results from queries that span
multiple tables (i.e., when queries are complex) such that a query containment
check can be carried out effectively is not trivial. The reason is that the
organization of the results may be very different from the organization of the
tables on which the query operated.

These observations lead us to a third solution, namely content-blind
caching. The idea of content-blind caching is extremely simple: when a client
submits a query to an edge server, the server first computes a unique hash
value for that query. Using this hash value, it subsequently looks in its cache
whether it has processed this query before. If not, the query is forwarded
to the origin and the result is cached before returning it to the client. If the
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query had been processed before, the previously cached result is returned to
the client.

The main advantage of this scheme is the reduced computational effort
that is required from an edge server in comparison to the database approaches
described above. However, content-blind caching can be wasteful in terms of
storage as the caches may contain much more redundant data in comparison
to content-aware caching or database replication. Note that such redundancy
also complicates the process of keeping the cache up to date as the origin
server may need to keep an accurate account of which updates can potentially
affect cached query results. These problems can be alleviated when assuming
that queries can match only a limited set of predefined templates as we
discussed above.

7.7 Summary

There are primarily two reasons for replicating data: improving the reliability
of a distributed system and improving performance. Replication introduces
a consistency problem: whenever a replica is updated, that replica becomes
different from the others. To keep replicas consistent, we need to propagate
updates in such a way that temporary inconsistencies are not noticed. Unfor-
tunately, doing so may severely degrade performance, especially in large-scale
distributed systems.

The only solution to this problem is to relax consistency somewhat. Dif-
ferent consistency models exist. For continuous consistency, the goal is to
set bounds to numerical deviation between replicas, staleness deviation, and
deviations in the ordering of operations.

Numerical deviation refers to the value by which replicas may be different.
This type of deviation is highly application dependent, but can, for example,
be used in replication of stocks. Staleness deviation refers to the time by
which a replica is still considered to be consistent, despite that updates may
have taken place some time ago. Staleness deviation is often used for Web
caches. Finally, ordering deviation refers to the maximum number of tentative
writes that may be outstanding at any server without having synchronized
with the other replica servers.

Consistent ordering of operations has since long formed the basis for
many consistency models. Many variations exist, but only a few seem to
prevail among application developers. Sequential consistency essentially
provides the semantics that programmers expect in concurrent programming:
all write operations are seen by everyone in the same order. Less used,
but still relevant, is causal consistency, which reflects that operations that
are potentially dependent on each other are carried out in the order of that
dependency.
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Weaker consistency models consider series of read and write operations.
In particular, they assume that each series is appropriately “bracketed” by ac-
companying operations on synchronization variables, such as locks. Although
this requires explicit effort from programmers, these models are generally
easier to implement in an efficient way than, for example, pure sequential
consistency.

As opposed to these data-centric models, researchers in the field of dis-
tributed databases for mobile users have defined a number of client-centric
consistency models. Such models do not consider the fact that data may be
shared by several users, but instead, concentrate on the consistency that an
individual client should be offered. The underlying assumption is that a client
connects to different replicas in the course of time, but that such differences
should be made transparent. In essence, client-centric consistency models
ensure that whenever a client connects to a new replica, that replica is brought
up to date with the data that had been manipulated by that client before, and
which may possibly reside at other replica sites.

To propagate updates, different techniques can be applied. A distinction
needs to be made concerning what is exactly propagated, to where updates are
propagated, and by whom propagation is initiated. We can decide to propagate
notifications, operations, or state. Likewise, not every replica always needs to
be updated immediately. Which replica is updated at which time depends
on the distribution protocol. Finally, a choice can be made whether updates
are pushed to other replicas, or that a replica pulls in updates from another
replica.

Consistency protocols describe specific implementations of consistency
models. With respect to sequential consistency and its variants, a distinction
can be made between primary-based protocols and replicated-write protocols.
In primary-based protocols, all update operations are forwarded to a primary
copy that subsequently ensures the update is properly ordered and forwarded.
In replicated-write protocols, an update is forwarded to several replicas at the
same time. In that case, correctly ordering operations often becomes more
difficult.

We pay separate attention to caching and replication in the Web and,
related, content delivery networks. As it turns out, using existing servers and
services, much of the techniques discussed before can be readily implemented
using appropriate redirection techniques. Particularly challenging is caching
content when databases are involved, as in those cases, much of what a
Web server returns is dynamically generated. However, even in those cases,
by carefully administrating what has already been cached at the edge, it is
possible to invent highly efficient and effective caching schemes.
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Chapter 8

Fault tolerance

A characteristic feature of distributed systems that distinguishes them from
single-machine systems is the notion of partial failure: part of the system is
failing while the remaining part continues to operate, and seemingly correctly.
An important goal in distributed-systems design is to construct the system
in such a way that it can automatically recover from partial failures without
seriously affecting the overall performance. In particular, whenever a failure
occurs, the system should continue to operate in an acceptable way while
repairs are being made. In other words, a distributed system is expected to be
fault tolerant.

In this chapter, we take a closer look at techniques to achieve fault toler-
ance. After providing some general background, we will first look at process
resilience through process groups. In this case, multiple identical processes
cooperate providing the appearance of a single logical process to ensure that
one or more of them can fail without a client noticing. A specifically difficult
point in process groups is reaching consensus among the group members
on which a client-requested operation is to perform. By now, Paxos is a
commonly adopted, yet relatively intricate algorithm, which we explain by
building it from the ground up. Likewise, we carefully examine the cases in
which consensus can be reached, and under which circumstances.

Achieving fault tolerance and reliable communication are strongly related.
Next to reliable client-server communication we pay attention to reliable
group communication and notably atomic multicasting. In the latter case, a
message is delivered to all nonfaulty processes in a group, or to none at all.
Having atomic multicasting makes development of fault-tolerant solutions
much easier.

Atomicity is a property that is important in many applications. In this
chapter, we pay attention to what are known as distributed commit protocols
by which a group of processes are conducted to either jointly commit their
local work, or collectively abort and return to a previous system state.
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Finally, we will examine how to recover from a failure. In particular, we
consider when and how the state of a distributed system should be saved to
allow recovery to that state later on.

8.1 Introduction to fault tolerance

Fault tolerance has been subject to much research in computer science. In
this section, we start with presenting the basic concepts related to processing
failures, followed by a discussion of failure models. The key technique for
handling failures is redundancy, which is also discussed. For more general
information on fault tolerance in distributed systems, see, for example [Jalote,
1994; Shooman, 2002] or [Koren and Krishna, 2007].

Basic concepts

To understand the role of fault tolerance in distributed systems we first need to
take a closer look at what it actually means for a distributed system to tolerate
faults. Being fault tolerant is strongly related to what are called dependable
systems. Dependability is a term that covers a number of useful requirements
for distributed systems including the following [Kopetz and Verissimo, 1993]:

• Availability
• Reliability
• Safety
• Maintainability

Availability is defined as the property that a system is ready to be used
immediately. In general, it refers to the probability that the system is operating
correctly at any given moment and is available to perform its functions on
behalf of its users. In other words, a highly available system is one that will
most likely be working at a given instant in time.

Reliability refers to the property that a system can run continuously
without failure. In contrast to availability, reliability is defined in terms of a
time interval instead of an instant in time. A highly reliable system is one
that will most likely continue to work without interruption during a relatively
long period of time. This is a subtle but important difference when compared
to availability. If a system goes down on average for one, seemingly random
millisecond every hour, it has an availability of more than 99.9999 percent,
but is still unreliable. Similarly, a system that never crashes but is shut down
for two specific weeks every August has high reliability but only 96 percent
availability. The two are not the same.

Safety refers to the situation that when a system temporarily fails to
operate correctly, no catastrophic event happens. For example, many process-
control systems, such as those used for controlling nuclear power plants or
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sending people into space, are required to provide a high degree of safety. If
such control systems temporarily fail for only a very brief moment, the effects
could be disastrous. Many examples from the past (and probably many more
yet to come) show how hard it is to build safe systems.

Finally, maintainability refers to how easily a failed system can be re-
paired. A highly maintainable system may also show a high degree of
availability, especially if failures can be detected and repaired automatically.
However, as we shall see later in this chapter, automatically recovering from
failures is easier said than done.

Note 8.1 (More information: Traditional metrics)
We can be a bit more precise when it comes to describing availability and reliability.
Formally, the availability A(t) of a component in the time interval [0, t) is defined
as the average fraction of time that the component has been functioning correctly
during that interval. The long-term availability A of a component is defined as
A(∞).

Likewise, the reliability R(t) of a component in the time interval [0, t) is
formally defined as the conditional probability that it has been functioning cor-
rectly during that interval given that it was functioning correctly at time T = 0.
Following Pradhan [1996], to establish R(t) we consider a system of N identical
components. Let N0(t) denote the number of correctly operating components at
time t and N1(t) the number of failed components. Then, clearly,

R(t) =
N0(t)

N
= 1− N1(t)

N
=

N0(t)
N0(t) + N1(t)

The rate at which components are failing can be expressed as the derivative
dN1(t)/dt. Dividing this by the number of correctly operating components at
time t gives us the failure rate function z(t):

z(t) =
1

N0(t)
dN1(t)

dt

From
dR(t)

dt
= − 1

N
dN1(t)

dt
it follows that

z(t) =
1

N0(t)
dN1(t)

dt
= − N

N0(t)
dR(t)

dt
= − 1

R(t)
dR(t)

dt

If we make the simplifying assumption that a component does not age (and thus
essentially has no wear-out phase), its failure rate will be constant, i.e., z(t) = z,
implying that

dR(t)
dt

= −zR(t)

Because R(0) = 1, we obtain
R(t) = e−zt
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In other words, if we ignore aging of a component, we see that a constant failure
rate leads to a reliability following an exponential distribution, having the form
shown in Figure 8.1.

Figure 8.1: The reliability of a component having a constant failure rate.

Traditionally, fault-tolerance has been related to the following three metrics:

• Mean Time To Failure (MTTF): The average time until a component fails.
• Mean Time To Repair (MTTR): The average time needed to repair a com-

ponent.
• Mean Time Between Failures (MTBF): Simply MTTF + MTTR.

Note that
A =

MTTF
MTBF

=
MTTF

MTTF + MTTR
Also, these metrics make sense only if we have an accurate notion of what a failure
actually is. As we will encounter later, identifying the occurrence of a failure may
actually not be so obvious.

Often, dependable systems are also required to provide a high degree of
security, especially when it comes to issues such as integrity. We will discuss
security in the next chapter.

A system is said to fail when it cannot meet its promises. In particular,
if a distributed system is designed to provide its users with a number of
services, the system has failed when one or more of those services cannot be
(completely) provided. An error is a part of a system’s state that may lead
to a failure. For example, when transmitting packets across a network, it is
to be expected that some packets have been damaged when they arrive at
the receiver. Damaged in this context means that the receiver may incorrectly
sense a bit value (e.g., reading a 1 instead of a 0), or may even be unable to
detect that something has arrived.

The cause of an error is called a fault. Clearly, finding out what caused an
error is important. For example, a wrong or bad transmission medium may
easily cause packets to be damaged. In this case, it is relatively easy to remove
the fault. However, transmission errors may also be caused by bad weather
conditions such as in wireless networks. Changing the weather to reduce or
prevent errors is a bit trickier.

As another example, a crashed program is clearly a failure, which may
have happened because the program entered a branch of code containing
a programming bug (i.e., a programming error). The cause of that bug is
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typically a programmer. In other words, the programmer is the fault of the
error (programming bug), in turn leading to a failure (a crashed program).

Building dependable systems closely relates to controlling faults. As
explained by Avizienis et al. [2004], a distinction can be made between pre-
venting, tolerating, removing, and forecasting faults. For our purposes, the
most important issue is fault tolerance, meaning that a system can provide
its services even in the presence of faults. For example, by applying error-
correcting codes for transmitting packets, it is possible to tolerate, to a certain
extent, relatively poor transmission lines and reducing the probability that an
error (a damaged packet) may lead to a failure.

Faults are generally classified as transient, intermittent, or permanent.
Transient faults occur once and then disappear. If the operation is repeated,
the fault goes away. A bird flying through the beam of a microwave transmitter
may cause lost bits on some network (not to mention a roasted bird). If the
transmission times out and is retried, it will probably work the second time.

An intermittent fault occurs, then vanishes of its own accord, then reap-
pears, and so on. A loose contact on a connector will often cause an inter-
mittent fault. Intermittent faults cause a great deal of aggravation because
they are difficult to diagnose. Typically, when the fault doctor shows up, the
system works fine.

A permanent fault is one that continues to exist until the faulty compo-
nent is replaced. Burnt-out chips, software bugs, and disk-head crashes are
examples of permanent faults.

Failure models

A system that fails is not adequately providing the services it was designed for.
If we consider a distributed system as a collection of servers that communicate
with one another and with their clients, not adequately providing services
means that servers, communication channels, or possibly both, are not doing
what they are supposed to do. However, a malfunctioning server itself may
not always be the fault we are looking for. If such a server depends on other
servers to adequately provide its services, the cause of an error may need to
be searched for somewhere else.

Such dependency relations appear in abundance in distributed systems. A
failing disk may make life difficult for a file server that is designed to provide
a highly available file system. If such a file server is part of a distributed
database, the proper working of the entire database may be at stake, as only
part of its data may be accessible.

To get a better grasp on how serious a failure actually is, several classifica-
tion schemes have been developed. One such scheme is shown in Figure 8.2,
and is based on schemes described by Cristian [1991] and Hadzilacos and
Toueg [1993].
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Type of failure Description of server’s behavior
Crash failure Halts, but is working correctly until it halts
Omission failure Fails to respond to incoming requests

Receive omission Fails to receive incoming messages
Send omission Fails to send messages

Timing failure Response lies outside a specified time interval
Response failure Response is incorrect

Value failure The value of the response is wrong
State-transition failure Deviates from the correct flow of control

Arbitrary failure May produce arbitrary responses at arbitrary times

Figure 8.2: Different types of failures.

A crash failure occurs when a server prematurely halts, but was working
correctly until it stopped. An important aspect of crash failures is that once
the server has halted, nothing is heard from it anymore. A typical example of
a crash failure is an operating system that comes to a grinding halt, and for
which there is only one solution: reboot it. Many personal computer systems
suffer from crash failures so often that people have come to expect them to be
normal. Consequently, moving the reset button from the back of a cabinet to
the front was done for good reason. Perhaps one day it can be moved to the
back again, or even removed altogether.

An omission failure occurs when a server fails to respond to a request.
Several things might go wrong. In the case of a receive-omission failure,
possibly the server never got the request in the first place. Note that it may
well be the case that the connection between a client and a server has been
correctly established, but that there was no thread listening to incoming
requests. Also, a receive-omission failure will generally not affect the current
state of the server, as the server is unaware of any message sent to it.

Likewise, a send-omission failure happens when the server has done its
work, but somehow fails in sending a response. Such a failure may happen,
for example, when a send buffer overflows while the server was not prepared
for such a situation. Note that, in contrast to a receive-omission failure, the
server may now be in a state reflecting that it has just completed a service for
the client. As a consequence, if the sending of its response fails, the server has
to be prepared for the client to reissue its previous request.

Other types of omission failures not related to communication may be
caused by software errors such as infinite loops or improper memory manage-
ment by which the server is said to “hang.”

Another class of failures is related to timing. Timing failures occur when
the response lies outside a specified real-time interval. For example, in the
case of streaming video’s, providing data too soon may easily cause trouble
for a recipient if there is not enough buffer space to hold all the incoming
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data. More common, however, is that a server responds too late, in which case
a performance failure is said to occur.

A serious type of failure is a response failure, by which the server’s
response is simply incorrect. Two kinds of response failures may happen.
In the case of a value failure, a server simply provides the wrong reply to a
request. For example, a search engine that systematically returns Web pages
not related to any of the search terms used, has failed.

The other type of response failure is known as a state-transition failure.
This kind of failure happens when the server reacts unexpectedly to an
incoming request. For example, if a server receives a message it cannot
recognize, a state-transition failure happens if no measures have been taken
to handle such messages. In particular, a faulty server may incorrectly take
default actions it should never have initiated.

The most serious are arbitrary failures, also known as Byzantine failures.
In effect, when arbitrary failures occur, clients should be prepared for the
worst. In particular, it may happen that a server is producing output it
should never have produced, but which cannot be detected as being incorrect.
Byzantine failures were first analyzed by Pease et al. [1980] and Lamport et al.
[1982]. We return to such failures below.

Note 8.2 (More information: Omission and commission failures)
It has become somewhat of a habit to associate the occurrence of Byzantine
failures with maliciously operating processes. The term “Byzantine” refers to the
Byzantine Empire, a time (330–1453) and place (the Balkans and modern Turkey)
in which endless conspiracies, intrigue, and untruthfulness were alleged to be
common in ruling circles.

However, it may not be possible to detect whether an act was actually benign or
malicious. Is a networked computer running a poorly engineered operating system
that adversely affects the performance of other computers acting maliciously? In
this sense, it is better to make the following distinction, which effectively excludes
judgement:

• An omission failure occurs when a component fails to take an action that
it should have taken.

• A commission failure occurs when a component takes an action that it
should not have taken.

This difference, introduced by Mohan et al. [1983], also illustrates that a separation
between dependability and security may at times be pretty difficult to make.

Many of the aforementioned cases deal with the situation that a process
P no longer perceives any actions from another process Q. However, can P
conclude that Q has indeed come to a halt? To answer this question, we need
to make a distinction between two types of distributed systems:
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• In an asynchronous system, no assumptions about process execution
speeds or message delivery times are made. The consequence is that
when process P no longer perceives any actions from Q, it cannot
conclude that Q crashed. Instead, it may just be slow or its messages
may have been lost.

• In a synchronous system, process execution speeds and message-delivery
times are bounded. This also means that when Q shows no more activity
when it is expected to do so, process P can rightfully conclude that Q
has crashed.

Unfortunately, pure synchronous systems exist only in theory. On the other
hand, simply stating that every distributed system is asynchronous also does
not do just to what we see in practice and we would be overly pessimistic in
designing distributed systems under the assumption that they are necessarily
asynchronous. Instead, it is more realistic to assume that a distributed system
is partially synchronous: most of the time it behaves as a synchronous system,
yet there is no bound on the time that it behaves in an asynchronous fashion.
In other words, asynchronous behavior is an exception, meaning that we can
normally use timeouts to conclude that a process has indeed crashed, but that
occasionally such a conclusion is false. In practice, this means that we will
have to design fault-tolerant solutions that can withstand incorrectly detecting
that a process halted.

In this context, halting failures can be classified as follows, from the least
to the most severe (see also Cachin et al. [2011]). We let process P attempt to
detect that process Q has failed.

• Fail-stop failures refer to crash failures that can be reliably detected.
This may occur when assuming nonfaulty communication links and
when the failure-detecting process P can place a worst-case delay on
responses from Q.

• Fail-noisy failures are like fail-stop failures, except that P will only
eventually come to the correct conclusion that Q has crashed. This means
that there may be some a priori unknown time in which P’s detections
of the behavior of Q are unreliable.

• When dealing with fail-silent failures, we assume that communication
links are nonfaulty, but that process P cannot distinguish crash failures
from omission failures.

• Fail-safe failures cover the case of dealing with arbitrary failures by
process Q, yet these failures are benign: they cannot do any harm.

• Finally, when dealing with fail-arbitrary failures, Q may fail in any
possible way; failures may be unobservable in addition to being harmful
to the otherwise correct behavior of other processes.
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Clearly, having to deal with fail-arbitrary failures is the worst that can happen.
As we shall discuss shortly, we can design distributed systems in such a way
that they can even tolerate these types of failures.

Failure masking by redundancy

If a system is to be fault tolerant, the best it can do is to try to hide the
occurrence of failures from other processes. The key technique for masking
faults is to use redundancy. Three kinds are possible: information redundancy,
time redundancy, and physical redundancy (see also Johnson [1995]). With
information redundancy, extra bits are added to allow recovery from garbled
bits. For example, a Hamming code can be added to transmitted data to
recover from noise on the transmission line.

With time redundancy, an action is performed, and then, if need be, it is
performed again. Transactions use this approach. If a transaction aborts, it
can be redone with no harm. Another well-known example is retransmitting
a request to a server when lacking an expected response. Time redundancy is
especially helpful when the faults are transient or intermittent.

With physical redundancy, extra equipment or processes are added to
make it possible for the system as a whole to tolerate the loss or malfunction-
ing of some components. Physical redundancy can thus be done either in
hardware or in software. For example, extra processes can be added to the
system so that if a small number of them crash, the system can still function
correctly. In other words, by replicating processes, a high degree of fault
tolerance may be achieved. We return to this type of software redundancy
later in this chapter.

Note 8.3 (More information: Triple modular redundancy)
It is illustrative to see how redundancy has been applied in the design of electronic
devices. Consider, for example, the circuit of Figure 8.3(a). Here signals pass
through devices A, B, and C, in sequence. If one of them is faulty, the final result
will probably be incorrect.

In Figure 8.3(b), each device is replicated three times. Following each stage
in the circuit is a triplicated voter. Each voter is a circuit that has three inputs
and one output. If two or three of the inputs are the same, the output is equal to
that input. If all three inputs are different, the output is undefined. This kind of
design is known as Triple Modular Redundancy (TMR).

Suppose that element A2 fails. Each of the voters, V1, V2, and V3 gets two
good (identical) inputs and one rogue input, and each of them outputs the correct
value to the second stage. In essence, the effect of A2 failing is completely masked,
so that the inputs to B1, B2, and B3 are exactly the same as they would have been
had no fault occurred.
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(a)

(b)

Figure 8.3: Triple modular redundancy.

Now consider what happens if B3 and C1 are also faulty, in addition to A2.
These effects are also masked, so the three final outputs are still correct.

At first it may not be obvious why three voters are needed at each stage. After
all, one voter could also detect and pass though the majority view. However, a
voter is also a component and can also be faulty. Suppose, for example, that voter
V1 malfunctions. The input to B1 will then be wrong, but as long as everything
else works, B2 and B3 will produce the same output and V4, V5, and V6 will all
produce the correct result into stage three. A fault in V1 is effectively no different
than a fault in B1. In both cases B1 produces incorrect output, but in both cases it
is voted down later and the final result is still correct.

Although not all fault-tolerant distributed systems use TMR, the technique is
very general, and should give a clear feeling for what a fault-tolerant system is, as
opposed to a system whose individual components are highly reliable but whose
organization cannot tolerate faults (i.e., operate correctly even in the presence of
faulty components). Of course, TMR can be applied recursively, for example, to
make a chip highly reliable by using TMR inside it, unknown to the designers
who use the chip, possibly in their own circuit containing multiple copies of the
chips along with voters.

8.2 Process resilience

Now that the basic issues of fault tolerance have been discussed, let us
concentrate on how fault tolerance can actually be achieved in distributed
systems. The first topic we discuss is protection against process failures,
which is achieved by replicating processes into groups. In the following pages,
we consider the general design issues of process groups and discuss what
a fault-tolerant group actually is. Also, we look at how to reach consensus
within a process group when one or more of its members cannot be trusted to
give correct answers.
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Resilience by process groups

The key approach to tolerating a faulty process is to organize several identical
processes into a group. The key property that all groups have is that when a
message is sent to the group itself, all members of the group receive it. In this
way, if one process in a group fails, hopefully some other process can take
over for it [Guerraoui and Schiper, 1997].

Process groups may be dynamic. New groups can be created and old
groups can be destroyed. A process can join a group or leave one during
system operation. A process can be a member of several groups at the same
time. Consequently, mechanisms are needed for managing groups and group
membership.

The purpose of introducing groups is to allow a process to deal with
collections of other processes as a single abstraction. Thus a process P can
send a message to a group Q = {Q1, . . . , QN} of servers without having to
know who they are, how many there are, or where they are, which may
change from one call to the next. To P, the group Q appears to be a single,
logical process.

Group organization

An important distinction between different groups has to do with their internal
structure. In some groups, all processes are equal. There is no distinctive
leader and all decisions are made collectively. In other groups, some kind
of hierarchy exists. For example, one process is the coordinator and all the
others are workers. In this model, when a request for work is generated, either
by an external client or by one of the workers, it is sent to the coordinator.
The coordinator then decides which worker is best suited to carry it out, and
forwards it there. More complex hierarchies are also possible, of course. These
communication patterns are illustrated in Figure 8.4.

Each of these organizations has its own advantages and disadvantages.
The flat group is symmetrical and has no single point of failure. If one of
the processes crashes, the group simply becomes smaller, but can otherwise
continue. A disadvantage is that decision making is more complicated. For
example, to decide anything, a vote often has to be taken, incurring some
delay and overhead.

The hierarchical group has the opposite properties. Loss of the coordinator
brings the entire group to a grinding halt, but as long as it is running, it
can make decisions without bothering everyone else. In practice, when the
coordinator in a hierarchical group fails, its role will need to be taken over and
one of the workers is elected as new coordinator. We discussed leader-election
algorithms in Chapter 6.
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(a) (b)

Figure 8.4: Communication in a (a) flat group and in a (b) hierarchical group.

Membership management

When group communication is present, some method is needed for creating
and deleting groups, as well as for allowing processes to join and leave groups.
One possible approach is to have a group server to which all these requests
can be sent. The group server can then maintain a complete database of all the
groups and their exact membership. This method is straightforward, efficient,
and fairly easy to implement. Unfortunately, it shares a major disadvantage
with all centralized techniques: a single point of failure. If the group server
crashes, group management ceases to exist. Probably most or all groups will
have to be reconstructed from scratch, possibly terminating whatever work
was going on.

The opposite approach is to manage group membership in a distributed
way. For example, if (reliable) multicasting is available, an outsider can send a
message to all group members announcing its wish to join the group.

Ideally, to leave a group, a member just sends a goodbye message to
everyone. In the context of fault tolerance, assuming fail-stop failure semantics
is generally not appropriate. The trouble is, there is no polite announcement
that a process crashes as there is when a process leaves voluntarily. The other
members have to discover this experimentally by noticing that the crashed
member no longer responds to anything. Once it is certain that the crashed
member is really down (and not just slow), it can be removed from the group.

Another knotty issue is that leaving and joining have to be synchronous
with data messages being sent. In other words, starting at the instant that a
process has joined a group, it must receive all messages sent to that group.
Similarly, as soon as a process has left a group, it must not receive any more
messages from the group, and the other members must not receive any more
messages from it. One way of making sure that a join or leave is integrated
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into the message stream at the right place is to convert this operation into a
sequence of messages sent to the whole group.

One final issue relating to group membership is what to do if so many
processes go down that the group can no longer function at all. Some protocol
is needed to rebuild the group. Invariably, some process will have to take
the initiative to start the ball rolling, but what happens if two or three try
at the same time? The protocol must to be able to withstand this. Again,
coordination through, for example, a leader-election algorithm may be needed.

Failure masking and replication

Process groups are part of the solution for building fault-tolerant systems.
In particular, having a group of identical processes allows us to mask one
or more faulty processes in that group. In other words, we can replicate
processes and organize them into a group to replace a single (vulnerable)
process with a (fault tolerant) group. As discussed in the previous chapter,
there are two ways to approach such replication: by means of primary-based
protocols, or through replicated-write protocols.

Primary-based replication in the case of fault tolerance generally appears
in the form of a primary-backup protocol. In this case, a group of processes is
organized in a hierarchical fashion in which a primary coordinates all write
operations. In practice, the primary is fixed, although its role can be taken
over by one of the backups, if need be. In effect, when the primary crashes,
the backups execute some election algorithm to choose a new primary.

Replicated-write protocols are used in the form of active replication, as
well as by means of quorum-based protocols. These solutions correspond
to organizing a collection of identical processes into a flat group. The main
advantage is that such groups have no single point of failure at the cost of
distributed coordination.

An important issue with using process groups to tolerate faults is how
much replication is needed. To simplify our discussion, let us consider
only replicated-write systems. A system is said to be k-fault tolerant if it
can survive faults in k components and still meet its specifications. If the
components, say processes, fail silently, then having k + 1 of them is enough
to provide k-fault tolerance. If k of them simply stop, then the answer from
the other one can be used.

On the other hand, if processes exhibit arbitrary failures, continuing to
run when faulty and sending out erroneous or random replies, a minimum
of 2k + 1 processes are needed to achieve k-fault tolerance. In the worst case,
the k failing processes could accidentally (or even intentionally) generate the
same reply. However, the remaining k + 1 will also produce the same answer,
so the client or voter can just believe the majority.

Now suppose that in a k-fault tolerant group a single process fails. The
group as a whole is still living up to its specifications, namely that it can
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tolerate the failure of up to k of its members (of which one has just failed). But
what happens if more than k members fail? In that case all bets are off and
whatever the group does, its results, if any, cannot be trusted. Another way of
looking at this is that the process group, in its appearance of mimicking the
behavior of a single, robust process, has failed.

Consensus in faulty systems with crash failures

As mentioned, in terms of clients and servers, we have adopted a model in
which a potentially very large collection of clients now send commands to a
group of processes that jointly behave as a single, highly robust process. To make
this work, we need to make an important assumption:

In a fault-tolerant process group, each nonfaulty process executes the
same commands, in the same order, as every other nonfaulty process.

Formally, this means that the group members need to reach consensus on
which command to execute. If failures cannot happen, reaching consensus
is easy. For example, we can use Lamport’s totally ordered multicasting as
described in Section 6.2. Or, to keep it simple, using a centralized sequencer
that hands out a sequence number to each command that needs to be executed
will do the job as well. Unfortunately, life is not without failures, and reaching
consensus among a group of processes under more realistic assumptions turns
out to be tricky.

To illustrate the problem at hand, let us assume we have a group of
processes P = {P1, . . . , Pn} operating under fail-stop failure semantics. In
other words, we assume that crash failures can be reliably detected among
the group members. Typically a client contacts a group member requesting
it to execute a command. Every group member maintains a list of proposed
commands: some which it received directly from clients; others which it
received from its fellow group members. We can reach consensus using the
following approach, adopted from Cachin et al. [2011], and referred to as
flooding consensus.

Conceptually the algorithm operates in rounds. In each round, a process Pi

sends its list of proposed commands it has seen so far to every other process
in P. At the end of a round, each process merges all received proposed
commands into a new list, from which it then will deterministically select the
command to execute, if possible. It is important to realize that the selection
algorithm is the same for all processes. In other words, if all process have
exactly the same list, they will all select the same command to execute (and
remove that command from their list).

It is not difficult to see that this approach works as long as processes do
not fail. Problems start when a process Pi detects, during round r, that, say
process Pk has crashed. To make this concrete, assume we have a process
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group of four processes {P1, . . . , P4} and that P1 crashes during round r.
Also, assume that P2 receives the list of proposed commands from P1 before
it crashes, but that P3 and P4 do not (in other words, P1 crashes before it got
a chance to send its list to P3 and P4). This situation is sketched in Figure 8.5.

Figure 8.5: Reaching consensus through flooding in the presence of crash
failures. Adopted from Cachin et al. [2011].

Assuming that all processes knew who was group member at the beginning
of round r, P2 is ready to make a decision on which command to execute
when it receives the respective lists of the other members: it has all commands
proposed so far. Not so for P3 and P4. For example, P3 may detect that P1

crashed, but it does not know if either P2 or P4 had already received P1’s
list. From P3’s perspective, if there is another process that did receive P1’s
proposed commands, that process may then make a different decision than
itself. As a consequence, the best that P3 can do is postpone its decision
until the next round. The same holds for P4 in this example. A process will
decide to move to a next round when it has received a message from every
nonfaulty process. This assumes that each process can reliably detect the
crashing of another process, for otherwise it would not be able to decide who
the nonfaulty processes are.

Because process P2 received all commands, it can indeed make a decision
and can subsequently broadcast that decision to the others. Then, during the
next round r + 1, processes P3 and P4 will also be able to make a decision:
they will decide to execute the same command selected by P2.

To understand why this algorithm is correct, it is important to realize that
a process will move to a next round without having made a decision, only
when it detects that another process has failed. In the end, this means that in
the worst case at most one nonfaulty process remains, and this process can
simply decide whatever proposed command to execute. Again, note that we
are assuming reliable failure detection.

But then, what happens when the decision by process P2 that it sent to
P3 was lost? In that case, P3 can still not make a decision. Worse, we need
to make sure that it makes the same decision as P2 and P4. If P2 did not
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crash, we can assume that a retransmission of its decision will save the day.
If P2 did crash, this will be also detected by P4 who will then subsequently
rebroadcast its decision. In the meantime, P3 has moved to a next round,
and after receiving the decision by P4, will terminate its execution of the
algorithm.

Example: Paxos

The flooding-based consensus algorithm is not very realistic if only for the
fact that it relies on a fail-stop failure model. More realistic is to assume
a fail-noisy failure model in which a process will eventually reliably detect
that another process has crashed. In the following, we describe a simplified
version of a widely adopted consensus algorithm, known as Paxos. It was
originally published in 1989 as a technical report by Leslie Lamport, but
it took about a decade before someone decided that it may not be such a
bad idea to disseminate it through a regular scientific channel [Lamport,
1998]. The original publication is not easy to understand, exemplified by
other publications that aim at explaining it [Lampson, 1996; Prisco et al., 1997;
Lamport, 2001; van Renesse and Altinbuken, 2015].

Essential Paxos

The assumptions under which Paxos operates are rather weak:

• The distributed system is partially synchronous (in fact, it may even be
asynchronous).

• Communication between processes may be unreliable, meaning that
messages may be lost, duplicated, or reordered.

• Messages that are corrupted can be detected as such (and thus subse-
quently ignored).

• All operations are deterministic: once an execution is started, it is known
exactly what it will do.

• Processes may exhibit crash failures, but not arbitrary failures, nor do
processes collude.

By-and-large, these are realistic assumptions for many practical distributed
systems.

We roughly follow the explanation given by Lamport [2001] and Kirsch
and Amir [2008]. The algorithm operates as a network of logical processes, of
which there are different types. First, there are clients that request a specific
operation to be executed. At the server side, each client is represented by a
single proposer, which attempts to have a client’s request accepted. Normally,
a single proposer has been designated as being the leader, and drives the
protocol toward reaching consensus.
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What we need to establish is that a proposed operation is accepted by an
acceptor. If a majority of acceptors accepts the same proposal, the proposal
is said to be chosen. However, what is chosen still needs to be learned. To this
end, we will have a number of learner processes, each of which will execute a
chosen proposal once it has been informed by a majority of acceptors.

It is important to note that a single proposer, acceptor, and learner form a
single physical process, running on a single machine that the client commu-
nicates with, as shown in Figure 8.6. We thus assume that if, for example, a
proposer crashes, then the physical process that it is part of will have crashed.
By replicating this server we aim at obtaining fault tolerance in the presence
of crash failures.

Figure 8.6: The organization of Paxos into different logical processes.

The basic model is that the leading proposer receives requests from clients,
one at a time. A nonleading proposer forwards any client request to the leader.
The leading proposer sends its proposal to all acceptors, telling each to accept
the requested operation. Each acceptor will subsequently broadcast a learn
message. If a learner receives the same learn message from a majority of
acceptors, it knows that consensus has been reached on which operation to
execute, and will execute it.

There are at least two specific issues that need further attention. First, not
only do the servers need to reach consensus on which operation to execute,
we also need to make sure that each of them actually executes it. In other
words, how do we know for sure that a majority of the nonfaulty servers will
carry out the operation? There is essentially only one way out: have learn
messages be retransmitted. However, to make this work, an acceptor will have
to log its decisions (in turn requiring a mechanism for purging logs). Because
we are assuming globally ordered proposal timestamps (as explained shortly),
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missing messages can be easily detected, and also accepted operations will
always be executed in the same order by all learners.

As a general rule, the server hosting the leading proposer will also inform
the client when its requested operation has been executed. If another process
had taken over the lead, then it will also handle the response to the client.

This brings us to the second important issue: a failing leader. Life would
be easy if the failure of a leader would be reliably detected, after which a
new leader would be elected, and later, the recovering leader would instantly
notice that the world around it had changed. Unfortunately, life is not so easy.
Paxos has been designed to tolerate proposers who still believe they are in the
lead. The effect is that proposals may be sent out concurrently by different
proposers (each believing to be the leader). We therefore need to make sure
that these proposals can be distinguished from one another in order to ensure
that the acceptors handle only the proposals from the current leader.

Note that relying on a leading proposer implies that any practical imple-
mentation of Paxos will need to be accompanied by a leader-election algorithm.
In principle, that algorithm can operate independently from Paxos, but is
normally part of it.

To distinguish concurrent proposals from different proposers, each pro-
posal p has a uniquely associated (logical) timestamp ts(p). How uniqueness
is achieved is left to an implementation, but we will describe some of the
details shortly. Let oper(p) denote the operation associated with proposal p.
The trick is to allow multiple proposals to be accepted, but that each of these
accepted proposals has the same associated operation. This can be achieved
by guaranteeing that if a proposal p is chosen, then any proposal with a higher
timestamp will also have the same associated operation. In other words, we
require that

p is chosen ⇒ for all p′ with ts(p′) > ts(p) : oper(p′) = oper(p)

Of course, for p to be chosen, it needs to be accepted. That means that we
can guarantee our requirement when guaranteeing that if p is chosen, then
any higher-timestamped proposal accepted by any acceptor, has the same
associated operation as p. However, this is not sufficient, for suppose that
at a certain moment a proposer simply sends a new proposal p′, with the
highest timestamp so far, to an acceptor A that had not received any proposal
before. Note that this may indeed happen according to our assumptions
concerning message loss and multiple proposers each believing to be in the
lead. In absence of any other proposals, A will simply accept p′. To prevent
this situation from happening, we thus need to guarantee that

If proposal p is chosen, then any higher-timestamped proposal issued by
a proposer, has the same associated operation as p.
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When explaining the Paxos algorithm below, we will indeed see that a pro-
poser may need to adopt an operation coming from acceptors in favor of its
own. This will happen after a leading proposer had failed, but its proposed
operation had already made it to a majority of the acceptors.

The processes collectively formally ensure safety, in the sense that only
proposed operations will be learned, and that at most one operation will be
learned at a time. In general, a safety property asserts that nothing bad will
happen. Furthermore, Paxos ensures conditional liveness in the sense that if
enough processes remain up-and-running, then a proposed operation will
eventually be learned (and thus executed). Liveness, which tells us that
eventually something good will happen, is not guaranteed in Paxos, unless
some adaptations are made. We return to liveness in Note 8.4.

There are now two phases, each in turn consisting of two subphases.
During the first phase, the leading proposer interacts with acceptors to get
a requested operation accepted for execution. The first phase is needed to
rule out any trouble caused by different proposers each believing they are
the leader. The best that can happen is that an individual acceptor promises
to consider the proposer’s operation and ignore other requests. The worst is
that the proposer was too late and that it will be asked to adopt some other
proposer’s request instead. Apparently, a leadership change had taken place
and there may be former requests that need to handled first.

In the second phase, the acceptors will have informed proposers about the
promises they have made. The leading proposer essentially takes up a slightly
different role by promoting a single operation to the one to be executed, and
subsequently telling the acceptors.

Phase 1a (prepare): The goal of this phase is that a proposer P who believes it
is leader and is proposing operation o, tries to get its proposal timestamp
anchored, in the sense that any lower timestamp failed, or that o had also
been previously proposed (i.e., with some lower proposal timestamp).
To this end, P broadcasts its proposal to the acceptors. For the operation
o, the proposer selects a proposal number m higher than any of its
previously selected numbers. This leads to a proposal timestamp t =
(m, i) where i is the (numerical) process identifier of P. Note that

(m, i) < (n, j)⇔ (m < n) or (m = n and i < j)

This timestamp for a proposal p is an implementation of the previously
mentioned timestamp ts(p). Proposer P sends prepare(t) to all accep-
tors (but note that messages may be lost). In doing so, it is (1) asking the
acceptors to promise not to accept any proposals with a lower proposal
timestamp, and (2) to inform it about an accepted proposal, if any, with
the highest timestamp less than t. If such a proposal exists, the proposer
will adopt it.
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Phase 1b (promise): An acceptor A may receive multiple proposals. Assume
it receives prepare(t) from P. There are three cases to consider:

(1) t is the highest proposal timestamp received from any proposer so
far. In that case, A will return promise(t) to P stating that A will
ignore any future proposals with a lower timestamp.

(2) If t is the highest timestamp so far, but another proposal (t′, o′) had
already been accepted, A also returns (t′, o′) to P. This will allow P
to decide on the final operation that needs to be accepted.

(3) In all other cases, do nothing: there is apparently another proposal
with a higher timestamp that is being processed.

Once the first phase has been completed, the leading proposer P knows what
the acceptors have promised. Essentially, the leading proposer knows that all
acceptors have agreed on the same operation. This will put P into a position
to tell the acceptors that they can go ahead. This is needed, because although
the leading proposer knows on which operation consensus has been reached,
this consensus is not known to the others. Again, we assume that P received
a response from a majority of acceptors (whose respective responses may be
different).

Phase 2a (accept): There are two cases to consider:

(1) If P does not receive any accepted operation from any of the ac-
ceptors, it will forward its own proposal for acceptance by sending
accept(t, o) to all acceptors.

(2) Otherwise, it was informed about another operation o′, which it will
adopt and forward for acceptance. It does so by sending accept(t,
o′), where t is P’s proposal timestamp and o′ is the operation with
proposal timestamp highest among all accepted operations that
were returned by the acceptors in Phase 1b.

Phase 2b (learn): Finally, if an acceptor receives accept(t, o′), but did not
previously send a promise with a higher proposal timestamp, it will ac-
cept operation o′, and tell all learners to execute o′ by sending learn(o′).
At that point, the acceptor can forget about o′. A learner L receiving
learn(o′) from a majority of acceptors, will execute the operation o′.
We now also know that a majority of learners share the same idea on
which operation to execute.

It is important to realize that this description of Paxos indeed captures only its
essence: using a leading proposer to drive the acceptors toward the execution
of the same operation. When it comes to practical implementations, much
more needs to be done (and more than we are willing to describe here). An
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excellent description of what it means to realize Paxos has been written by
Kirsch and Amir [2008]. Another write-up on its practical implications can be
found in [Chandra et al., 2007].

Understanding Paxos

To properly understand Paxos, but also many other consensus algorithms, it
is useful to see how its design could have evolved. We say “could have,” as
the evolution of the algorithm has never been documented. The following
description is largely based on work described by Meling and Jehl [2013]1. As
our starting point, we consider a server that we wish to make more robust. By
now, we know that this can be achieved through replication and making sure
that all commands submitted by clients are executed by all servers in the same
order. The simplest situation is to add one server, thus creating a group of two
processes, say S1 and S2. Also, to make sure that all commands are executed
in the same order, we appoint one process to be a sequencer, which increments
and associates a unique timestamp with every submitted command. Servers
are required to execute commands according to their timestamp. In Paxos,
such a server is referred to as the leader. We can also consider it to be a
primary server, with the other acting as a backup server.

We assume that a client broadcasts its requested command to all servers.
If a server notices it is missing a command, it can rely on the other server
to forward it when necessary. We will not describe how this happens, but
silently assume that all commands are stored at the servers and that we merely
need to make sure that the servers agree on which command to execute next.
As a consequence, all remaining communication between servers consists of
control messages. To make this point clear, consider the situation sketched in
Figure 8.7. (In what follows, we use subscripts to designate processes, and
superscripts to designate operations and states.)

Figure 8.7: Two clients communicating with a 2-server process group.

1Special credits go to Hein Meling for helping us better understand what Paxos is all about.
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In this example, server S1 is the leader and as such will hand out time-
stamps to submitted requests. Client C1 has submitted command o1 while C2

submitted o2. S1 instructs S2 to execute operation o2 with timestamp 1, and
later operation o1 with timestamp 2. After processing a command, a server
will return the result to the associated client. We designate this using the
notation 〈σj

i 〉, where i is the index of the reporting server, and j the state it
was in, expressed as the sequence of operations it has carried out. In our
example, client C1 will thus see the result 〈σ21

k 〉, meaning that each server has
executed o1 after executing o2.

In Paxos, when a leader associates a timestamp with an operation, it does
so by sending an accept message to the other server(s). As we assume that
messages may be lost, a server accepting an operation o does so by telling
the leader it has learned the operation by returning a learn(o) message.
When the leader does not notice that operation o has been learned, it simply
retransmits an accept(o, t) message, with t being the original timestamp. Note
that in our description we are skipping the phase of coming to agreement on
the operation to be carried out: we assume the leader has decided and now
needs to reach consensus on executing that operation.

Compensating for a lost message is relatively easy, but what happens when
also a server crashes? Let us first assume that a crash can be reliably detected.
Consider the situation sketched in Figure 8.8(a). The issue, of course, is that
server S2 will never have learned (about) operation o1. This situation can be
prevented by demanding that a server may execute an operation only if it
knows that the other server has learned the operation as well, as illustrated in
Figure 8.8(b).

It is not difficult to see that with a larger process group, we can get into the
same situation as in Figure 8.8(a). Simply consider a group of three servers
{S1, S2, S3} with S1 being the leader. If its accept(o1, t) message to S3 is lost,
yet it knows that S2 has learned o1, then it should still not execute o1 until
it has also received a learn(o1) message from S3. This situation is shown in
Figure 8.9.

Now imagine what would happen if learn(o1) returned by S2 would not
make it to S1. Of course, S1 would not execute o1, but otherwise we would
still be in trouble: S2 will execute o1 while S3 would take over leadership and
execute o2 without ever knowing that o1 had already been processed. In other
words, also S2 must wait with the execution of o1 until it knows that S3 has
learned that operation. This brings us to the following:

In Paxos, a server S cannot execute an operation o until it has received
a learn(o) from all other nonfaulty servers.

Up to this point we have assumed that a process can reliably detect that
another process has crashed. In practice, this is not the case. As we will
discuss more extensively shortly, a standard approach toward failure detection
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(a)

(b)

Figure 8.8: (a) What may happen when the leader crashes in combination
with a lost accept, and (b) the solution, namely demanding that the other
server has learned the operation as well before executing it.

is to set a timeout on expected messages. For example, each server is required
to send a message declaring it is still alive, and at the same time the other
servers set timeouts on the expected receipt of such messages. If a timeout
expires, the sender is suspected to have failed. In a partially synchronous or
fully asynchronous system, there is essentially no other solution. However,
the consequence is that a failure may be falsely detected, as the delivery of
such “I’m alive” messages may have simply been delayed or lost.

Let us assume that Paxos has realized a failure detection mechanism, but
that the two servers falsely conclude that the other has failed, as shown in
Figure 8.10. The problem is clear: each may now independently decide to
execute their operation of choice, leading to divergent behavior. It is at this
point that we need to introduce an extra server, and demand that a server
can execute an operation only if it is certain that a majority will execute that
operation. Note, that in the three-server case, execution of operation o by
server S can take place as soon as S has received at least one (other) learn(o)
message. Together with the sender of that message, S will form a majority.

downloaded by OLEXANDER.PERIG@GMAIL.COM DS 3.02



446 CHAPTER 8. FAULT TOLERANCE

Figure 8.9: The situation when dealing with three servers of which two crash.

Figure 8.10: The situation in the case of false failure detections.

We have now come to a point where it should be clear that Paxos requires
at least three replicated servers {S1, S2, S3} in order to operate correctly. Let
us concentrate on the situation that one of these servers crashes. We make the
following assumptions.

• Initially, S1 is the leader.
• A server can reliably detect it has missed a message. The latter can

be realized, for example, through timestamps in the form of strictly
increasing sequence numbers. Whenever a server notices it has missed
a message, it can then simply request a retransmission and catch up
before continuing.

• When a new leader needs to be elected, the remaining servers follow a
strictly deterministic algorithm. For example, we can safely assume that
if S1 crashes, then S2 will become leader. Likewise, if S2 crashes, S3 will
take over, and so on.

• Clients may receive duplicate responses, but besides being required to
recognize duplicates, form no further part of the Paxos protocol. In
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other words, a client cannot be asked to help the servers to resolve a
situation.

Under these circumstances, it is fairly easy to see that no matter when one of
S2 or S3 crashes, Paxos will behave correctly. Of course, we are still demanding
that execution of an operation can take place only if a server knows that a
majority will execute that operation.

Suppose now that S1 crashes after the execution of operation o1. The
worst that can happen in this case is that S3 is completely ignorant of the
situation until the new leader, S2 tells it to accept operation o2. Note that
this is announced through an accept(o2, 2) message such that the timestamp
t = 2 will alert S3 that it missed a previous accept message. S3 will tell so to
S2, who can then retransmit accept(o1, 1), allowing S3 to catch up.

Likewise, if S2 missed accept(o1, 1), but did detect that S1 crashed, it will
eventually either send accept(o1, 1) or accept(o2, 1) (i.e., in both cases using
timestamp t = 1, which was previously used by S1). Again, S3 has enough
information to get S2 on the right track again. If S2 had sent accept(o1, 1), S3
can simply tell S2 that it already learned o1. In the other case, when S2 sends
accept(o2, 1), S3 will inform S2 that it apparently missed operation o1. We
conclude that when S1 crashes after executing an operation, Paxos behaves
correctly.

So what can happen if S1 crashes immediately after having sent accept(o1,
1) to the other two servers? Suppose again that S3 is completely ignorant of
the situation because messages are lost, until S2 has taken over leadership
and announces that o2 should be accepted. Like before, S3 can tell S2 that
it (i.e., S3) missed operation o1, so that S2 can help S3 to catch up. If S2
misses messages, but does detect that S1 crashed, then as soon as it takes over
leadership and proposes an operation, it will be using a stale timestamp. This
will trigger S3 to inform S2 that it missed operation o1, which saves the day.
Again, Paxos is seen to behave correctly.

Problems may arise with false detections of crashes. Consider the sit-
uation sketched in Figure 8.11. We see that the accept messages from S1
are considerably delayed and that S2 falsely detects S1 having crashed. S2
takes over leadership and sends accept(o2, 1), i.e., with a timestamp t = 1.
However, when finally accept(o1, 1) arrives, S3 cannot do anything: this is
not a message it is expecting. Fortunately, if it knows who the current leader
is, in combination with a deterministic leader election, it could safely reject
accept(o1, 1), knowing that by now S2 has taken over. We conclude that the
leader should include its ID in an accept message.

We have covered almost all cases and have thus far shown that Paxos
behaves correctly. Unfortunately, although being correct, the algorithm can
still come to a grinding halt. Consider the situation illustrated in Figure 8.12.
What we are seeing here is that, because the learn messages returned by S3 are
lost, neither S1 nor S2 will ever be able to know what S3 actually executed: did
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Figure 8.11: Why incorporating the ID of the current leader is needed.

it learn (and execute) accept(o1, 1) before or after learning accept(o2, 1), or
perhaps it learned neither operation? A solution to this problem is discussed
in Note 8.4.

Figure 8.12: When Paxos can make no further progress.

Note 8.4 (Advanced: Making progress in Paxos)
Up to this point we have discussed the development of Paxos such that safety is
ensured. Safety essentially means that nothing bad will happen, or, put differently,
that the behavior of the algorithm is correct. To also ensure that eventually
something good will happen, generally referred to as liveness of an algorithm, we
need to do a bit more. In particular, we need to get out of the situation sketched
in Figure 8.12.

The real problem with this situation is that the servers have no consensus on
who the leader is. Once S2 decides it should take over leadership, it needs to
ensure that any outstanding operations initiated by S1 have been properly dealt
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with. In other words, it needs to ensure that its own leadership is not hindered
by operations that have not yet been completed by all nonfaulty processes. If
leadership is taken over too quickly and a new operation is proposed, a previous
operation that has been executed by at least one server may not get a chance to be
executed by all servers first.

To this end, Paxos enforces an explicit leadership takeover, and this is where
the role of proposers come from. When a server crashes, the next one in line
will need to take over (recall that Paxos assumes a deterministic leader-election
algorithm), but also ensure that any outstanding operations are dealt with. This ex-
plicit takeover is implemented by broadcasting a proposal message: propose(Si),
where Si is the next server to be leader. When server Sj receives this message,
it replies with a promise(oj, tj) message, containing the most recently executed
operation oj and its corresponding timestamp tj. Note that Si is particularly
interested in the most recent operation o∗ executed by a majority of servers. By
“adopting” this operation from the (apparently crashed) server S∗ that had origi-
nally proposed its acceptance, Si can effectively complete what S∗ could not due
to its failure.

There are two obvious optimizations to this procedure. The first one is not
that servers return the most recently executed operation, but the most recently
learned operation that is still waiting to be executed, if any. Furthermore, because
it may be that the collection of servers have no more pending operations, Si can
also suggest a next operation oi when initially proposing to take over leadership,
giving rise to a propose(Si, oi) message. In essence, this is the situation we
described earlier, yet now it should be clear where the idea of proposals actually
comes from.

When Si receives a majority of promises for operation o∗, and the highest
returned timestamp is t∗, it broadcasts accept(Si, o∗, t∗), which is essentially a
retransmission of the last operation proposed before Si took over leadership. If no
such o∗ exists, Si will propose to accept its own operation oi.

Consensus in faulty systems with arbitrary failures

So far, we assumed that replicas were only subject to crash failures, in which
case a process group needs to consist of 2k + 1 servers to survive k crashed
members. An important assumption in these cases is that a process does
not collude with another process, or, more specifically, is consistent in its
messages to others. The situations shown in Figure 8.13 should not happen.
In the first case, we see that process P2 is forwarding a different value or
operation than it is supposed to. Referring to Paxos, this could mean that a
primary tells the backups that not operation o had been accepted, but instead
propagates a different operation o′. In the second case, P1 is telling different
things to different processes, such as having a leader sending operation o to
some backups, and at the same time operation o′ to others. Again, we note
that this need not be malicious actions, but simply omission or commission
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failures.

(a) (b)

Figure 8.13: A process in a replicated group acting inconsistently: (a) not
forwarding properly, and (b) telling different things to different processes.

In this section, we take a look at reaching consensus in a fault-tolerant
process group in which k members can fail assuming arbitrary failures. In
particular, we will show that we need at least 3k + 1 members to reach
consensus under these failure assumptions.

Consider a process group consisting of n members, of which one has been
designated to be the primary, P, and the remaining n− 1 to be the backups
B1, . . . , Bn−1. We make the following assumptions:

• A client sends a value v ∈ {T, F} to the primary, where v stands for
either true or false.

• Messages may be lost, but this can be detected.
• Messages cannot be corrupted without that being detected (and thus

subsequently ignored).
• A receiver of a message can reliably detect its sender.

In order to achieve what is known as Byzantine agreement, we need to satisfy
the following two requirements:

BA1: Every nonfaulty backup process stores the same value.
BA2: If the primary is nonfaulty then every nonfaulty backup process stores

exactly what the primary had sent.

Note that if the primary is faulty, BA1 tells us that the backups may store
the same, but different (and thus wrong) value than the one initially sent by
the client. Furthermore, it should be clear that if the primary is not faulty,
satisfying BA2 implies that BA1 is also satisfied.

Why having 3k processes is not enough

To see why having only 3k processes is not enough to reach consensus, let
us consider the situation in which we want to tolerate the failure of a single
process, that is, k = 1. Consider Figure 8.14, which is essentially an extension
of Figure 8.13.
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(a) (b)

Figure 8.14: Impossibility to reach consensus with 3 processes and trying to
tolerate a single arbitrarily failing process.

In Figure 8.14(a), we see that the faulty primary P is sending two different
values to the backups B1 and B2, respectively. In order to reach consensus,
both backup processes forward the received value to the other, leading to
a second round of message exchanges. At that point, B1 and B2 each have
received the set of values {T, F}, from which it is impossible to draw a
conclusion.

Likewise, we cannot reach consensus when wrong values are forwarded.
In Figure 8.14(b), the primary P and backup B2 operate correctly, but B1 is
not. Instead of forwarding the value T to process B2, it sends the incorrect
value F. The result is that B2 will now have seen the set of values {T, F} from
which it cannot draw any conclusions. In other words, P and B2 cannot reach
consensus. More specifically, B2 is not able to decide what to store, so that we
cannot satisfy requirement BA2.

Note 8.5 (Advanced: The case where k > 1 and n ≤ 3k)
Generalizing this situation for other values of k is not that difficult. As explained
by Kshemkalyani and Singhal [2008], we can use a simple reduction scheme.
Assume that there is a solution for the case where k ≥ 1 and n ≤ 3k. Partition the
n processes Q1, . . . ,Qn into three disjoint sets S1, S2, and S3, together containing
all processes. Moreover, let each set Sk have less or equal than n/3 members.
Formally, this means that

• S1 ∩ S2 = S1 ∩ S3 = S2 ∩ S3 = ∅
• S1 ∪ S2 ∪ S3 = {Q1, . . . ,Qn}
• for each Si, |Si| ≤ n/3

Now consider a situation in which three processes Q∗1, Q∗2, and Q∗3 simulate the
actions that take place in and between the processes of S1, S2, and S3, respectively.
In other words, if a process in S1 sends a message to another process in S2, then
Q∗1 will send a same message to Q2. The same holds for process communication
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within a group. Assume that Q∗1 is faulty, yet Q∗2 and Q∗3 are not. All processes
simulated by Q∗1 are now assumed to be faulty, and will thus lead to incorrect
messages being sent to Q∗2 and Q∗3, respectively. Not so for Q∗2 (and Q∗3): all
messages coming from processes in S2 (and S3, respectively) are assumed to be
correct. Because n ≤ 3k and for each set Si we have that |Si| ≤ n/3, at most n/3
of the simulated processes Q1, . . . ,Qn are faulty. In other words, we are satisfying
the condition for which we assumed that there would be a general solution.

We can now come to a contradiction, for if there would exist a solution for
the general case, then the processes Q∗1, Q∗2, and Q∗3 could simulate this solution,
which would then also be a solution for the special case that n = 3 and k = 1. Yet
we just proved that this cannot be so, leading to a contradiction. We conclude that
our assumption that there is a general solution for k ≥ 1 and n ≤ 3k is false.

Why having 3k + 1 processes is enough

Let us now focus on the case in which we have a group of 3k + 1 processes.
Our goal is to show that we can establish a solution in which k group members
may suffer from fail-arbitrary failures, yet the remaining nonfaulty processes
will still reach consensus. Again, we first concentrate on the case n = 4, k = 1.
Consider Figure 8.15, which shows a situation with one primary P and three
backup processes B1, B2, and B3.

In Figure 8.15(a) we have sketched the situation in which the primary P is
faulty and is providing inconsistent information to its backups. In our solution,
the processes will forward what they receive to the others. During the first
round, P sends T to B1, F to B2, and T to B3, respectively. Each of the backups
then sends what they have to the others. With only the primary failing, this
means that after two rounds, each of the backups will have received the set of
values {T, T, F}, meaning that they can reach consensus on the value T.

When we consider the case that one of the backups fails, we get the
situation sketched in Figure 8.15(b). Assume that the (nonfaulty) primary
sends T to all the backups, yet B2 is faulty. Where B1 and B3 will send out T
to the other backups in a second round, the worst that B2 may do is send out
F, as shown in the figure. Despite this failure, B1 and B3 will come to the same
conclusion, namely that P had sent out T, thereby meeting our requirement
BA2 as stated before.

Note 8.6 (Advanced: The case where k > 1 and n = 3k + 1)
As a sketch toward a general solution, consider the more intricate case in which
n = 7 and k = 2. We let the primary P send out a value v0. Using a similar
notation as found in [Kshemkalyani and Singhal, 2008], we proceed as follows.
Note that we effectively use the index 0 to denote the primary P (think of P being
equal to a special backup process B0).
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(a)

(b)

Figure 8.15: Reaching consensus with four processes of which one may fail
arbitrarily.

1. We let P send v0 to the six backups. Backup Bi stores the received value
as vi,0〈 〉. This notation indicates that the value was received by process Bi,
that it was sent by P = B0, and that the value of v0 was directly sent to Bi

and not through another process (using the notation 〈 〉). To make matters
concrete, consider B4, which will store v0 in v4,0〈 〉.

2. Each backup Bi, in turn, will send vi,0〈 〉 to every one of the other five
backups, which is stored by Bj as vj,i〈0〉. This notation indicates that the
value is stored at Bj, was sent by Bi, but that it originated from P = B0

(through the notation 〈0〉). Concentrating on B4, it eventually stores v4,5〈0〉,
which is the value v5,0〈 〉 sent by B5 to B4.

3. Suppose that Bi now has the value vi,j〈0〉. Again, it will send out this value
to all processes except P = B0, Bj, and Bi (i.e., itself). If Bk receives vi,j〈0〉
from Bi, it stores this received value in vk,i〈j, 0〉. Indeed, by then v0 will
have traveled the path P→ Bj → Bi → Bk. For example, B2 may send out
v2,1〈0〉 to B4, who will store it as v4,2〈1, 0〉. Note at this point, that B4 can
send out this value only to processes B3, B5, and B6. There is no use in
sending it out to other processes.

4. Continuing this line of thought, assume that Bi has value vi,j〈k, 0〉, which
it sends out to the three remaining processes not equal to P = B0, Bk, Bj,
and Bi (itself). Returning to B4, eventually, B4 will also receive a similar
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message from, say, B2, leading perhaps to a value v4,2〈3, 1, 0〉. That value
can be sent only to B5 and B6, after which only a single round is left.

Once all these messages have been sent, each backup can start moving out of the
recursion again. Let us look at process B4 again. From the last round, it will have
stored a total of five messages:

• v4,1〈6, 5, 3, 2, 0〉
• v4,2〈6, 5, 3, 1, 0〉
• v4,3〈6, 5, 2, 1, 0〉
• v4,5〈6, 3, 2, 1, 0〉
• v4,6〈5, 3, 2, 1, 0〉

With these five values, it can start computing estimates of v0, that is, a value that
it believes v0 should be. To this end, we assume that each (nonfaulty) process
executes the same procedure majority() that selects a unique value from a given
set of inputs. In practice, this will be the majority among the input set. If there is
no majority, a default value is chosen. To give a few examples:

w4,1〈5, 3, 2, 0〉 ← majority(v4,1〈5, 3, 2, 0〉, v4,1〈6, 5, 3, 2, 0〉)
w4,1〈6, 3, 2, 0〉 ← majority(v4,1〈6, 3, 2, 0〉, v4,2〈6, 5, 3, 1, 0〉)
w4,5〈3, 2, 1, 0〉 ← majority(v4,5〈3, 2, 1, 0〉, v4,5〈6, 3, 2, 1, 0〉)
w4,5〈6, 3, 2, 0〉 ← majority(v4,5〈6, 3, 2, 0〉, v4,5〈6, 3, 2, 1, 0〉)
w4,6〈3, 2, 1, 0〉 ← majority(v4,6〈3, 2, 1, 0〉, v4,6〈5, 3, 2, 1, 0〉)
w4,6〈5, 3, 2, 0〉 ← majority(v4,6〈5, 3, 2, 0〉, v4,1〈6, 5, 3, 2, 0〉)

In turn, allowing it to compute estimates like:

w4,1〈3, 2, 0〉 ← majority(v4,1〈3, 2, 0〉, w4,5〈3, 2, 1, 0〉, w4,6〈3, 2, 1, 0〉
w4,5〈3, 2, 0〉 ← majority(v4,5〈3, 2, 0〉, w4,1〈5, 3, 2, 0〉, w4,6〈5, 3, 2, 0〉
w4,6〈3, 2, 0〉 ← majority(v4,6〈3, 2, 0〉, w4,1〈6, 3, 2, 0〉, w4,5〈6, 3, 2, 0〉

And from there, for example

w4,3〈2, 0〉 ← majority(v4,3〈2, 0〉, w4,1〈3, 2, 0〉, w4,5〈3, 2, 0〉, w4,6〈3, 2, 0〉)

This process continues until, eventually, B4 will be able to execute

w4,0〈 〉 ← majority(v4,0〈 〉, w4,1〈0〉, w4,2〈0〉, w4,3〈0〉, w4,5〈0〉, w4,6〈0〉)

and reach the final outcome.
Let us now see why this scheme actually works. We denote by BAP(n,k)

the above sketched protocol to reach consensus. BAP(n,k) starts by having the
primary send out its value v0 to the n − 1 backups. In the case the primary
operates correctly, each of the backups will indeed receive v0. If the primary is
nonfaulty, some backups receive v0 while others receive v0 (i.e., the opposite of
v0).

Because we assume a backup Bi cannot know whether or not the primary is
working correctly, it will have to check with the other backups. We therefore let
Bi run the protocol again, but in this case with value vi,0〈 〉 and with a smaller
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process group, namely {B1, . . . ,Bi−1,Bi+1, . . . ,Bn}. In other words, Bi executes
BAP(n-1,k-1) with a total of n− 2 other processes. Note that at this point there
are n− 1 instances of BAP(n-1,k-1) being executed in parallel.

In the end, we see that these executions result in each backup Bi taking the
majority of n− 1 values:

• One value comes from the primary: vi,0〈 〉
• n− 2 values come from the other backups, in particular, Bi is dealing with

the values vi,1〈 〉, . . . , vi,i−1〈 〉, vi,i+1〈 〉, . . . , vi,n−1〈 〉.

However, because Bi cannot trust a received value vi,j〈 〉, it will have to check that
value with the other n− 2 backups: B1, . . . ,Bi−1,Bi+1, . . . ,Bj−1,Bj+1, . . . ,Bn−1.
This leads to the execution of BAP(n-2,k-2), of which a total of n− 2 instances
will be running in parallel. This story continues, and eventually, a backup process
will need to run BAP(n-k,0), which simply returns the value sent by the primary,
after which we can move up the recursion as described above.

Note 8.7 (Advanced: Correctness of the Byzantine agreement protocol)
With the general scheme given in Note 8.6, it is not that difficult to see why the
protocol is correct. Following Koren and Krishna [2007], we use induction on k to
prove that BAP(n,k) meets the requirements BA1 and BA2 for n ≥ 3k + 1 and for
all k ≥ 0.

First, consider the case k = 0. In other words, we assume that there are no
faulty processes. In that case, whatever the primary sends to the backups, that
value will be consistently propagated throughout the system, and no other value
will ever pop up. In other words, for any n, BAP(n,0) is correct. Now consider
the case k > 0.

First, consider the case that the primary is operating correctly. Without loss of
generality, we can assume the primary sends out T. All the backups receive the
same value, namely T. Each backup will then run BAP(n-1,k-1). By induction,
we know that each of these instances will be executed correctly. This means that
for any nonfaulty backup B, all the other nonfaulty backups will store the value
that was sent by B, namely T. Each nonfaulty backup receives, in total, n− 1
values, of which n− 2 come from other backups. Of those n− 2, at most k values
may be wrong (i.e., F). With k ≤ (n − 1)/3, this means that every nonfaulty
backup receives at least 1 + (n− 2)− (n− 1)/3 = (2n− 2)/3 values T. Because
(2n− 2)/3 > n/3 for all n > 2, this means that every nonfaulty backup can take
a correct majority vote on the total number of received values, thus satisfying
requirement BA2.

Let us now consider the case that the primary is faulty, meaning that at most
k− 1 backups may operate incorrectly as well. The primary is assumed to send
out any value it likes. There are a total of n− 1 backups, of which at most k− 1
are faulty. Each backup runs BAP(n-1,k-1) and by, induction, each one of these
instances is executed correctly. In particular, for every nonfaulty backup B, all
the other nonfaulty backups will vote for the value sent by B. This means that
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all nonfaulty backups will have the same vector of n− 2 results from their fellow
backups. Any difference between two nonfaulty backups can be caused only by
the fact that the primary sent something else to each of them. As a result, when
applying majority() to those complete vectors, the result for each backup will be
the same, so that requirement BA1 is met.

Example: Practical Byzantine Fault Tolerance

Byzantine fault tolerance was for long more or less an exotic topic, partly be-
cause it turned out that combining safety, liveness, and practical performance
was difficult to achieve. It was around 2000 that Barbara Liskov and her
student at that time, Miguel Castro, managed to come up with a practical im-
plementation of a protocol for replicating servers that could handle arbitrary
failures. Let us briefly take a look at their solution, which has been coined
Practical Byzantine Fault Tolerance, or simply PBFT [Castro and Liskov,
2002].

Like Paxos, PBFT makes only a few assumptions about its environment. It
makes no assumptions about the behavior of replica servers: a faulty server
is assumed to exhibit arbitrary behavior. Likewise, messages may be lost,
delayed, and received out of order. However, a message’s sender is assumed
to be identifiable (which is achieved by having messages signed, as we will
discuss in Chapter 9). Under these assumptions, and as long as no more than
k servers fail, it can be proven that PBFT is safe, meaning that a client will
always receive a correct answer. If we can additionally assume synchrony,
meaning that message delays and response times are bounded, it also provides
liveness. In practice, this means that PBFT assumes a partially synchronous
model, in which unbounded delays are an exception, for example caused by
an attack.

To understand the algorithm, let us take a step back and partly review
what we have discussed so far on establishing a k-fault-tolerant process group.
An essential issue is that such a group behaves as a single, central server. As
a consequence, under the assumption of having only crash failures, when a
client sends a request, it should expect k + 1 identical answers. If a server had
crashed, fewer responses would be returned, but they would be the same.

The first problem that we need to solve is that concurrent requests are all
handled in the same order. To this end, PBFT adopts a primary-backup model
with a total of 3k + 1 replica servers. To keep matters simple, let us assume for
now that the primary is nonfaulty. In that case, a client C sends a request to
execute operation o to the primary (denoted as P in Figure 8.16). The primary
has a notion of the current collection of nonfaulty replica servers, expressed
in terms of a view v, which is simply a number. The primary assigns a
timestamp t to o, which is then incremented to be used for a subsequent
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request. The primary subsequently sends a (signed) pre-prepare message
pre-prepare(t, v, o) to the backups.

Figure 8.16: The different phases in PBFT. C is the client, P is the primary,
and B1, B2, B3 are the backups. We assume that B2 is faulty.

A (nonfaulty) backup will accept to pre-prepare if it is in v and has never
accepted an operation with timestamp t in v before. Each backup that accepts
to pre-prepare sends an (again signed) message prepare(t, v, o) to the others,
including the primary. A key observation is that when a nonfaulty replica
server S has received 2k messages prepare(t, v, o) that all match the pre-prepare
message S itself received by the primary (i.e., all have the same value for t,
v, and o, respectively), there is consensus among the nonfaulty servers on
the order of which operation goes first. To see why, let a prepare certificate
PC(t, v, o) denote a certificate that is based on such a set of 2k + 1 messages.
Let PC(t, v, o′) be another prepare certificate with the same values for t and v
respectively, but with a different operation o′. Because each prepare certificate
is based on 2k + 1 values from a total of 3k + 1 replica servers, the intersection
of two certificates will necessarily be based on messages from a subset of at
least k + 1 servers. Of this subset, we know that there is at least one nonfaulty
server, which will have sent the same prepare message. Hence, o = o′.

After a replica server has a prepare certificate, it commits to the operation
by broadcasting commit(t, v, o) to the other members in v. Each server S,
in turn, collects 2k of such commit messages from other servers, leading to
commit certificate to execute operation o. At that point, it executes o and
sends a response to the client. Again, with its own message and the 2k other
messages, S knows that there is consensus among the nonfaulty servers on
which operation to actually execute now. The client collects all the results and
takes as the answer the response that is returned by at least k + 1 replicas, of
which it knows that there is at least one nonfaulty replica server contributing
to that answer.
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So far so good. However, we also need to deal with the situation that
the primary fails. If a backup detects that the primary fails, it broadcasts
a view-change message for view v + 1. What we wish to establish is that a
request that was still being processed at the time the primary failed, will
eventually get executed once and only once by all nonfaulty servers. To this end,
we first need to ensure that there are no two commit certificates with the same
timestamp that have different associated operations, regardless the view that
each of them is associated with. This situation can be prevented by having
a quorum of 2k + 1 commit certificates just as before, but this time based on
prepare certificates. In other words, we want to regenerate commit certificates,
but now for the new view, and only to make sure that a nonfaulty server is
not missing any operation. In this respect, note that we may be generating a
certificate for an operation that a server S had already executed (which can be
observed by looking at timestamps), but that certificate will be ignored by S
as long as it keeps an account of its execution history.

A backup server will broadcast a (signed) message view-change(v + 1, P),
with P being the set of its prepare certificates. (Note that we ignore garbage
collecting issues.) PBFT includes a deterministic function primary(w) known
to all backups that returns who the next primary will be given a view w. This
backup will wait until it has a total of 2k + 1 view-change messages, leading
to a view-change certificate X of prepare certificates. The new primary then
broadcasts new-view(v + 1, X, O), where O consists of pre-prepare messages
such that:

• pre-prepare(t, v + 1, o) ∈ O if the prepare certificate PC(t, v′, o) ∈ X
such that there is no prepare certificate PC(t, v′′, o′) with v′′ > v′,
or

• pre-prepare(t, v + 1, none) ∈ O if there is no prepare certificate
PC(t, v′, o′) ∈ X.

What happens is that any outstanding, pre-prepared operation from a previous
view is moved to the new view, but considering only the most recent view
that led to the installment of the current new view. Simplifying matters a bit,
each backup will check O and X to make sure that all operations are indeed
authentic and broadcast prepare messages for all pre-prepare messages in O.

We have skipped many elements of PBFT that deal with its correctness
and above all its efficiency. For example, we did not touch upon garbage
collecting logs or efficient ways of authenticating messages. Such details
can be found in [Castro and Liskov, 2002]. A description of a wrapper
that will allow the incorporation of Byzantine fault tolerance with legacy
applications is described in [Castro et al., 2003]. Notably the performance
of Byzantine fault tolerance has been subject to much research, leading to
many new protocols (see, for example, Zyzzyva [Kotla et al., 2009] and
Abstract [Guerraoui et al., 2010]), yet even these new proposals often rely on
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the original PBFT implementation. That there is still room for improvement
when actually using PBFT for developing robust applications is discussed by
Chondros et al. [2012]. For example, PBFT assumes static membership (i.e.,
clients and servers are known to each other in advance), but also assumes that
a replica server’s memory acts as a stable, persistent storage. These and other
shortcomings along with the inherent complexity of Byzantine fault tolerance
have formed a hurdle for its widespread usage.

Some limitations on realizing fault tolerance

Organizing replicated processes into a group helps to increase fault tolerance.
However, what should have become clear by now is that there is a price to
pay, namely a potential loss of performance. In the solutions discussed so far,
processes in a fault-tolerant group may need to exchange numerous messages
before reaching a decision. The Byzantine agreement protocol is an excellent
illustration of how tightly coupled processes may be. The question that comes
to mind is whether realizing specific forms of fault tolerance, like being able
to withstand arbitrary failures, is always possible.

On reaching consensus

As we mentioned, if a client can base its decisions through a voting mechanism,
we can tolerate that k out of 2k + 1 processes are lying about their result. The
assumption we are making, however, is that processes do not team up to
produce a wrong result. In general, matters become more intricate if we
demand that a process group reaches consensus, which is needed in many
cases. There are three requirements for reaching consensus [Fischer et al.,
1985]:

• Processes produce the same output value
• Every output value must be valid
• Every process must eventually provide output

Some examples where reaching consensus is necessary include electing a
coordinator, deciding whether or not to commit a transaction, and dividing
up tasks among workers. When the communication and processes are all
perfect, reaching consensus is often straightforward, but when they are not,
problems arise.

The general goal of distributed consensus algorithms is to have all the
nonfaulty processes reach consensus on some issue, and to establish that
consensus within a finite number of steps. The problem is complicated by the
fact that different assumptions about the underlying system require different
solutions, assuming solutions even exist. Turek and Shasha [1992] distinguish
the following cases:
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1. Synchronous versus asynchronous systems. Rephrasing our description
somewhat, a system is synchronous if and only if the processes are
known to operate in a lock-step mode. Formally, this means that there
should be some constant c ≥ 1, such that if any process has taken c + 1
steps, every other process has taken at least 1 step.

2. Communication delay is bounded or not. Delay is bounded if and
only if we know that every message is delivered with a globally and
predetermined maximum time.

3. Message delivery is ordered (in real time) or not. In other words, we
distinguish the situation where messages from the different senders are
delivered in the order that they were sent in real global time, from the
situation in which we do not have such guarantees.

4. Message transmission is done through unicasting or multicasting.

As it turns out, reaching consensus is possible only for the situations
shown in Figure 8.17. In all other cases, it can be shown that no solution exists.
Note that most distributed systems in practice assume that processes behave
asynchronously, message transmission is unicast, and communication delays
are unbounded. As a consequence, we need to make use of ordered (reliable)
message delivery, such as provided by TCP. And again, in practical situations
we assume synchronous behavior to be the default, but take into account that
there may be unbounded delays as well. Figure 8.17 illustrates the nontrivial
nature of distributed consensus when processes may fail.

Figure 8.17: Circumstances under which distributed consensus can be reached.

Reaching consensus may not be possible. Fischer et al. [1985] proved that
if messages cannot be guaranteed to be delivered within a known, finite time,
no consensus is possible if even one process is faulty (albeit if that one process
fails silently). The problem with such systems is that arbitrarily slow processes
are indistinguishable from crashed ones (i.e., you cannot tell the dead from
the living). These and other theoretical results are surveyed by Barborak et al.
[1993] and Turek and Shasha [1992].
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Consistency, availability, and partitioning

Strongly related to the conditions under which consensus can (not) be reached,
is when consistency can be reached. Consistency in this case means that
when we have a process group to which a client is sending requests, that
the responses returned to that client are correct. We are dealing with a
safety property: a property that asserts that nothing bad will happen. For
our purposes, the type of operations we consider are those that seem to be
executed in a clearly defined order by a single, centralized server. By now,
we know better: these operations are executed by a process group in order to
withstand the failures of k group members.

We introduced process groups to improve fault tolerance, and, more specif-
ically, to improve availability. Availability is typically a liveness property:
eventually, something good will happen. In terms of our process groups,
we aim to eventually get a (correct) response to every request issued by a
client. Being consistent in responses while also being highly available is not
an unreasonable requirement for services that are part of a distributed system.
Unfortunately, we may be asking too much.

In practical situations, our underlying assumption that the processes in
a group can indeed communicate with each other may be false. Messages
may be lost; a group may be partitioned due to a faulty network. In 2000,
Eric Brewer posed an important theorem which was later proven to be correct
by Gilbert and Lynch [2002]:

CAP Theorem: Any networked system providing shared data can pro-
vide only two of the following three properties:

• C: consistency, by which a shared and replicated data item appears
as a single, up-to-date copy

• A: availability, by which updates will always be eventually exe-
cuted

• P: Tolerant to the partitioning of process group (e.g., because of a
failing network).

In other words, in a network subject to communication failures, it is im-
possible to realize an atomic read/write shared memory that guarantees
a response to every request [Gilbert and Lynch, 2012].

This has now become known as the CAP theorem, first published as [Fox
and Brewer, 1999]. As explained by Brewer [2012], one way of understanding
the theorem is to think of two processes unable to communicate because of a
failing network. Allowing one process to accept updates leads to inconsistency,
so that we can only have properties {C, P}. If the illusion of consistency is to
be provided while the two processes cannot communicate, then one of the
two processes will have to pretend to be unavailable, implying having only
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{A, P}. However, only if the two processes can communicate, is it possible to
maintain both consistency and high availability, meaning that we have only
{C, A}, but no longer property P.

Note also the relationship with reaching consensus; in fact, where con-
sensus requires proving that processes produce the same output, providing
consistency is weaker. This also means that if achieving CAP is impossible,
than so is consensus.

The CAP theorem is all about reaching a trade-off between safety and live-
ness, based on the observation that obtaining both in an inherently unreliable
system cannot be achieved. Practical distributed systems are inherently unreli-
able. What Brewer and his colleagues observed is that in practical distributed
systems, one simply has to make a choice to proceed despite the fact that
another process cannot be reached. In other words, we need to do something
when a partition manifests itself through high latency.

The bottom line when it seems that partitioning is taking place, is to
proceed (tolerating partitions in favor of either consistency or availability),
while simultaneously starting a recovery procedure that can mitigate the
effects of potential inconsistencies. Exactly deciding on how to proceed is
application dependent: in many cases having duplicate keys in a database
can easily be fixed (implying that we should tolerate an inconsistency), while
duplicate transfers of large sums of money may not (meaning that we should
decide to tolerate lower availability). One can argue that the CAP theorem
essentially moves designers of distributed systems from theoretical solutions
to engineering solutions. The interested reader is referred to [Brewer, 2012] to
see how such a move can be made.

Failure detection

It may have become clear from our discussions so far that in order to properly
mask failures, we generally need to detect them as well. Failure detection is
one of the cornerstones of fault tolerance in distributed systems. What it all
boils down to is that for a group of processes, nonfaulty members should be
able to decide who is still a member, and who is not. In other words, we need
to be able to detect when a member has failed.

When it comes to detecting process failures, there are essentially only two
mechanisms. Either processes actively send “are you alive?” messages to each
other (for which they obviously expect an answer), or passively wait until
messages come in from different processes. The latter approach makes sense
only when it can be guaranteed that there is enough communication.

There is a huge body of theoretical work on failure detectors. What it all
boils down to is that a timeout mechanism is used to check whether a process
has failed. If a process P probes another process Q to see if has failed, P is
said to suspect Q to have crashed if Q has not responded within some time.
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Note 8.8 (More information: On perfect failure detectors)
It should be clear that in a synchronous distributed system, a suspected crash
corresponds to a known crash. In practice, however, we will be dealing with
partially synchronous systems. In that case, it makes more sense to assume
eventually perfect failure detectors. In this case, a process P will suspect another
process Q to have crashed after t time units have elapsed and still Q did not
respond to P’s probe. However, if Q later does send a message that is (also)
received by P, P will (1) stop suspecting Q, and (2) increase the timeout value t.
Note that if Q does crash (and does not recover), P will continue to suspect Q.

In real settings, there are problems with using probes and timeouts. For
example, due to unreliable networks, simply stating that a process has failed
because it does not return an answer to a probe message may be wrong. In
other words, it is quite easy to generate false positives. If a false positive has
the effect that a perfectly healthy process is removed from a membership list,
then clearly we are doing something wrong. Another serious problem is that
timeouts are just plain crude. As noticed by Birman [2012], there is hardly
any work on building proper failure detection subsystems that take more into
account than only the lack of a reply to a single message. This statement is
even more evident when looking at industry-deployed distributed systems.

There are various issues that need to be taken into account when designing
a failure detection subsystem (see also Zhuang et al. [2005]). For example, fail-
ure detection can take place through gossiping in which each node regularly
announces to its neighbors that it is still up and running. As we mentioned,
an alternative is to let nodes actively probe each other.

Failure detection can also be done as a side-effect of regularly exchanging
information with neighbors, as is the case with gossip-based information
dissemination (which we discussed in Chapter 4). This approach is essentially
also adopted in Obduro [Vogels, 2003]: processes periodically gossip their
service availability. This information is gradually disseminated through the
network. Eventually, every process will know about every other process, but
more importantly, will have enough information locally available to decide
whether a process has failed or not. A member for which the availability
information is old, will presumably have failed.

Another important issue is that a failure detection subsystem should
ideally be able to distinguish network failures from node failures. One way of
dealing with this problem is not to let a single node decide whether one of its
neighbors has crashed. Instead, when noticing a timeout on a probe message,
a node requests other neighbors to see whether they can reach the presumed
failing node. Of course, positive information can also be shared: if a node is
still alive, that information can be forwarded to other interested parties (who
may be detecting a link failure to the suspected node).
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This brings us to another key issue: when a member failure is detected,
how should other nonfaulty processes be informed? One simple, and some-
what radical approach is the following. In FUSE [Dunagan et al., 2004],
processes can be joined in a group that spans a wide-area network. The group
members create a spanning tree that is used for monitoring member failures.
Members send ping messages to their neighbors. When a neighbor does not
respond, the pinging node immediately switches to a state in which it will
also no longer respond to pings from other nodes. By recursion, it is seen that
a single node failure is rapidly promoted to a group failure notification.

8.3 Reliable client-server communication

In many cases, fault tolerance in distributed systems concentrates on faulty
processes. However, we also need to consider communication failures. Most
of the failure models discussed previously apply equally well to communi-
cation channels. In particular, a communication channel may exhibit crash,
omission, timing, and arbitrary failures. In practice, when building reliable
communication channels, the focus is on masking crash and omission failures.
Arbitrary failures may occur in the form of duplicate messages, resulting from
the fact that in a computer network messages may be buffered for a relatively
long time, and are reinjected into the network after the original sender has
already issued a retransmission (see, for example, Tanenbaum and Wetherall
[2010]).

Point-to-point communication

In many distributed systems, reliable point-to-point communication is es-
tablished by making use of a reliable transport protocol, such as TCP. TCP
masks omission failures, which occur in the form of lost messages, by using
acknowledgments and retransmissions. Such failures are completely hidden
from a TCP client.

However, crash failures of connections are not masked. A crash failure
may occur when (for whatever reason) a TCP connection is abruptly broken so
that no more messages can be transmitted through the channel. In most cases,
the client is informed that the channel has crashed by raising an exception.
The only way to mask such failures is to let the distributed system attempt
to automatically set up a new connection, by simply resending a connection
request. The underlying assumption is that the other side is still, or again,
responsive to such requests.

RPC semantics in the presence of failures

Let us now take a closer look at client-server communication when using
high-level communication facilities such as Remote Procedure Calls (RPCs).
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The goal of RPC is to hide communication by making remote procedure calls
look just like local ones. With a few exceptions, so far we have come fairly
close. Indeed, as long as both client and server are functioning perfectly, RPC
does its job well. The problem comes about when errors occur. It is then that
the differences between local and remote calls are not always easy to mask.

To structure our discussion, let us distinguish between five different classes
of failures that can occur in RPC systems, as follows:

1. The client is unable to locate the server.
2. The request message from the client to the server is lost.
3. The server crashes after receiving a request.
4. The reply message from the server to the client is lost.
5. The client crashes after sending a request.

Each of these categories poses different problems and requires different solu-
tions.

Client cannot locate the server

To start with, it can happen that the client cannot locate a suitable server. All
servers might be down, for example. Alternatively, suppose that the client is
compiled using a particular version of the client stub, and the binary is not
used for a considerable period of time. In the meantime, the server evolves
and a new version of the interface is installed; new stubs are generated and
put into use. When the client is eventually run, the binder will be unable
to match it up with a server and will report failure. While this mechanism
is used to protect the client from accidentally trying to talk to a server that
may not agree with it in terms of what parameters are required or what it is
supposed to do, the problem remains of how should this failure be dealt with.

One possible solution is to have the error raise an exception. In some
languages, (e.g., Java), programmers can write special procedures that are
invoked upon specific errors, such as division by zero. In C, signal handlers
can be used for this purpose. In other words, we could define a new signal
type SIGNOSERVER, and allow it to be handled in the same way as other
signals.

This approach, too, has drawbacks. To start with, not every language has
exceptions or signals. Another point is that having to write an exception
or signal handler destroys the transparency we have been trying to achieve.
Suppose that you are a programmer and your boss tells you to write the append
procedure. You smile and tell her it will be written, tested, and documented
in five minutes. Then she mentions that you also have to write an exception
handler as well, just in case the procedure is not there today. At this point it
is pretty hard to maintain the illusion that remote procedures are no different
from local ones, since writing an exception handler for “Cannot locate server”
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(a) (b) (c)

Figure 8.18: A server in client-server communication. (a) The normal case.
(b) Crash after execution. (c) Crash before execution.

would be a rather unusual request in a nondistributed system. So much for
transparency.

Lost request messages

The second item on the list is dealing with lost request messages. This is
the easiest one to deal with: just have the operating system or client stub
start a timer when sending the request. If the timer expires before a reply
or acknowledgment comes back, the message is sent again. If the message
was truly lost, the server will not be able to tell the difference between the
retransmission and the original, and everything will work fine. Unless, of
course, so many request messages are lost that the client gives up and falsely
concludes that the server is down, in which case we are back to “Cannot
locate server.” If the request was not lost, the only thing we need to do is let
the server be able to detect it is dealing with a retransmission. Unfortunately,
doing so is not so simple, as we explain when discussing lost replies.

Server crashes

The next failure on the list is a server crash. The normal sequence of events
at a server is shown in Figure 8.18(a). A request arrives, is carried out, and a
reply is sent. Now consider Figure 8.18(b). A request arrives and is carried
out, just as before, but the server crashes before it can send the reply. Finally,
look at Figure 8.18(c). Again a request arrives, but this time the server crashes
before it can even be carried out. And, of course, no reply is sent back.

The annoying part of Figure 8.18 is that the correct treatment differs for (b)
and (c). In (b) the system has to report failure back to the client (e.g., raise an
exception), whereas in (c) it can just retransmit the request. The problem is
that the client’s operating system cannot tell which is which. All it knows is
that its timer has expired.

Three schools of thought exist on what to do here [Spector, 1982]. One
philosophy is to wait until the server reboots (or let the client’s middleware
transparently rebind to a new server) and try the operation again. The idea is
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to keep trying until a reply has been received, then give it to the client. This
technique is called at-least-once semantics and guarantees that the RPC has
been carried out at least one time, but possibly more.

The second philosophy gives up immediately and reports back failure.
This approach is called at-most-once semantics and guarantees that the RPC
has been carried out at most one time, but possibly not at all.

The third philosophy is to guarantee nothing. When a server crashes, the
client gets no help and no promises about what happened. The RPC may
have been carried out anywhere from zero to a large number of times. The
main virtue of this scheme is that it is easy to implement.

None of these are terribly attractive. What one would like is exactly-once
semantics, but in general, there is no way to arrange this. Imagine that
the remote operation consists of processing a document such as producing
a number of PDF files from LATEX and other sources. The server sends a
completion message to the client when the document has been completely
processed. Also assume that when a client issues a request, it receives an
acknowledgment that the request has been delivered to the server. There are
two strategies the server can follow. It can either send a completion message
just before it actually tells the document processor to do its work, or after the
document has been processed.

Assume that the server crashes and subsequently recovers. It announces
to all clients that it has just crashed but is now up and running again. The
problem is that the client does not know whether its request to process a
document will actually have been carried out.

There are four strategies the client can follow. First, the client can decide
to never reissue a request, at the risk that the document will not be processed.
Second, it can decide to always reissue a request, but this may lead to the
document being processed twice (which may easily incur a significant amount
of work when dealing with intricate documents). Third, it can decide to
reissue a request only if it did not yet receive an acknowledgment that its
request had been delivered to the server. In that case, the client is counting
on the fact that the server crashed before the request could be delivered.
The fourth and last strategy is to reissue a request only if it has received an
acknowledgment for the request. With two strategies for the server, and four
for the client, there are a total of eight combinations to consider. Unfortunately,
as it turns out, no combination is satisfactory: it can be shown that for any
combination either the request is lost forever, or carried out twice.

Note 8.9 (Advanced: Why fully transparent server recovery is impossible)
To explain the situation of server recovery, note that there are three events that can
happen at the server: send the completion message (M), complete the processing
of the document (P), and crash (C). Note that crashing during the processing of a
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document is considered the same as crashing before its completion. These events
can occur in six different orderings:

1. M → P → C: A crash occurs after sending the completion message and
processing the document.

2. M→ C(→ P): A crash happens after sending the completion message, but
before the document could be (completely) processed.

3. P → M → C: A crash occurs after sending the completion message and
processing the document.

4. P → C(→ M): The document was processed, after which a crash occurs
before the completion message could be sent.

5. C(→ P → M): A crash happens before the server could complete the
processing of the document.

6. C(→ M→ P): A crash happens before the server could even do anything.

The parentheses indicate an event that can no longer happen because the server
already crashed. Figure 8.19 shows all possible combinations. As can be readily
verified, there is no combination of client strategy and server strategy that will
work correctly under all possible event sequences. The bottom line is that the
client can never know whether the server crashed just before or after having the
text printed.

Reissue strategy
Always
Never

Only when ACKed
Only when not ACKed

Client

Strategy M→ P
MPC MC(P) C(MP)
DUP OK OK
OK ZERO ZERO

DUP OK ZERO
OK ZERO OK

Server

Strategy P→ M
PMC PC(M) C(PM)
DUP DUP OK
OK OK ZERO

DUP OK ZERO
OK DUP OK

Server
OK = Document processed once
DUP = Document processed twice
ZERO = Document not processed at all

Figure 8.19: Different combinations of client and server strategies in the
presence of server crashes. Events between brackets never take place
because of a previous crash.

In short, the possibility of server crashes radically changes the nature of RPC
and clearly distinguishes single-processor systems from distributed ones. In the
former case, a server crash also implies a client crash, so recovery is neither
possible nor necessary. In the latter we can and should take action.

Lost reply messages

Lost replies can also be difficult to deal with. The obvious solution is just to
rely on a timer again that has been set by the client’s operating system. If no
reply is forthcoming within a reasonable period, just send the request once
more. The trouble with this solution is that the client is not really sure why
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there was no answer. Did the request or reply get lost, or is the server merely
slow? It may make a difference.

In particular, some operations can safely be repeated as often as necessary
with no damage being done. A request such as asking for the first 1024
bytes of a file has no side effects and can be executed as often as necessary
without any harm being done. A request that has this property is said to be
idempotent.

Now consider a request to a banking server asking to transfer money from
one account to another. If the request arrives and is carried out, but the reply
is lost, the client will not know this and will retransmit the message. The
bank server will interpret this request as a new one, and will carry it out too.
Twice the amount of money will be transferred. Transferring money is not
idempotent.

One way of solving this problem is to try to structure all the requests in
an idempotent way. In practice, however, many requests (e.g., transferring
money) are inherently nonidempotent, so something else is needed. Another
method is to have the client assign each request a sequence number. By
having the server keep track of the most recently received sequence number
from each client that is using it, the server can tell the difference between
an original request and a retransmission and can refuse to carry out any
request a second time. However, the server will still have to send a response
to the client. Note that this approach does require that the server maintains
administration on each client. Furthermore, it is not clear how long to maintain
this administration. An additional safeguard is to have a bit in the message
header that is used to distinguish initial requests from retransmissions (the
idea being that it is always safe to perform an original request; retransmissions
may require more care).

Client crashes

The final item on the list of failures is the client crash. What happens if a client
sends a request to a server to do some work and crashes before the server
replies? At this point a computation is active and no parent is waiting for the
result. Such an unwanted computation is called an orphan (computation).

Orphan computations can cause a variety of problems that can interfere
with normal operation of the system. As a bare minimum, they waste pro-
cessing power. They can also lock files or otherwise tie up valuable resources.
Finally, if the client reboots and does the RPC again, but the reply from the
orphan comes back immediately afterward, confusion can result.

What can be done about orphans? Four solutions have been proposed [Nel-
son, 1981]. First, before a client stub sends an RPC message, it makes a log
entry telling what it is about to do. The log is kept on disk or some other
medium that survives crashes. After a reboot, the log is checked and the
orphan is explicitly killed off. This solution is called orphan extermination.
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The disadvantage of this scheme is the horrendous expense of writing
a disk record for every RPC. Furthermore, it may not even work, since
orphans themselves may do RPCs, thus creating grandorphans or further
descendants that are difficult or impossible to locate. Finally, the network may
be partitioned, for example, due to a failed gateway, making it impossible
to kill them even if they can be located. All in all, this is not a promising
approach.

With the second solution, called reincarnation, all these problems can
be solved without the need to write disk records. The way it works is to
divide time up into sequentially numbered epochs. When a client reboots,
it broadcasts a message to all machines declaring the start of a new epoch.
When such a broadcast comes in, all remote computations are killed. Of
course, if the network is partitioned, some orphans may survive. Fortunately,
however, when they report back, their replies will contain an obsolete epoch
number, making them easy to detect.

The third solution is a variant on this idea, but somewhat less draconian.
It is called gentle reincarnation. When an epoch broadcast comes in, each
machine checks to see if it has any remote computations running locally, and
if so, tries its best to locate their owners. Only if the owners cannot be located
anywhere is the computation killed.

In the fourth solution, called expiration, each RPC is given a standard
amount of time, T, to do the job. If it cannot finish, it must explicitly ask for
another quantum. Of course, this is quite a nuisance. On the other hand, if
after a crash the client waits a time T before rebooting, all orphans are sure to
be gone. The problem to be solved here is choosing a reasonable value of T in
the face of RPCs with wildly differing requirements.

In practice, all of these methods are crude and undesirable. Worse yet,
killing an orphan may have unforeseen consequences. For example, suppose
that an orphan has obtained locks on one or more files or database records.
If the orphan is suddenly killed, these locks may remain forever. Also, an
orphan may have already made entries in various remote queues to start
up other processes at some future time, so even killing the orphan may not
remove all traces of it. Conceivably, it may even have started again, with
unforeseen consequences. Orphan elimination is discussed in more detail
by Panzieri and Shrivastava [1988].

8.4 Reliable group communication

Considering how important process resilience by replication is, it is not sur-
prising that reliable multicast services are important as well. Such services
guarantee that messages are delivered to all members in a process group.
Unfortunately, reliable multicasting turns out to be surprisingly tricky. In
this section, we take a closer look at the issues involved in reliably delivering
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messages to a process group. Let us first define what reliable group communi-
cation actually is. Intuitively, it means that a message that is sent to a process
group should be delivered to each member of that group. If we separate the
logic of handling messages from the core functionality of a group member,
we can conveniently make the distinction between receiving messages and
delivering messages, as illustrated in Figure 8.20. A message is received by
a message-handling component, which, in turn, delivers a message to the
component containing the core functionality of a group member. Informally,
a message that is received by process P will also be delivered by P.

Figure 8.20: The distinction between receiving and delivering messages.

As an example, ensuring that messages from the same sender are delivered
in the same order as they were sent, is typically taken care of by a message-
handling component. Likewise, providing reliable message-passing is a
feature that can and should be separated from the core functionality of a group
member, and is typically implemented by a message-handling component (if
not by the underlying operating system).

With this separation between receiving and delivering messages, we can be
more precise about what reliable group communication means. Let us make a
distinction between reliable communication in the presence of faulty processes,
and reliable communication when processes are assumed to operate correctly.
In the first case, group communication is considered to be reliable when it can
be guaranteed that a message is received and subsequently delivered by all
nonfaulty group members.

The tricky part here is that agreement should be reached on what the
group actually looks like before a message can be delivered. If a sender
intended to have a message delivered by each member of a group G, but that,
for whatever reason, at the time of delivery we actually have another group
G′ 6= G, we should ask ourselves if the message can be delivered or not.
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The situation becomes simpler if we can ignore consensus on group mem-
bership. In particular, let us first assume that a sending process has a list of
intended recipients. In that case, it can simply deploy reliable transport-level
protocols such as TCP and, one by one, sends its message to each recipient. If
a receiving process fails, the message may be resent later when the process
recovers, or ignored altogether (for example, because the sender had left the
group). In case a group member is expected to send a response, even if it
is just an acknowledgement, communication can be speeded up by separat-
ing the sending of a request from receiving a response, as illustrated by the
message sequence charts in Figure 8.21.

(a)

(b)

Figure 8.21: (a) A sender sends out requests, but waits for a response before
sending out the next one. (b) Requests are sent out in parallel, after which the
sender waits for incoming responses.

Most transport layers offer reliable point-to-point channels; they rarely
offer reliable communication to a group of processes. The best they offer is to
let a process set up a point-to-point connection to each other process it wants
to communicate with. When process groups are relatively small, this approach
to establishing reliability is a straightforward and practical solution. On the
other hand, we can often assume that the underlying communication system
does offer unreliable multicasting, meaning that a multicast message may be
lost part way and delivered by some, but not all, of the intended receivers.
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A simple solution to reach reliable group communication is shown in
Figure 8.22. The sending process assigns a sequence number to each message
it multicasts and stores the message locally in a history buffer. Assuming
the receivers are known to the sender, the sender simply keeps the message
in its history buffer until each receiver has returned an acknowledgment.
A receiver can suspect it is missing a message m with sequence number s
when it has received messages with sequence numbers higher than s. In that
case, it returns a negative acknowledgement to the sender, requesting for a
retransmission of m.

(a)

(b)

Figure 8.22: A solution for reliable multicasting. (a) Message transmission.
(b) Reporting feedback.

There are various design trade-offs to be made. For example, to reduce the
number of messages returned to the sender, acknowledgments could possibly
be piggybacked with other messages. Also, retransmitting a message can be
done using point-to-point communication to each requesting process, or using
a single multicast message sent to all processes. General issues on reliable
multicasting are discussed by Popescu et al. [2007]. A survey and overview
of reliable multicasting in the context of publish/subscribe systems, which is
also relevant here is [Esposito et al., 2013].

Note 8.10 (Advanced: Scalability in reliable multicasting)
The main problem with the reliable multicast scheme just described is that it
cannot support large numbers of receivers. If there are N receivers, the sender
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must be prepared to accept at least N acknowledgments. With many receivers,
the sender may be swamped with such feedback messages, which is also referred
to as a feedback implosion. When replicating processes for fault tolerance, this
situation is not likely to occur as process groups are relatively small. When
replicating for performance, we have a different case. Moreover, we may then also
need to take into account that the receivers are spread across a wide-area network.

One solution to the problem of a feedback implosion is not to have receivers
acknowledge the receipt of a message. Instead, a receiver returns a feedback
message only to inform the sender it is missing a message. Returning only such
negative acknowledgments can be shown to generally scale better [Towsley et al.,
1997], but no hard guarantees can be given that feedback implosions will never
happen.

Another problem with returning only negative acknowledgments is that
the sender will, in theory, be forced to keep a message in its history buffer
forever. Because the sender can never know if a message has been correctly
delivered to all receivers, it should always be prepared for a receiver requesting
the retransmission of an old message. In practice, the sender will remove a
message from its history buffer after some time has elapsed to prevent the buffer
from overflowing. However, removing a message is done at the risk of a request
for a retransmission not being honored.

Several proposals for scalable reliable multicasting exist. A comparison be-
tween different schemes can be found in [Levine and Garcia-Luna-Aceves, 1998].
We now briefly discuss two very different approaches that are representative of
many existing solutions.

Nonhierarchical feedback control The key issue to scalable solutions for reli-
able multicasting is to reduce the number of feedback messages that are returned
to the sender. A popular model that has been applied to several wide-area
applications is feedback suppression. This scheme underlies the Scalable Reli-
able Multicasting (SRM) protocol developed by Floyd et al. [1997] and works as
follows.

First, in SRM, receivers never acknowledge the successful delivery of a multi-
cast message, but instead, report only when they are missing a message. How
message loss is detected is left to the application. Only negative acknowledgments
are returned as feedback. Whenever a receiver notices that it missed a message, it
multicasts its feedback to the rest of the group.

Multicasting feedback allows another group member to suppress its own
feedback. Suppose several receivers missed message m. Each of them will need to
return a negative acknowledgment to the sender, S, so that m can be retransmitted.
However, if we assume that retransmissions are always multicast to the entire
group, it is sufficient that only a single request for retransmission reaches S.

For this reason, a receiver R that did not receive message m schedules a
feedback message with some random delay. That is, the request for retransmission
is not sent until some random time has elapsed. If, in the meantime, another
request for retransmission for m reaches R, R will suppress its own feedback,
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knowing that m will be retransmitted shortly. In this way, ideally, only a single
feedback message will reach S, which in turn subsequently retransmits m. This
scheme is shown in Figure 8.23.

Figure 8.23: Several receivers have scheduled a request for retransmission,
but the first retransmission request leads to the suppression of others.

Feedback suppression has shown to scale reasonably well, and has been used
as the underlying mechanism for a number of collaborative Internet applications,
such as a shared whiteboard. However, the approach also introduces a number
of serious problems. First, ensuring that only one request for retransmission is
returned to the sender requires a reasonably accurate scheduling of feedback
messages at each receiver. Otherwise, many receivers will still return their
feedback at the same time. Setting timers accordingly in a group of processes that
is dispersed across a wide-area network is not that easy.

Another problem is that multicasting feedback also interrupts those processes
to which the message has been successfully delivered. In other words, other
receivers are forced to receive and process messages that are useless to them. The
only solution to this problem is to let receivers that have not received message
m join a separate multicast group for m, as explained by Kasera et al. [1997].
Unfortunately, this solution requires that groups can be managed in a highly
efficient manner, which is hard to accomplish in a wide-area system. A better
approach is therefore to let receivers that tend to miss the same messages team up
and share the same multicast channel for feedback messages and retransmissions.
Details on this approach are found in [Liu et al., 1998].

To enhance the scalability of SRM, it is useful to let receivers assist in local
recovery. In particular, if a receiver to which message m has been successfully
delivered, receives a request for retransmission, it can decide to multicast m even
before the retransmission request reaches the original sender. Further details can
be found in [Floyd et al., 1997] and [Liu et al., 1998].

Hierarchical feedback control Feedback suppression as just described is basi-
cally a nonhierarchical solution. However, achieving scalability for very large
groups of receivers requires that hierarchical approaches are adopted. A solution
is shown in Figure 8.24. The group of receivers is partitioned into a number
of subgroups, which are subsequently organized into a tree. Within each sub-
group, any reliable multicasting scheme that works for small groups can be used.
Each subgroup appoints a local coordinator, which represents that group in the
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multicast tree. A link in the tree between two nodes corresponds to a reliable
connection between the coordinators of the respective subgroups.

When a process S in group G wants to send a message, it simply uses the
reliable multicast scheme for G to reach all its members, including the group’s
coordinator, say C. C, in turn, will forward the message to its neighboring
coordinators. As a general rule, a coordinator will forward an incoming message
m to all its neighboring coordinators, except the one from which it received m.
In addition, a coordinator will reliably multicast the incoming message to all
members of the subgroup it represents, and notably also handle retransmissions
for that group.

In an ACK-based scheme, if coordinator C of group G sends a message m to
coordinator C′ of another, neighboring group G′, it will keep m in its history buffer
at least until C′ has sent an acknowledgement. In a NACK-based scheme, only if
G′ detects it has missed m (and thus also all members of G′, and all coordinators
to which G′ would have forwarded m), it will send a nack message to C. It
is thus seen that a single ack or nack message from a coordinator, aggregates
many feedback control messages from other processes, leading to a much more
scalable reliable multicasting scheme. Scalability is further improved by letting a
coordinator handle the retransmissions to neighboring coordinators to which it
had forwarded a message.

Figure 8.24: The essence of hierarchical reliable multicasting. Each local
coordinator forwards the message to its neighboring coordinators in the
tree and later handles retransmission requests.

Note that the nonhierarchical feedback control which we discussed before
can be used to improve the scalability of a single multicast group. Together
with hierarchical feedback control, we would combine relatively large reliable-
multicast subgroups into potentially large trees, thus being able to support reliable
multicasting for very large groups of processes.

The main problem with hierarchical solutions is the construction and manage-
ment of the tree: how are subgroups formed, which processes are appointed to
be coordinator, and how are the subgroups organized in a tree. In many cases, a
tree needs to be constructed dynamically. Unfortunately, traditional network-level
solutions provide almost no adequate services for tree management. For this
reason, application-level multicasting solutions as we discussed in Section 4.4
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have gained popularity.

Gossip-based scalable reliable multicasting Finally, let us briefly consider
gossip-based multicasting schemes, in particular the following push-pull anti-
entropy scheme that we discussed extensively in Section 4.4 .

In this scheme, a node P picks another node Q at random, and subsequently
exchanges updates with Q. In other words, P pushes updates that Q has not seen
before to Q, and pulls in any updates that Q has, but which were missed by P.
After the exchange, both processes have the same data. Clearly, this scheme is
already inherently robust, for if the communication between P and Q fails for
whatever reason, P will simply pick some other node to exchange updates. The
net effect is that the speed by which an update propagates through the system
slows down, but the reliability is affected only in extreme cases. Nevertheless,
this slowdown is considered important for some applications. In this light,
the comparison between traditional tree-based multicasting and gossip-based
multicasting for the purpose of aggregation as discussed by Nyers and Jelasity
[2015] may be of interest.

In conclusion, building reliable multicast schemes that can scale to a large
number of receivers spread across large networks, is a difficult problem. No single
best solution exists, and each solution introduces new problems.

Atomic multicast

Let us now return to the situation in which we need to achieve reliable
multicasting in the presence of process failures. In particular, what is often
needed in a distributed system is the guarantee that a message is delivered to
either all group members or to none at all. This is also known as the atomic
multicast problem.

To see why atomicity is so important, consider a replicated database con-
structed as an application on top of a distributed system. The distributed
system offers reliable multicasting facilities. In particular, it allows the con-
struction of process groups to which messages can be reliably sent. The
replicated database is therefore constructed as a group of processes, one pro-
cess for each replica. Update operations are always multicast to all replicas
and subsequently performed locally. We are thus assuming that an active-
replication protocol is being used.

To keep matters simple, assume a client contacts a replica P and requests
it to perform an update. The replica does so by multicasting the update to
the other group members. Unfortunately, before the multicast completes,
P crashes, leaving the rest of the group in a difficult position: some group
members will have received the update request; others will not. If the members
who have received the request deliver it to the database, then obviously we will
have an inconsistent replicated database. Some replicas will have processed

downloaded by OLEXANDER.PERIG@GMAIL.COM DS 3.02



478 CHAPTER 8. FAULT TOLERANCE

the update, others will not. This situation needs to be avoided and we should
either have that the update is delivered to all nonfaulty members, or to none
at all. The former case reflects that P crashed after completing the multicast,
while the latter represents P crashing before it even got a chance to request
the update.

Both these situations are fine, and correspond to the case in which a client
communicates with a single server that is allowed to crash. If a number
of the group members would execute the update, while others would not,
distribution transparency is at stake, but even worse, the client would not
know what to make of the situation.

Virtual synchrony

Reliable multicast in the presence of process failures can be accurately defined
in terms of process groups and changes to group membership. As we did
earlier, we make a distinction between receiving and delivering a message. In
particular, we again adopt a model in which the distributed system consists
of message-handling components as was shown in Figure 8.20. A received
message is locally buffered in this component until it can be delivered to the
application, which is logically placed as a group member at a higher layer.

The whole idea of atomic multicasting is that a multicast message m is
uniquely associated with a list of processes that should deliver it. This delivery
list corresponds to a group view, namely, the view on the set of processes
contained in the group, which the sender had at the time message m was
multicast. An important observation is that each process on that list has the
same view. In other words, they should all agree that m should be delivered
by each one of them and by no other process.

Now suppose that message m is multicast at the time its sender, say P, has
group view G. Furthermore, assume that while the multicast is taking place,
another process Q joins or leaves the group. This change in group membership
is naturally announced to all processes in G. Stated somewhat differently, a
view change takes place by multicasting a message vc announcing the joining
or leaving of Q. We now have two multicast messages simultaneously in
transit: m and vc. What we need to guarantee is that m is either delivered by
all processes in G before any one executes the view change as specified by
vc, or m is not delivered at all. Note that this requirement is comparable to
total-ordered multicasting, which we discussed in Chapter 6.

A question that quickly comes to mind is that if m is not delivered by
any process, how can we speak of a reliable multicast protocol? In principle,
there is only one case in which delivery of m is allowed to fail: when the
group membership change is the result of the sender P of m crashing. In that
case, either all remaining (nonfaulty) members of G should deliver m before
agreeing P is no longer member of the group, or none should deliver m. As
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Figure 8.25: The principle of virtual synchronous multicast.

mentioned before, the latter corresponds to the situation that P is considered
to have crashed before it had a chance to send m.

This stronger form of reliable multicast guarantees that a message multicast
to group view G is delivered by each nonfaulty process in G. If the sender of
the message crashes during the multicast, the message is either delivered to
all remaining processes, or ignored by each of them. Such a reliable multicast
is said to be virtually synchronous [Birman and Joseph, 1987].

To illustrate these matters, consider the four processes shown in Figure 8.25.
At a certain point in time, we have a group consisting of S1, S2, S3, and
S4. After some messages have been multicast, S3 crashes. However, before
crashing, it succeeded in multicasting a message to processes S2 and S4, but
not to S1. However, virtual synchrony in this case guarantees that the message
is not delivered at all, effectively establishing the situation that the message
was never sent before S3 crashed.

After S3 has been removed from the group, communication proceeds
between the remaining group members. Later, when S3 recovers, it can join
the group again, after its state has been brought up to date.

The principle of virtual synchrony comes from the fact that all multicasts
take place between view changes. Put somewhat differently, a view change
acts as a barrier across which no multicast can pass. In a sense, it is comparable
to the use of a synchronization variable in distributed data stores as discussed
in the previous chapter. All multicasts that are in transit while a view change
takes place are completed before the view change comes into effect. The
implementation of virtual synchrony is not trivial as we discuss below.

Message Ordering

Virtual synchrony allows an application developer to think about multicasts
as taking place in epochs that are separated by group membership changes.
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However, nothing has yet been said concerning the ordering of multicasts. In
general, four different orderings are distinguished:

1. Unordered multicasts
2. FIFO-ordered multicasts
3. Causally ordered multicasts
4. Totally ordered multicasts

A reliable, unordered multicast is a virtually synchronous multicast in
which no guarantees are given concerning the order in which received mes-
sages are delivered by different processes. To explain, assume that reliable
multicasting is supported by a library providing a send and a receive primitive.
The receive operation blocks the caller until a message can be delivered.

Event order Process P1 Process P2 Process P3
1 sends m1 receives m1 receives m2

2 sends m2 receives m2 receives m1

Figure 8.26: Three communicating processes in the same group. The ordering
of events per process is shown along the vertical axis.

Now suppose a sender P1 multicasts two messages to a group while two
other processes in that group are waiting for messages to arrive, as shown
in Figure 8.26. Assuming that processes do not crash or leave the group
during these multicasts, it is possible that the message-handling component
at P2 first receives message m1 and then m2. Because there are no message-
ordering constraints, the messages may be delivered in the order that they are
received. In contrast, the message-handling component at P3 may first receive
message m2 followed by m1, and delivers these two in this same order to the
higher-level application of P3.

In the case of reliable FIFO-ordered multicasts, the message-handling
component layer is forced to deliver incoming messages from the same process
in the same order as they have been sent. Consider the communication within
a group of four processes, as shown in Figure 8.27. With FIFO ordering,
the only thing that matters is that message m1 is always delivered before
m2, and, likewise, that message m3 is always delivered before m4. This rule
has to be obeyed by all processes in the group. In other words, when the
communication layer at P3 receives m2 first, it will wait with delivery to P3

until it has received and delivered m1.
However, there is no constraint regarding the delivery of messages sent

by different processes. In other words, if process P2 receives m1 before m3, it
may deliver the two messages in that order. Meanwhile, process P3 may have
received m3 before receiving m1. FIFO ordering states that P3 may deliver m3

before m1, although this delivery order is different from that of P2.
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Event order Process P1 Process P2 Process P3 Process P4
1 sends m1 receives m1 receives m3 sends m3

2 sends m2 receives m3 receives m1 sends m4

3 receives m2 receives m2

4 receives m4 receives m4

Figure 8.27: Four processes in the same group with two different senders, and
a possible delivery order of messages under FIFO-ordered multicasting.

Finally, reliable causally ordered multicast delivers messages so that
potential causality between different messages is preserved. In other words, if
a message m1 causally precedes another message m2, regardless of whether
they were multicast by the same sender, then the communication layer at each
receiver will always deliver m2 after it has received and delivered m1. Note
that causally ordered multicasts can be implemented using vector timestamps
as discussed in Chapter 6.

Besides these three orderings, there may be the additional constraint that
message delivery is to be totally ordered as well. Total-ordered delivery
means that regardless of whether message delivery is unordered, FIFO or-
dered, or causally ordered, it is required additionally that when messages are
delivered, they are delivered in the same order to all group members.

For example, with the combination of FIFO and totally ordered multicast,
processes P2 and P3 in Figure 8.27 may both first deliver message m3 and
then message m1. However, if P2 delivers m1 before m3, while P3 delivers m3

before delivering m1, they would violate the total-ordering constraint. Note
that FIFO ordering should still be respected. In other words, m2 should be
delivered after m1 and, accordingly, m4 should be delivered after m3.

Virtually synchronous reliable multicasting offering total-ordered delivery
of messages is called atomic multicasting. With the three different mes-
sage ordering constraints discussed above, this leads to six forms of reliable
multicasting as shown in Figure 8.28 [Hadzilacos and Toueg, 1993].

Multicast Basic message ordering TO delivery?
Reliable multicast None No
FIFO multicast FIFO-ordered delivery No
Causal multicast Causal-ordered delivery No
Atomic multicast None Yes
FIFO atomic multicast FIFO-ordered delivery Yes
Causal atomic multicast Causal-ordered delivery Yes

Figure 8.28: Six different versions of virtually synchronous reliable multicast-
ing and considering totally ordered delivery.
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Note 8.11 (Advanced: Implementing virtual synchrony)
Let us now consider a possible implementation of a virtually synchronous reliable
multicast. An example of such an implementation appears in Isis, a fault-tolerant
distributed system that has been in practical use in industry for several years. We
will focus on some of the implementation issues of this technique as described in
Birman et al. [1991].

Reliable multicasting in Isis makes use of available reliable point-to-point com-
munication facilities of the underlying network, in particular, TCP. Multicasting a
message m to a group of processes is implemented by reliably sending m to each
group member. As a consequence, although each transmission is guaranteed to
succeed, there are no guarantees that all group members receive m. In particular,
the sender may fail before having transmitted m to each member.

Besides reliable point-to-point communication, Isis also assumes that messages
from the same source are received by a communication layer in the order they
were sent by that source. In practice, this requirement is solved by using TCP
connections for point-to-point communication.

The main problem that needs to be solved is to guarantee that all messages
sent to view G are delivered to all nonfaulty processes in G before the next group
membership change takes place. The first issue that needs to be taken care of
is making sure that each process in G has received all messages that were sent
to G. Note that because the sender of a message m to G may have failed before
completing its multicast, there may indeed be processes in G that will never
receive m. Because the sender has crashed, these processes should get m from
somewhere else.

The solution to this problem is to let every process in G keep m until it knows
for sure that all members in G have received it. If m has been received by all
members in G, m is said to be stable. Only stable messages are allowed to be
delivered. To ensure stability, it is sufficient to select an arbitrary live process in
G and request it to send m to all other processes in G.

To be more specific, assume the current view is Gi, but that it is necessary
to install the next view Gi+1. Without loss of generality, we assume that Gi and
Gi+1 differ by at most one process. A process P notices the view change when
it receives a view-change message. Such a message may come from the process
wanting to join or leave the group, or from a process that had detected the failure
of a process in Gi that is now to be removed, as shown in Figure 8.29(a).

When a process P receives the view-change message for Gi+1, it first forwards
a copy of any unstable message from Gi it still has to every process in Gi+1, and
subsequently marks it as being stable. Recall that Isis assumes point-to-point
communication is reliable, so that forwarded messages are never lost. Such
forwarding guarantees that all messages in Gi that have been received by at least
one process are received by all nonfaulty processes in Gi. Note that it would also
have been sufficient to elect a single coordinator to forward unstable messages.

To indicate that P no longer has any unstable messages and that it is prepared
to install Gi+1 as soon as the other processes can do that as well, it multicasts a
flush message for Gi+1, as shown in Figure 8.29(b). After P has received a flush
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message for Gi+1 from each other process, it can safely install the new view, as
shown in Figure 8.29(c).

(a) (b) (c)

Figure 8.29: (a) Process 4 notices that process 7 has crashed and sends a
view change. (b) Process 6 sends out all its unstable messages, followed by
a flush message. (c) Process 6 installs the new view when it has received
a flush message from everyone else.

When a process Q receives a message m while Q still believes the current
view is Gi, it delivers m taking any additional message-ordering constraints into
account. If it had already received m, it considers the message to be a duplicate
and discards it.

Because process Q will eventually receive the view-change message for Gi+1,
it will also first forward any of its unstable messages and subsequently wrap
things up by sending a flush message for Gi+1. Note that due to the assumed
FIFO-message ordering as provided by the underlying communication layer, a
flush message from a process is always received after the receipt of an unstable
message from that same process.

The major flaw in the protocol described so far is that it cannot deal with
process failures while a new view change is being announced. In particular, it
assumes that until the new view Gi+1 has been installed by each member in
Gi+1, no process in Gi+1 will fail (which would lead to a next view Gi+2). This
problem is solved by announcing view changes for any view Gi+k even while
previous changes have not yet been installed by all processes. The details are
rather intricate, yet the principle should be clear.

8.5 Distributed commit

The atomic multicasting problem discussed in the previous section is an
example of a more general problem, known as distributed commit. The
distributed commit problem involves having an operation being performed
by each member of a process group, or none at all. In the case of reliable
multicasting, the operation is the delivery of a message. With distributed
transactions, the operation may be the commit of a transaction at a single site
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that takes part in the transaction. Other examples of distributed commit, and
how it can be solved are discussed by Tanisch [2000].

Distributed commit is often established by means of a coordinator. In a
simple scheme, this coordinator tells all other processes that are also involved,
called participants, whether or not to (locally) perform the operation in
question. This scheme is referred to as a one-phase commit protocol. It has
the obvious drawback that if one of the participants cannot actually perform
the operation, there is no way to tell the coordinator. For example, in the case
of distributed transactions, a local commit may not be possible because this
would violate concurrency control constraints.

In practice, more sophisticated schemes are needed, the most common one
being the two-phase commit protocol, which we discuss in detail below. The
main drawback of this protocol is that it cannot generally efficiently handle
the failure of the coordinator. To that end, a three-phase protocol has been
developed, which we discuss separately in Note 8.13.

The original two-phase commit protocol (2PC) is due to Gray [1978].
Without loss of generality, consider a distributed transaction involving the
participation of a number of processes each running on a different machine.
Assuming that no failures occur, the protocol consists of the following two
phases, each consisting of two steps (see also Bernstein and Newcomer [2009]):

1. The coordinator sends a vote-request message to all participants.
2. When a participant receives a vote-request message, it returns either a

vote-commit message to the coordinator telling the coordinator that it
is prepared to locally commit its part of the transaction, or otherwise a
vote-abort message.

3. The coordinator collects all votes from the participants. If all participants
have voted to commit the transaction, then so will the coordinator. In that
case, it sends a global-commit message to all participants. However,
if one participant had voted to abort the transaction, the coordinator
will also decide to abort the transaction and multicasts a global-abort

message.
4. Each participant that voted for a commit waits for the final reaction

by the coordinator. If a participant receives a global-commit mes-
sage, it locally commits the transaction. Otherwise, when receiving a
global-abort message, the transaction is locally aborted as well.

The first phase is the voting phase, and consists of steps 1 and 2. The second
phase is the decision phase, and consists of steps 3 and 4. These four steps
are shown as finite state diagrams in Figure 8.30.

Several problems arise when this basic 2PC protocol is used in a system
where failures occur. First, note that the coordinator as well as the participants
have states in which they block waiting for incoming messages. Consequently,
the protocol can easily fail when a process crashes for other processes may be
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(a) (b)

Figure 8.30: (a) The finite state machine for the coordinator in 2PC. (b) The
finite state machine for a participant.

indefinitely waiting for a message from that process. For this reason, timeout
mechanisms are used. These mechanisms are explained in the following
pages.

When taking a look at the finite state machines in Figure 8.30, it can be seen
that there are a total of three states in which either a coordinator or participant
is blocked waiting for an incoming message. First, a participant may be
waiting in its INIT state for a vote-request message from the coordinator.
If that message is not received after some time, the participant will simply
decide to locally abort the transaction, and thus send a vote-abort message
to the coordinator.

Likewise, the coordinator can be blocked in state WAIT, waiting for the
votes of each participant. If not all votes have been collected after a cer-
tain period of time, the coordinator should vote for an abort as well, and
subsequently send global-abort to all participants.

Finally, a participant can be blocked in state READY, waiting for the global
vote as sent by the coordinator. If that message is not received within a given
time, the participant cannot simply decide to abort the transaction. Instead,
it must find out which message the coordinator actually sent. The simplest
solution to this problem is to let each participant block until the coordinator
recovers again.

A better solution is to let a participant P contact another participant Q to
see if it can decide from Q’s current state what it should do. For example,
suppose that Q had reached state COMMIT. This is possible only if the
coordinator had sent a global-commit message to Q just before crashing.
Apparently, this message had not yet been sent to P. Consequently, P may
now also decide to locally commit. Likewise, if Q is in state ABORT, P can
safely abort as well.

Now suppose that Q is still in state INIT. This situation can occur when
the coordinator has sent vote-request to all participants, but this message
has reached P (which subsequently responded with a vote-commit message),
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State of Q Action by P

COMMIT Make transition to COMMIT

ABORT Make transition to ABORT

INIT Make transition to ABORT

READY Contact another participant

Figure 8.31: Actions taken by a participant P when residing in state READY

and having contacted another participant Q.

but has not reached Q. In other words, the coordinator had crashed while
multicasting vote-request. In this case, it is safe to abort the transaction:
both P and Q can make a transition to state ABORT.

The most difficult situation occurs when Q is also in state READY, waiting
for a response from the coordinator. In particular, if it turns out that all
participants are in state READY, no decision can be taken. The problem
is that although all participants are willing to commit, they still need the
coordinator’s vote to reach the final decision. Consequently, the protocol
blocks until the coordinator recovers.

The various options are summarized in Figure 8.31.
To ensure that a process can actually recover, it is necessary that it saves

its state to persistent storage. For example, if a participant was in state INIT,
it can safely decide to locally abort the transaction when it recovers, and
then inform the coordinator. Likewise, when it had already taken a decision
such as when it crashed while being in either state COMMIT or ABORT, it
is in order to recover to that state again, and retransmit its decision to the
coordinator.

Problems arise when a participant crashed while residing in state READY.
In that case, when recovering, it cannot decide on its own what it should do
next, that is, commit or abort the transaction. Consequently, it is forced to
contact other participants to find what it should do, analogous to the situation
when it times out while residing in state READY as described above.

The coordinator has only two critical states it needs to keep track of. When
it starts the 2PC protocol, it should record that it is entering state WAIT so
that it can possibly retransmit the vote-request message to all participants
after recovering. Likewise, if it had come to a decision in the second phase, it
is sufficient if that decision has been recorded so that it can be retransmitted
when recovering.

It may thus be possible that a participant will need to block until the
coordinator recovers. This situation occurs when all participants have received
and processed the vote-request message from the coordinator, while in
the meantime, the coordinator crashed. In that case, participants cannot
cooperatively decide on the final action to take. For this reason, 2PC is also
referred to as a blocking commit protocol.
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There are several solutions to avoid blocking. One solution is to use a
multicast primitive by which a receiver immediately multicasts a received
message to all other processes [Babaoglu and Toueg, 1993]. It can be shown
that this approach allows a participant to reach a final decision, even if the
coordinator has not yet recovered. Another solution is to use three instead of
two phases, as we discuss in Note 8.13.

Note 8.12 (Advanced: 2PC outlined in Python)
An outline of the actions that are executed by the coordinator is given in Fig-
ure 8.32. The coordinator starts by multicasting a vote-request to all participants
in order to collect their votes. It subsequently records that it is entering the WAIT

state, after which it waits for incoming votes from participants.

1 class Coordinator:
2

3 def run(self):
4 yetToReceive = list(participants)
5 self.log.info(’WAIT’)
6 self.chan.sendTo(participants, VOTE_REQUEST)
7 while len(yetToReceive) > 0:
8 msg = self.chan.recvFrom(participants, TIMEOUT)
9 if (not msg) or (msg[1] == VOTE_ABORT):

10 self.log.info(’ABORT’)
11 self.chan.sendTo(participants, GLOBAL_ABORT)
12 return
13 else: # msg[1] == VOTE_COMMIT
14 yetToReceive.remove(msg[0])
15 self.log.info(’COMMIT’)
16 self.chan.sendTo(participants, GLOBAL_COMMIT)

Figure 8.32: The steps taken by the coordinator in a 2PC protocol.

If not all votes have been collected but no more votes are received within
a given time interval prescribed in advance, the coordinator assumes that one
or more participants have failed. Consequently, it should abort the transaction
and multicasts a global-abort to the (remaining) participants. Likewise, if only
a single participant decides to abort the transaction, the coordinator will have
to call off the transaction. If all participants vote to commit, global-commit is
first logged and subsequently sent to all processes. Otherwise, the coordinator
multicasts a global-abort (after recording it in the local log).

After receiving a vote request, the participant does its work. All bets are
off if its work failed, but otherwise, it will vote for committing the transaction.
It records its decision in a local log and informs the coordinator by sending a
vote-commit message. The participant must then wait for the global decision.
Assuming this decision (which again should come from the coordinator) comes in
on time, it is simply written to the local log, after which it can be carried out (the
latter is not shown in the code).

Figure 8.33 shows the steps taken by a participant. First, the process waits for
a vote request from the coordinator. If no message comes in, the transaction is
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simply aborted. Apparently, the coordinator had failed.

1 class Participant:
2 def run(self):
3 self.log.info(’INIT’)
4 msg = self.chan.recvFrom(coordinator, TIMEOUT)
5 if (not msg): # Crashed coordinator - give up entirely
6 decision = LOCAL_ABORT
7 else: # Coordinator will have sent VOTE_REQUEST
8 decision = self.do_work()
9 if decision == LOCAL_ABORT:

10 self.chan.sendTo(coordinator, VOTE_ABORT)
11 else: # Ready to commit, enter READY state
12 self.log.info(’READY’)
13 self.chan.sendTo(coordinator, VOTE_COMMIT)
14 msg = self.chan.recvFrom(coordinator, TIMEOUT)
15 if (not msg): # Crashed coordinator - check the others
16 self.chan.sendTo(all_participants, NEED_DECISION)
17 while True:
18 msg = self.chan.recvFromAny()
19 if msg[1] in [GLOBAL_COMMIT, GLOBAL_ABORT, LOCAL_ABORT]:
20 decision = msg[1]
21 break
22 else: # Coordinator came to a decision
23 decision = msg[1]
24 if decision == GLOBAL_COMMIT:
25 self.log.info(’COMMIT’)
26 else: # decision in [GLOBAL_ABORT, LOCAL_ABORT]:
27 self.log.info(’ABORT’)
28 while True: # Help any other participant when coordinator crashed
29 msg = self.chan.recvFrom(all_participants)
30 if msg[1] == NEED_DECISION:
31 self.chan.sendTo([msg[0]], decision)

Figure 8.33: The steps taken by a participant process in 2PC.

However, if the participant times out while waiting for the coordinator’s
decision to come in, it executes a termination protocol by first multicasting a
decision-request message to the other processes, after which it subsequently
blocks while waiting for a response. When a decisive response comes in (possibly
from the coordinator, which is assumed to eventually recover), the participant
writes the decision to its local log and handles accordingly. Any request from
another participant for the final decision is left unanswered as long as that decision
is not known.

We keep every participant up-and-running after it decided to either commit
or abort. It can then assist other participants in need of a decision after detecting
that the coordinator had crashed. To this end, a participant blocks on incoming
messages and returns its own decision when asked for. Note that we are actually
providing an implementation that supports partially synchronous behavior: we
assume that timeouts can be applied as a mechanism to detect failures, but take
into account that we may have mistakenly concluded that a server crashed.
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Note 8.13 (Advanced: Three-phase commit)
A problem with the two-phase commit protocol is that when the coordinator has
crashed, participants may not be able to reach a final decision. Consequently,
participants may need to remain blocked until the coordinator recovers. Skeen
[1981] developed a variant of 2PC, called the three-phase commit protocol (3PC),
that avoids blocking processes in the presence of fail-stop crashes. Although 3PC
is widely referred to in the literature, it is not applied often in practice as the
conditions under which 2PC blocks rarely occur. We discuss the protocol, as
it provides further insight into solving fault-tolerance problems in distributed
systems.

Like 2PC, 3PC is also formulated in terms of a coordinator and a number of
participants. Their respective finite state machines are shown in Figure 8.34. The
essence of the protocol is that the states of the coordinator and each participant
satisfy the following two conditions:

1. There is no single state from which it is possible to make a transition directly
to either a COMMIT or an ABORT state.

2. There is no state in which it is not possible to make a final decision, and
from which a transition to a COMMIT state can be made.

It can be shown that these two conditions are necessary and sufficient for a commit
protocol to be nonblocking [Skeen and Stonebraker, 1983].

(a) (b)

Figure 8.34: (a) The finite state machine for the coordinator in 3PC. (b) The
finite state machine for a participant.

The coordinator in 3PC starts with sending a vote-request message to all
participants, after which it waits for incoming responses. If any participant
votes to abort the transaction, the final decision will be to abort as well, so
the coordinator sends global-abort. However, when the transaction can be
committed, a prepare-commit message is sent. Only after each participant has
acknowledged it is now prepared to commit, will the coordinator send the final
global-commit message by which the transaction is actually committed.

Again, there are only a few situations in which a process is blocked while
waiting for incoming messages. First, if a participant is waiting for a vote request
from the coordinator while residing in state INIT, it will eventually make a
transition to state ABORT, thereby assuming that the coordinator has crashed.
This situation is identical to that in 2PC. Analogously, the coordinator may be in

downloaded by OLEXANDER.PERIG@GMAIL.COM DS 3.02



490 CHAPTER 8. FAULT TOLERANCE

state WAIT, waiting for the votes from participants. On a timeout, the coordinator
will conclude that a participant crashed, and will thus abort the transaction by
multicasting a global-abort message.

Now suppose the coordinator is blocked in state PRECOMMIT. On a timeout,
it will conclude that one of the participants had crashed, but that participant
is known to have voted for committing the transaction. Consequently, the co-
ordinator can instruct the operational participants to commit by multicasting a
global-commit message. In addition, it relies on a recovery protocol for the
crashed participant to commit its part of the transaction when it comes up again.

A participant P may block in the READY state or in the PRECOMMIT state.
On a timeout, P can conclude only that the coordinator has failed, so that it now
needs to find out what to do next. As in 2PC, if P contacts any other participant
that is in state COMMIT (or ABORT), P should move to that state as well. In
addition, if all participants are in state PRECOMMIT, the transaction can be
committed.

Again analogous to 2PC, if another participant Q is still in the INIT state,
the transaction can safely be aborted. It is important to note that Q can be in
state INIT only if no other participant is in state PRECOMMIT. A participant
can reach PRECOMMIT only if the coordinator had reached state PRECOMMIT

before crashing, and has thus received a vote to commit from each participant. In
other words, no participant can reside in state INIT while another participant is in
state PRECOMMIT.

If each of the participants that P can contact is in state READY (and they
together form a majority), the transaction should be aborted. The point to note
is that another participant may have crashed and will later recover. However,
neither P, nor any other of the operational participants knows what the state of
the crashed participant will be when it recovers. If the process recovers to state
INIT, then deciding to abort the transaction is the only correct decision. At worst,
the process may recover to state PRECOMMIT, but in that case, it cannot do any
harm to still abort the transaction.

This situation is the major difference with 2PC, where a crashed participant
could recover to a COMMIT state while all the others were still in state READY.
In that case, the remaining operational processes could not reach a final decision
and would have to wait until the crashed process recovered. With 3PC, if any
operational process is in its READY state, no crashed process will recover to a state
other than INIT, ABORT, or PRECOMMIT. For this reason, surviving processes
can always come to a final decision.

Finally, if the processes that P can reach are in state PRECOMMIT (and they
form a majority), then it is safe to commit the transaction. Again, it can be
shown that in this case, all other processes will either be in state READY or at
least, will recover to state READY, PRECOMMIT, or COMMIT when they had
crashed. More details on 3PC can be found in [Bernstein et al., 1987] and [Özsu
and Valduriez, 2011].
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8.6 Recovery

So far, we have mainly concentrated on algorithms that allow us to tolerate
faults. However, once a failure has occurred, it is essential that the process
where the failure happened can recover to a correct state. In what follows, we
first concentrate on what it actually means to recover to a correct state, and
subsequently when and how the state of a distributed system can be recorded
and recovered to, by means of checkpointing and message logging.

Introduction

Fundamental to fault tolerance is the recovery from an error. Recall that an
error is that part of a system that may lead to a failure. The whole idea of
error recovery is to replace an erroneous state with an error-free state. There
are essentially two forms of error recovery.

In backward recovery, the main issue is to bring the system from its
present erroneous state back into a previously correct state. To do so, it will
be necessary to record the system’s state from time to time, and to restore
such a recorded state when things go wrong. Each time (part of) the system’s
present state is recorded, a checkpoint is said to be made.

Another form of error recovery is forward recovery. In this case, when the
system has entered an erroneous state, instead of moving back to a previous,
checkpointed state, an attempt is made to bring the system in a correct new
state from which it can continue to execute. The main problem with forward
error recovery mechanisms is that it has to be known in advance which errors
may occur. Only in that case is it possible to correct those errors and move to
a new state.

The distinction between backward and forward error recovery is easily
explained when considering the implementation of reliable communication.
The common approach to recover from a lost packet is to let the sender
retransmit that packet. In effect, packet retransmission establishes that we
attempt to go back to a previous, correct state, namely the one in which the
packet that was lost is being sent. Reliable communication through packet
retransmission is therefore an example of applying backward error recovery
techniques.

An alternative approach is to use a method known as erasure correction.
In this approach, a missing packet is constructed from other, successfully
delivered packets. For example, in an (n, k)-block erasure code, a set of k
source packets is encoded into a set of n encoded packets, such that any set of
k encoded packets is enough to reconstruct the original k source packets.
Typical values are k = 16 or k = 32, and k < n ≤ 2k (see, for example, [Rizzo,
1997]). If not enough packets have yet been delivered, the sender will have to
continue transmitting packets until a previously lost packet can be constructed.
Erasure correction is a typical example of a forward error recovery approach.
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By and large, backward error recovery techniques are widely applied as a
general mechanism for recovering from failures in distributed systems. The
major benefit of backward error recovery is that it is a generally applicable
method independent of any specific system or process. In other words, it
can be integrated into (the middleware layer) of a distributed system as a
general-purpose service.

However, backward error recovery also introduces some problems [Singhal
and Shivaratri, 1994]. First, restoring a system or process to a previous state
is generally a relatively costly operation in terms of performance. As will be
discussed in succeeding sections, much work generally needs to be done to
recover from, for example, a process crash or site failure. A potential way out
of this problem, is to devise very cheap mechanisms by which components
are simply rebooted.

Second, because backward error recovery mechanisms are independent of
the distributed application for which they are actually used, no guarantees
can be given that once recovery has taken place, the same or similar failure
will not happen again. If such guarantees are needed, handling errors often
requires that the application gets into the loop of recovery. In other words,
full-fledged failure transparency can generally not be provided by backward
error recovery mechanisms.

Finally, although backward error recovery requires checkpointing, some
states can simply never be rolled back to. For example, once a (possibly
malicious) person has taken the $1,000 that suddenly came rolling out of the
incorrectly functioning automated teller machine, there is only a small chance
that money will be stuffed back in the machine. Likewise, recovering to a
previous state in most Unix systems after having enthusiastically typed

/bin/rm -fr *

but from the wrong working directory, may turn a few people pale. Some
things are simply irreversible.

Checkpointing allows the recovery to a previous correct state. However,
taking a checkpoint is often a costly operation and may have a severe perfor-
mance penalty. As a consequence, many fault-tolerant distributed systems
combine checkpointing with message logging. In this case, after a check-
point has been taken, a process logs its messages before sending them off
(called sender-based logging). An alternative solution is to let the receiving
process first log an incoming message before delivering it to the application
it is executing. This scheme is also referred to as receiver-based logging.
When a receiving process crashes, it is necessary to restore the most recently
checkpointed state, and from there on replay the messages that have been sent.
Consequently, combining checkpoints with message logging makes it possible
to restore a state that lies beyond the most recent checkpoint without the cost
of checkpointing.

In a system where only checkpointing is used, processes will be restored
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to a checkpointed state. From there on, their behavior may be different than it
was before the failure occurred. For example, because communication times
are not deterministic, messages may now be delivered in a different order,
in turn leading to different reactions by the receivers. However, if message
logging takes place, an actual replay of the events that happened since the
last checkpoint takes place. Such a replay makes it easier to interact with the
outside world.

For example, consider the case that a failure occurred because a user
provided erroneous input. If only checkpointing is used, the system would
have to take a checkpoint before accepting the user’s input in order to recover
to exactly the same state. With message logging, an older checkpoint can
be used, after which a replay of events can take place up to the point that
the user should provide input. In practice, the combination of having fewer
checkpoints and message logging is more efficient than having to take many
checkpoints.

Elnozahy et al. [2002] provide a survey of checkpointing and logging in
distributed systems. Various algorithmic details can be found in Chow and
Johnson [1997].

Checkpointing

In a fault-tolerant distributed system, backward error recovery requires that
the system regularly saves its state2. In particular, we need to record a
consistent global state, also called a distributed snapshot. In a distributed
snapshot, if a process P has recorded the receipt of a message, then there
should also be a process Q that has recorded the sending of that message.
After all, it must have come from somewhere.

Figure 8.35: A recovery line.

To recover after a process or system failure requires that we construct a
consistent global state from local states as saved by each process. In particular,
it is best to recover to the most recent distributed snapshot, also referred to

2We assume that each process has access to a local, reliable storage.
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as a recovery line. In other words, a recovery line corresponds to the most
recent consistent collection of checkpoints, as shown in Figure 8.35.

Coordinated checkpointing

In coordinated checkpointing all processes synchronize to jointly write their
state to local storage. The main advantage of coordinated checkpointing is
that the saved state is automatically globally consistent. A simple solution
is to use a two-phase blocking protocol. A coordinator first multicasts a
checkpoint-request message to all processes. When a process receives
such a message, it takes a local checkpoint, queues any subsequent message
handed to it by the application it is executing, and acknowledges to the
coordinator that it has taken a checkpoint. When the coordinator has received
an acknowledgment from all processes, it multicasts a checkpoint-done

message to allow the (blocked) processes to continue.
It is easy to see that this approach will also lead to a globally consistent

state, because no incoming message will ever be registered as part of a
checkpoint. The reason for this is that any message that follows a request for
taking a checkpoint is not considered to be part of the local checkpoint. At
the same time, outgoing messages (as handed to the checkpointing process by
the application it is running), are queued locally until the checkpoint-done

message is received.
An improvement to this algorithm is to send a checkpoint request only to

those processes that depend on the recovery of the coordinator, and ignore the
other processes. A process is dependent on the coordinator if it has received a
message that is directly or indirectly causally related to a message that the
coordinator had sent since the last checkpoint. This leads to the notion of an
incremental snapshot.

To take an incremental snapshot, the coordinator sends a checkpoint
request only to those processes it had sent a message to since it last took a
checkpoint. When a process P receives such a request, it forwards the request
to all those processes to which P itself had sent a message since the last
checkpoint, and so on. A process forwards the request only once. When all
processes have been identified, a second multicast is used to actually trigger
checkpointing and to let the processes continue where they had left off.

Independent checkpointing

Now consider the case in which each process simply records its local state
from time to time in an uncoordinated fashion. To discover a recovery line
requires that each process is rolled back to its most recently saved state. If
these local states jointly do not form a distributed snapshot, further rolling
back is necessary. This process of a cascaded rollback may lead to what is
called the domino effect and is shown in Figure 8.36.
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Figure 8.36: The domino effect.

When process P2 crashes, we need to restore its state to the most recently
saved checkpoint. As a consequence, process P1 will also need to be rolled
back. Unfortunately, the two most recently saved local states do not form a
consistent global state: the state saved by P2 indicates the receipt of a message
m, but no other process can be identified as its sender. Consequently, P2 needs
to be rolled back to an earlier state.

However, the next state to which P2 is rolled back also cannot be used as
part of a distributed snapshot. In this case, P1 will have recorded the receipt
of message m∗, but there is no recorded event of this message being sent. It is
therefore necessary to also roll P1 back to a previous state. In this example, it
turns out that the recovery line is actually the initial state of the system.

As processes take local checkpoints independent of each other, this method
is also referred to as independent checkpointing. Its implementation requires
that dependencies are recorded in such a way that processes can jointly roll
back to a consistent global state. To that end, let CPi(m) denote the m-th
checkpoint taken by process Pi. Also, let INTi(m) denote the interval between
checkpoints CPi(m− 1) and CPi(m).

When process Pi sends a message in interval INTi(m), it piggybacks the
pair (i, m) to the receiving process. When process Pj receives a message in in-
terval INTj(n), along with the pair of indices (i, m), it records the dependency
INTi(m) → INTj(n). Whenever Pj takes checkpoint CPj(n), it additionally
saves this dependency to its local storage, along with the rest of the recovery
information that is part of CPj(n).

Now suppose that at a certain moment, process P1 is required to roll back
to checkpoint CPi(m− 1). To ensure global consistency, we need to ensure
that all processes that have received messages from Pi and that were sent in
interval INTi(m), are rolled back to a checkpointed state preceding the receipt
of such messages. In particular, process Pj in our example, will need to be
rolled back at least to checkpoint CPj(n− 1). If CPj(n− 1) does not lead to a
globally consistent state, further rolling back may be necessary.

Calculating the recovery line requires an analysis of the interval depen-
dencies recorded by each process when a checkpoint was taken. Without
going into any further details, it turns out that such calculations are fairly
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complex. In addition, as it turns out, it is often not the coordination between
processes that is the dominating performance factor, but the overhead as the
result of having to save the state to local stable storage. Therefore, coordinated
checkpointing, which is much simpler than independent checkpointing, is
often more popular, and will presumably stay so even when systems grow to
much larger sizes [Elnozahy and Plank, 2004].

Message logging

Considering that checkpointing can be an expensive operation, techniques
have been sought to reduce the number of checkpoints, but still enable re-
covery. One such technique is logging messages. The basic idea underlying
message logging is that if the transmission of messages can be replayed, we
can still reach a globally consistent state but without having to restore that
state from local storages. Instead, a checkpointed state is taken as a starting
point, and all messages that have been sent since are simply retransmitted
and handled accordingly.

This approach works fine under the assumption of what is called a piece-
wise deterministic execution model. In such a model, the execution of each
process is assumed to take place as a series of intervals in which events
take place. These events are the same as those discussed in the context of
Lamport’s happened-before relationship in Chapter 6. For example, an event
may be the execution of an instruction, the sending of a message, and so on.
Each interval in the piecewise deterministic model is assumed to start with
a nondeterministic event, such as the receipt of a message. However, from
that moment on, the execution of the process is completely deterministic. An
interval ends with the last event before a nondeterministic event occurs.

In effect, an interval can be replayed with a known result, that is, in a
completely deterministic way, provided it is replayed starting with the same
nondeterministic event as before. Consequently, if we record all nondeter-
ministic events in such a model, it becomes possible to completely replay the
entire execution of a process in a deterministic way.

Considering that message logs are necessary to recover from a process
crash so that a globally consistent state is restored, it becomes important to
know precisely when messages are to be logged. Following the approach
described by Alvisi and Marzullo [1998], it turns out that many existing
message-logging schemes can be easily characterized if we concentrate on
how they deal with orphan processes.

An orphan process is a process that survives the crash of another process,
but whose state is inconsistent with the crashed process after its recovery. As
an example, consider the situation shown in Figure 8.37. Process Q receives
messages m1 and m2 from process P and R, respectively, and subsequently
sends a message m3 to R. However, in contrast to all other messages, message
m2 is not logged. If process Q crashes and later recovers again, only the logged
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messages required for the recovery of Q are replayed, in our example, m1.
Because m2 was not logged, its transmission will not be replayed, meaning
that the transmission of m3 may also not take place.

Figure 8.37: Incorrect replay of messages after recovery, leading to an orphan
process R.

However, the situation after the recovery of Q is inconsistent with that
before its recovery. In particular, R holds a message (m3) that was sent before
the crash, but whose receipt and delivery do not take place when replaying
what had happened before the crash. Such inconsistencies should obviously
be avoided.

Note 8.14 (Advanced: Characterizing message-logging schemes)
To characterize different message-logging schemes, we follow the approach de-
scribed by Alvisi and Marzullo [1998]. Each message m is considered to have a
header that contains all information necessary to retransmit m, and to properly
handle it. For example, each header will identify the sender and the receiver, but
also a sequence number to recognize it as a duplicate. In addition, a delivery
number may be added to decide when exactly it should be handed over to the
receiving application.

A message is said to be stable if it can no longer be lost, for example, because
it has been written to reliable, local storage. Stable messages can thus be used for
recovery by replaying their transmission.

Each message m leads to a set DEP(m) of processes that depend on the
delivery of m. In particular, DEP(m) consists of those processes to which m has
been delivered. In addition, if another message m∗ is causally dependent on
the delivery of m, and m∗ has been delivered to a process Q, then Q will also
be contained in DEP(m). Note that m∗ is causally dependent on the delivery of
m, if it was sent by the same process that previously delivered m, or which had
delivered another message that was causally dependent on the delivery of m.

The set COPY(m) consists of those processes that have a copy of m, but have
not (yet) reliably stored it. When a process Q delivers message m, it also becomes
a member of COPY(m). Note that COPY(m) consists of those processes that could
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hand over a copy of m that can be used to replay the transmission of m. If all
these processes crash, replaying the transmission of m is clearly not feasible.

Using these notations, it is now easy to define precisely what an orphan
process is. Let FAIL denote the collection of crashed processes, and assume Q is
one of the survivors. Q is an orphan process if there is a message m, such that
Q is contained in DEP(m), while at the same time every process in COPY(m) has
crashed. More formally:

Q is orphaned⇔ ∃m : Q ∈ DEP(m) and COPY(m) ⊆ FAIL

In other words, an orphan process appears when it is dependent on m, but there
is no way to replay m’s transmission.

To avoid orphan processes, we thus need to ensure that if each process in
COPY(m) crashed, then no surviving process is left in DEP(m). In other words, all
processes in DEP(m) should have crashed as well. This condition can be enforced
if we can guarantee that whenever a process becomes a member of DEP(m), it also
becomes a member of COPY(m). In other words, whenever a process becomes
dependent on the delivery of m, it will keep a copy of m.

There are essentially two approaches that can now be followed. The first
approach is represented by what are called pessimistic logging protocols. These
protocols take care that for each nonstable message m, there is at most one process
dependent on m. In other words, pessimistic logging protocols ensure that each
nonstable message m is delivered to at most one process. Note that as soon as m

is delivered to, say process P, P becomes a member of COPY(m).
The worst that can happen is that process P crashes without m ever having

been logged. With pessimistic logging, P is not allowed to send any messages
after the delivery of m without first having ensured that m has been written to
reliable storage. Consequently, no other processes will ever become dependent on
the delivery of m to P, without having the possibility of replaying the transmission
of m. In this way, orphan processes are always avoided.

In contrast, in an optimistic logging protocol, the actual work is done after
a crash occurs. In particular, assume that for some message m, each process in
COPY(m) has crashed. In an optimistic approach, any orphan process in DEP(m)
is rolled back to a state in which it no longer belongs to DEP(m). Clearly, optimistic
logging protocols need to keep track of dependencies, which complicates their
implementation.

As pointed out by Elnozahy et al. [2002], pessimistic logging is so much
simpler than optimistic approaches, that it is the preferred way of message
logging in practical distributed systems design.

Recovery-oriented computing

A related way of handling recovery is essentially to start over again. The
underlying principle toward this way of masking failures is that it may be
much cheaper to optimize for recovery, then it is aiming for systems that
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are free from failures for a long time. This approach is also referred to as
recovery-oriented computing [Candea et al., 2004a].

There are different flavors of recovery-oriented computing. One flavor is
to simply reboot (part of a system) and has been explored to restart Internet
servers [Candea et al., 2004b; 2006]. In order to be able to reboot only a
part of the system, it is crucial the fault is properly localized. At that point,
rebooting simply means deleting all instances of the identified components,
along with the threads operating on them, and (often) to just restart the
associated requests. Note that fault localization itself may be a nontrivial
exercise [Steinder and Sethi, 2004].

To enable rebooting as a practical recovery technique requires that compo-
nents are largely decoupled in the sense that there are few or no dependencies
between different components. If there are strong dependencies, then fault
localization and analysis may still require that a complete server needs to be
restarted at which point applying traditional recovery techniques as the ones
we just discussed may be more efficient.

Another flavor of recovery-oriented computing is to apply checkpointing
and recovery techniques, but to continue execution in a changed environment.
The basic idea here is that many failures can be simply avoided if programs are
given some more buffer space, memory is zeroed before allocated, changing
the ordering of message delivery (as long as this does not affect semantics),
and so on [Qin et al., 2005]. The key idea is to tackle software failures
(whereas many of the techniques discussed so far are aimed at, or are based
on hardware failures). Because software execution is highly deterministic,
changing an execution environment may save the day, but, of course, without
repairing anything.

8.7 Summary

Fault tolerance is an important subject in distributed systems design. Fault
tolerance is defined as the characteristic by which a system can mask the
occurrence and recovery from failures. In other words, a system is fault
tolerant if it can continue to operate in the presence of failures.

Several types of failures exist. A crash failure occurs when a process
simply halts. An omission failure occurs when a process does not respond to
incoming requests. When a process responds too soon or too late to a request,
it is said to exhibit a timing failure. Responding to an incoming request, but in
the wrong way, is an example of a response failure. The most difficult failures
to handle are those by which a process exhibits any kind of failure, called
arbitrary or Byzantine failures.

Redundancy is the key technique needed to achieve fault tolerance. When
applied to processes, the notion of process groups becomes important. A
process group consists of a number of processes that closely cooperate to
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provide a service. In fault-tolerant process groups, one or more processes
can fail without affecting the availability of the service the group implements.
Often, it is necessary that communication within the group be highly reliable,
and adheres to stringent ordering and atomicity properties in order to achieve
fault tolerance.

The real problem is that members of a process group need to reach consen-
sus in the presence of various failures. Paxos is by now a well-established and
highly robust consensus algorithm. By using 2k + 1 servers, it can establish
k-fault tolerance. However, we need a total of 3k + 1 servers if it is needed to
deal with arbitrary failures.

Reliable group communication, also called reliable multicasting, comes
in different forms. As long as groups are relatively small, it turns out that
implementing reliability is feasible. However, as soon as very large groups
need to be supported, scalability of reliable multicasting becomes problematic.
The key issue in achieving scalability is to reduce the number of feedback
messages by which receivers report the (un)successful receipt of a multicasted
message.

Matters become worse when atomicity is to be provided. In atomic mul-
ticast protocols, it is essential that each group member has the same view
concerning to which members a multicasted message has been delivered.
Atomic multicasting can be precisely formulated in terms of a virtual syn-
chronous execution model. In essence, this model introduces boundaries
between which group membership does not change and which messages are
reliably transmitted. A message can never cross a boundary.

Group membership changes are an example where each process needs to
agree on the same list of members. Such agreement can be reached by means
of a commit protocol, of which the two-phase commit protocol is the most
widely applied. In a two-phase commit protocol, a coordinator first checks
whether all processes agree to perform the same operation (i.e., whether
they all agree to commit), and in a second round, multicasts the outcome of
that poll. A three-phase commit protocol is used to handle the crash of the
coordinator without having to block all processes to reach agreement until
the coordinator recovers.

Recovery in fault-tolerant systems is invariably achieved by checkpointing
the state of the system on a regular basis. Checkpointing is completely
distributed. Unfortunately, taking a checkpoint is an expensive operation.
To improve performance, many distributed systems combine checkpointing
with message logging. By logging the communication between processes,
it becomes possible to replay the execution of the system after a crash has
occurred.
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Chapter 9

Security

The last principle of distributed systems that we discuss is security. Security
is by no means the least important principle. However, one could argue that
it is one of the most difficult principles, as security needs to be pervasive
throughout a system. A single design flaw with respect to security may render
all security measures useless. In this chapter, we concentrate on the various
mechanisms that are generally incorporated in distributed systems to support
security.

We start with introducing the basic issues of security. Building all kinds
of security mechanisms into a system does not really make sense unless it is
known how those mechanisms are to be used, and against what. This requires
that we know about the security policy that is to be enforced. The notion of a
security policy, along with some general design issues for mechanisms that
help enforce such policies, are discussed first. We also briefly touch upon the
necessary cryptography.

Security in distributed systems can roughly be divided into two parts.
One part concerns the communication between users or processes, possibly
residing on different machines. The principal mechanism for ensuring secure
communication is that of a secure channel. Secure channels, and more specifi-
cally, authentication, message integrity, and confidentiality, are discussed in a
separate section.

The other part concerns authorization, which deals with ensuring that a
process gets only those access rights to the resources in a distributed system
it is entitled to. Authorization is covered in a separate section dealing with
access control. In addition to traditional access control mechanisms, we also
focus on access control when we have to deal with mobile code such as agents.

We also return to naming, and pay attention to the rather nasty problem
of making sure that the name used to retrieve an object belongs to that object,
but also how to combine secure naming with human-friendly names.

Secure channels and access control require mechanisms to distribute cryp-
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tographic keys, but also mechanisms to add and remove users from a system.
These topics are covered by what is known as security management. In a
separate section, we discuss issues dealing with managing cryptographic keys,
secure group management, and handing out certificates that prove the owner
is entitled to access specified resources.

9.1 Introduction to security

We start our description of security in distributed systems by taking a look
at some general security issues. First, it is necessary to define what a secure
system is. We distinguish security policies from security mechanisms. Our
second concern is to consider some general design issues for secure systems.
Finally, we briefly discuss some cryptographic algorithms, which play a key
role in the design of security protocols.

Security threats, policies, and mechanisms

Security in a computer system is strongly related to the notion of dependability.
Informally, a dependable computer system is one that we justifiably trust
to deliver its services [Laprie, 1995]. Dependability includes availability,
reliability, safety, and maintainability. However, if we are to put our trust in
a computer system, then confidentiality and integrity should also be taken
into account. Confidentiality refers to the property of a computer system
whereby its information is disclosed only to authorized parties. Integrity is
the characteristic that alterations to a system’s assets can be made only in an
authorized way. In other words, improper alterations in a secure computer
system should be detectable and recoverable. Major assets of any computer
system are its hardware, software, and data.

Another way of looking at security in computer systems is that we attempt
to protect the services and data it offers against security threats. There are
four types of security threats to consider [Pfleeger, 2003]:

1. Interception
2. Interruption
3. Modification
4. Fabrication

The concept of interception refers to the situation that an unauthorized party
has gained access to a service or data. A typical example of interception is
where communication between two parties has been overheard by someone
else. Interception also happens when data are illegally copied, for example,
after breaking into a person’s private directory in a file system.

An example of interruption is when a file is corrupted or lost. More
generally interruption refers to the situation in which services or data become
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unavailable, unusable, destroyed, and so on. In this sense, denial of service
attacks by which someone maliciously attempts to make a service inaccessible
to other parties is a security threat that classifies as interruption.

Modifications involve unauthorized changing of data or tampering with
a service so that it no longer adheres to its original specifications. Examples
of modifications include intercepting and subsequently changing transmitted
data, tampering with database entries, and changing a program so that it
secretly logs the activities of its user.

Fabrication refers to the situation in which additional data or activity
are generated that would normally not exist. For example, an intruder may
attempt to add an entry into a password file or database. Likewise, it is
sometimes possible to break into a system by replaying previously sent
messages. We shall come across such examples later in this chapter.

Note that interruption, modification, and fabrication can each be seen as a
form of data falsification.

Simply stating that a system should be able to protect itself against all
possible security threats is not the way to actually build a secure system. What
is first needed is a description of security requirements, that is, a security
policy. A security policy describes precisely which actions the entities in a
system are allowed to take and which ones are prohibited. Entities include
users, services, data, machines, and so on. Once a security policy has been
laid down, it becomes possible to concentrate on the security mechanisms by
which a policy can be enforced. Important security mechanisms are:

1. Encryption
2. Authentication
3. Authorization
4. Auditing

Encryption is fundamental to computer security. Encryption transforms data
into something an attacker cannot understand. In other words, encryption
provides a means to implement data confidentiality. In addition, encryption
allows us to check whether data have been modified. It thus also provides
support for integrity checks.

Authentication is used to verify the claimed identity of a user, client, server,
host, or other entity. In the case of clients, the basic premise is that before a
service starts to perform any work on behalf of a client, the service must learn
the client’s identity (unless the service is available to all). Typically, users
are authenticated by means of passwords, but there are many other ways to
authenticate clients.

After a client has been authenticated, it is necessary to check whether
that client is authorized to perform the action requested. Access to records
in a medical database is a typical example. Depending on who accesses the
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database, permission may be granted to read records, to modify certain fields
in a record, or to add or remove a record.

Auditing tools are used to trace which clients accessed what, and in
which way. Although auditing does not really provide any protection against
security threats, audit logs can be extremely useful for the analysis of a security
breach, and subsequently taking measures against intruders. For this reason,
attackers are generally keen not to leave any traces that could eventually lead
to exposing their identity. In this sense, logging accesses makes attacking
sometimes a riskier business.

Design issues

A distributed system, or any computer system for that matter, must provide
security services by which a wide range of security policies can be imple-
mented. There are a number of important design issues that need to be taken
into account when implementing general-purpose security services. In the
following pages, we discuss three of these issues: focus of control, layering of
security mechanisms, and simplicity (see also Gollmann [2006]).

Focus of control

When considering the protection of a (possibly distributed) application, there
are essentially three different approaches that can be followed, as shown in
Figure 9.1. The first approach is to concentrate directly on the protection
of the data that is associated with the application. By direct, we mean that
irrespective of the various operations that can possibly be performed on a
data item, the primary concern is to ensure data integrity. Typically, this type
of protection occurs in database systems in which various integrity constraints
can be formulated that are automatically checked each time a data item is
modified (see, for example, [Doorn and Rivero, 2002]).

The second approach is to concentrate on protection by specifying exactly
which operations may be invoked, and by whom, when certain data or
resources are to be accessed. In this case, the focus of control is strongly
related to access control mechanisms, which we discuss extensively later in
this chapter. For example, in an object-based system, it may be decided to
specify for each method that is made available to clients which clients are
permitted to invoke that method. Alternatively, access control methods can be
applied to an entire interface offered by an object, or to the entire object itself.
This approach thus allows for various granularities of access control.

A third approach is to focus directly on users by taking measures by
which only specific people have access to the application, irrespective of the
operations they want to carry out. For example, a database in a bank may be
protected by denying access to anyone except the bank’s upper management
and people specifically authorized to access it. As another example, in many
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(a) (b)

(c)

Figure 9.1: Three approaches for protection against security threats. (a) Protec-
tion against invalid operations (b) Protection against unauthorized invocations.
(c) Protection against unauthorized users.

universities, certain data and applications are restricted to be used by faculty
and staff members only, whereas access by students is not allowed. In effect,
control is focused on defining roles that users have, and once a user’s role
has been verified, access to a resource is either granted or denied. As part
of designing a secure system, it is thus necessary to define roles that people
may have, and provide mechanisms to support role-based access control. We
return to roles later in this chapter.

Layering of security mechanisms

An important issue in designing secure systems is to decide at which level
security mechanisms should be placed. A level in this context is related to the
logical organization of a system into a number of layers. For example, com-
puter networks are often organized into layers following some reference model,
as we discussed in Chapter 4. In Chapter 1, we introduced the organization of
distributed systems consisting of separate layers for applications, middleware,
operating system services, and the operating system kernel. Combining the
two organizations leads roughly to what is shown in Figure 9.2.

In essence, Figure 9.2 separates general-purpose services from communi-
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Figure 9.2: The logical organization of a distributed system into several layers.

cation services. This separation is important for understanding the layering
of security in distributed systems and, in particular, the notion of trust. The
difference between trust and security is important. A system is either secure
or it is not (taking various probabilistic measures into account), but whether a
client considers a system to be secure is a matter of trust. Security is technical;
trust is emotional [Bishop, 2003]. In which layer security mechanisms are
placed depends on the trust a client has in how secure the services are in a
particular layer.

As an example, consider an organization located at different sites that
are connected through a low-level backbone connecting various local-area
networks at possibly geographically dispersed sites, as shown in Figure 9.3.
Such connections can be configured using techniques like Multiprotocol
Label Switching (MPLS) or techniques for Virtual Private Networks (VPN).

Figure 9.3: Several sites connected through a wide-area backbone service.

Security can be provided by placing encryption devices at each backbone
switch, as also shown in Figure 9.3. These devices automatically encrypt and
decrypt packets that are sent between sites, but do not otherwise provide
secure communication between hosts at the same site. If Alice at site A sends
a message to Bob at site B, and she is worried about her message being
intercepted, she must at least trust the encryption of intersite traffic to work
properly. This means, for example, that she must trust the system administra-
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tors at both sites to have taken the proper measures against tampering with
the devices.

Now suppose that Alice does not trust the security of intersite traffic.
She may then decide to take her own measures by using, for example, the
Transport Layer Security (TLS) service, which can be used to securely send
messages across a TCP connection. The important thing to observe here is
that TLS allows Alice to set up a secure connection to Bob. All transport-level
messages will be encrypted–and in our example at the link level as well, but
that is of no concern to Alice. In this case, Alice will have to put her trust into
TLS. In other words, she believes that TLS is secure.

In distributed systems, security mechanisms are often placed in the mid-
dleware layer. If Alice does not trust TLS, she may want to use a local secure
RPC service. Again, she will have to trust this RPC service to do what it
promises, such as not leaking information or properly authenticating clients
and servers.

Security services that are placed in the middleware layer of a distributed
system can be trusted only if the services they rely on to be secure are indeed
secure. For example, if a secure RPC service is partly implemented by means
of TLS, then trust in the RPC service depends on how much trust one has in
TLS. If TLS is not trusted, then there can be no trust in the security of the RPC
service.

Distribution of security mechanisms

Dependencies between services regarding trust lead to the notion of a Trusted
Computing Base (TCB). A TCB is the set of all security mechanisms in a
(distributed) computer system that are needed to enforce a security policy,
and that thus need to be trusted. The smaller the TCB, the better. If a
distributed system is built as middleware on an existing network operating
system, its security may depend on the security of the underlying local
operating systems. In other words, the TCB in a distributed system may
include the local operating systems at various hosts.

Consider a file server in a distributed file system. Such a server may need
to rely on the various protection mechanisms offered by its local operating
system. Such mechanisms include not only those for protecting files against
accesses by processes other than the file server, but also mechanisms to protect
the file server from being maliciously brought down.

Middleware-based distributed systems thus require trust in the existing
local operating systems they depend on. If such trust does not exist, then part
of the functionality of the local operating systems may need to be incorporated
into the distributed system itself. Consider a microkernel operating system,
in which most operating-system services run as normal user processes. In
this case, the file system, for instance, can be entirely replaced by one tailored
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to the specific needs of a distributed system, including its various security
measures.

Consistent with this approach is to separate security services from other
types of services by distributing services across different machines depending
on the level of security required. For example, for a secure distributed file
system, it may be possible to isolate the file server from clients by placing
the server on a machine with a trusted operating system, possibly running
a dedicated secure file system. Clients and their applications are placed on
untrusted machines.

This separation effectively reduces the TCB to a relatively small number
of machines and software components. By subsequently protecting those
machines against security attacks from the outside, overall trust in the security
of the distributed system can be increased.

Simplicity

Another important design issue related to deciding in which layer to place
security mechanisms is that of simplicity. Designing a secure computer system
is generally considered a difficult task. Consequently, if a system designer can
use a few, simple mechanisms that are easily understood and trusted to work,
the better it is.

Unfortunately, simple mechanisms are not always sufficient for implement-
ing security policies. Consider once again the situation in which Alice wants
to send a message to Bob as discussed above. Link-level encryption is a simple
and easy-to-understand mechanism to protect against interception of intersite
message traffic. However, much more is needed if Alice wants to be sure that
only Bob will receive her messages. In that case, user-level authentication
services are needed, and Alice may need to be aware of how such services
work in order to put her trust in it. User-level authentication may therefore
require at least a notion of cryptographic keys and awareness of mechanisms
such as certificates, despite the fact that many security services are highly
automated and hidden from users.

In other cases, the application itself is inherently complex and introducing
security only makes matters worse. An example application domain involving
complex security protocols is that of digital payment systems. The complexity
of digital payment protocols is often caused by the fact that multiple parties
need to communicate to make a payment. In these cases, it is important that
the underlying mechanisms that are used to implement the protocols are
relatively simple and easy to understand. Simplicity will contribute to the
trust that end users will put into the application and, more importantly, will
contribute to convincing the designers that the system has no security holes.
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Note 9.1 (Advanced: Incorporating security into a development methodology)
If making a (distributed) system secure is so difficult, it may be wise not to just
state that security should be incorporated from the initial phases of development,
but actually support secure design in a methodological way. Several approaches
exist to do just this, as surveyed by Uzunov et al. [2012]. The authors distinguish
code-based and model-based software development and life-cycle methodologies.

In the former, the main idea is enforce various security features without taking
a system’s overall design or architecture into account. A simple example is always
enforcing secure network communication, regardless whether such security is
always strictly necessary. Likewise, one may want to ensure that imported code
is always run in a (secure) virtual machine., or that buffers can provably never
overflow. However, code-based methodologies also incorporate aspects such as
threat modeling and penetration testing.

Although code-based methodologies appear to be more widely applied, model-
based methodologies are considered to be more superior. The essence is that
model-based approaches take the entire design or architecture of a distributed
system into account. Typically, they are integrated in the design process by
enhancing modeling languages such as UML. The whole idea is that various
security features are made explicit in the early stages of requirements engineering
and design. Unfortunately, this makes sense only if some guarantee can be given
that what is modeled is also (correctly) implemented. In practice, this turns
out to be an obstacle, unless there are automated means to go from model to
implementation.

In the end, Uzunov et al. conclude that to successfully engineer security into
distributed systems there is still a long way to go. Their conclusion illustrates the
difficulty in systematically making systems secure. Such is life.

Cryptography

Fundamental to security in distributed systems is the use of cryptographic
techniques. The basic idea of applying these techniques is simple. Consider a
sender S wanting to transmit message m to a receiver R. To protect the message
against security threats, the sender first encrypts it into an unintelligible
message m′, and subsequently sends m′ to R. R, in turn, must decrypt the
received message into its original form m.

Encryption and decryption are accomplished by using cryptographic meth-
ods parameterized by keys, as shown in Figure 9.4. The original form of
the message that is sent is called the plaintext, shown as P in Figure 9.4 the
encrypted form is referred to as the ciphertext, illustrated as C.

To describe the various security protocols that are used in building security
services for distributed systems, it is useful to have a notation to relate plain-
text, ciphertext, and keys. Following the common notational conventions, we
will use C = EK(P) to denote that the ciphertext C is obtained by encrypting
the plaintext P using key K. Likewise, P = DK(C) is used to express the
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Figure 9.4: Intruders and eavesdroppers in communication.

decryption of the ciphertext C using key K, resulting in the plaintext P.
Returning to our example shown in Figure 9.4 while transferring a message

as ciphertext C, there are three different attacks that we need to protect against,
and for which encryption helps. First, an intruder may intercept the message
without either the sender or receiver being aware that eavesdropping is
happening. Of course, if the transmitted message has been encrypted in
such a way that it cannot be easily decrypted without having the proper key,
interception is useless: the intruder will see only unintelligible data. (By the
way, the fact alone that a message is being transmitted may sometimes be
enough for an intruder to draw conclusions. For example, if during a world
crisis the amount of traffic into the White House suddenly drops dramatically
while the amount of traffic going into a certain mountain in Colorado increases
by the same amount, there may be useful information in knowing that.)

The second type of attack that needs to be dealt with is that of modifying
the message. Modifying plaintext is easy; modifying ciphertext that has been
properly encrypted is much more difficult because the intruder will first have
to decrypt the message before he can meaningfully modify it. In addition,
he will also have to properly encrypt it again or otherwise the receiver may
notice that the message has been tampered with.

The third type of attack is when an intruder inserts encrypted messages
into the communication system, attempting to make R believe these messages
came from S. Again, encryption can help protect against such attacks. Note
that if an intruder can modify messages, he can also insert messages.

There is a fundamental distinction between different cryptographic sys-
tems, based on whether or not the encryption and decryption key are the
same. In a symmetric cryptosystem, the same key is used to encrypt and
decrypt a message:

P = DK(EK(P))
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Symmetric cryptosystems are also referred to as secret-key or shared-key
systems, because the sender and receiver are required to share the same key,
and to ensure that protection works, this shared key must be kept secret; no
one else is allowed to see the key. We will use the notation KA,B to denote a
key shared by A and B.

In an asymmetric cryptosystem, the keys for encryption and decryption
are different, but together form a unique pair. In other words, there is a
separate key KE for encryption and one for decryption, KD, such that

P = DKD (EKE(P))

One of the keys in an asymmetric cryptosystem is kept private; the other is
made public. For this reason, asymmetric cryptosystems are also referred to
as public-key systems. In what follows, we use the notation K+

A to denote a
public key belonging to A, and K−A as its corresponding private key.

Which one of the encryption or decryption keys that is actually made
public depends on how the keys are used. For example, if Alice wants to send
a confidential message to Bob, she should use Bob’s public key to encrypt
the message. Because Bob is the only one holding the associated and private
decryption key, he is also the only person that can decrypt the message.

On the other hand, suppose that Bob wants to know for sure that the
message he just received actually came from Alice. In that case, Alice can
keep her encryption key private to encrypt the messages she sends. If Bob
can successfully decrypt a message using Alice’s public key (and the plaintext
in the message has enough information to make it meaningful to Bob), he
knows that message must have come from Alice, because the decryption key
is uniquely tied to the encryption key.

One final application of cryptography in distributed systems is the use of
hash functions. A hash function H takes a message m of arbitrary length as
input and produces a bit string h having a fixed length as output:

h = H(m)

A hash h is somewhat comparable to the extra bits that are appended to
a message in communication systems to allow for error detection, such a
cyclic-redundancy check (CRC).

Hash functions that are used in cryptographic systems have a number
of essential properties. First, they are one-way functions, meaning that it is
computationally infeasible to find the input m that corresponds to a known
output h. On the other hand, computing h from m is easy. Second, they have
the weak collision resistance property, meaning that given an input m and its
associated output h = H(m), it is computationally infeasible to find another,
different input m′ 6= m, such that H(m) = H(m′). Finally, cryptographic hash
functions also have the strong collision resistance property, which means
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that, when given only H, it is computationally infeasible to find any two
different input values m and m′, such that H(m) = H(m′).

Similar properties must apply to any encryption function E and the keys
that are used. Furthermore, for any encryption function EK, it should be
computationally infeasible to find the key K when given the plaintext P and
associated ciphertext C = EK(P). Likewise, analogous to collision resistance,
when given a plaintext P and a key K, it should be effectively impossible to
find another key K′ such that EK(P) = EK′(P).

The art and science of devising algorithms for cryptographic systems has
a long and fascinating history [Kahn, 1967], and building secure systems is
often surprisingly difficult, or even impossible [Schneier, 2000]. It is beyond
the scope of this book to discuss any of these algorithms in detail. Information
on cryptographic algorithms can be found in [Ferguson et al., 2010], [Menezes
et al., 1996], and [Schneier, 1996]. Figure 9.5 summarizes the notation and
abbreviations we use in the mathematical expressions to throughout this book.

Notation Description

KA,B Secret key shared by A and B

K+
A Public key of A

K−A Private key of A
K(d) Some data d encrypted with key K

Figure 9.5: Notation used in this chapter.

9.2 Secure channels

The client-server model is a convenient way to organize a distributed system.
In this model, servers may possibly be distributed and replicated, but also
act as clients with respect to other servers. When considering security in
distributed systems, it is once again useful to think in terms of clients and
servers. In particular, making a distributed system secure essentially boils
down to two predominant issues. The first issue is how to make the commu-
nication between clients and servers secure. Secure communication requires
authentication of the communicating parties. In many cases it also requires
ensuring message integrity and possibly confidentiality as well. As part of
this problem, we also need to consider protecting the communication within
a group of servers.

The second issue is that of authorization: once a server has accepted a
request from a client, how can it find out whether that client is authorized
to have that request carried out? Authorization is related to the problem of
controlling access to resources.
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The issue of protecting communication between clients and servers, can be
thought of in terms of setting up a secure channel between communicating
parties [Voydock and Kent, 1983]. A secure channel protects senders and
receivers against interception, modification, and fabrication of messages. It
does not also necessarily protect against interruption. Protecting messages
against interception is done by ensuring confidentiality: the secure channel
ensures that its messages cannot be eavesdropped by intruders. Protecting
against modification and fabrication by intruders is done through protocols
for mutual authentication and message integrity. A detailed and formal
description of the logic underlying authentication can be found in [Lampson
et al., 1992].

Authentication

Before going into the details of various authentication protocols, it is worth-
while noting that authentication and message integrity cannot do without
each other. Consider, for example, a distributed system that supports authen-
tication of two communicating parties, but does not provide mechanisms to
ensure message integrity. In such a system, Bob may know for sure that Alice
is the sender of a message m. However, if Bob cannot be given guarantees that
m has not been modified during transmission, what use is it to him to know
that Alice sent (the original version of) m?

Likewise, suppose that only message integrity is supported, but no mecha-
nisms exist for authentication. When Bob receives a message stating that he
has just won $1,000,000 in the lottery, how happy can he be if he cannot verify
that the message was sent by the organizers of that lottery?

Consequently, authentication and message integrity should go together. In
many protocols, the combination works roughly as follows. Again, assume
that Alice and Bob want to communicate, and that Alice takes the initiative in
setting up a channel. Alice starts by sending a message to Bob, or otherwise to
a trusted third party who will help set up the channel. Once the channel has
been set up, Alice knows for sure that she is talking to Bob, and Bob knows
for sure he is talking to Alice, they can exchange messages.

To subsequently ensure integrity of the data messages that are exchanged
after authentication has taken place, it is common practice to use secret-key
cryptography by means of session keys. A session key is a shared (secret) key
that is used to encrypt messages for integrity and possibly also confidentiality.
Such a key is generally used only for as long as the channel exists. When the
channel is closed, its associated session key is destroyed.

Authentication based on a shared secret key

Let us start by taking a look at an authentication protocol based on a secret
key that is already shared between Alice and Bob. How the two actually
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managed to obtain a shared key in a secure way is not important for now. In
the description of the protocol, Alice and Bob are abbreviated by A and B,
respectively, and their shared key is denoted as KA,B. The protocol takes a
common approach whereby one party challenges the other to a response that
can be correct only if the other knows the shared secret key. Such solutions
are also known as challenge-response protocols.

In the case of authentication based on a shared secret key, the protocol
proceeds as shown in Figure 9.6. First, Alice sends her identity to Bob (message
1), indicating that she wants to set up a communication channel between the
two. Bob subsequently sends a challenge RB to Alice, shown as message 2.
Such a challenge could take the form of a random number. Alice is required to
encrypt the challenge with the secret key KA,B that she shares with Bob, and
return the encrypted challenge to Bob. This response is shown as message 3
in Figure 9.6 containing KA,B(RB).

Figure 9.6: Authentication based on a shared secret key.

When Bob receives the response KA,B(RB) to his challenge RB, he can
decrypt the message using the shared key again to see if it contains RB. If
so, he then knows that Alice is on the other side, for who else could have
encrypted RB with KA,B in the first place? In other words, Bob has now
verified that he is indeed talking to Alice. However, note that Alice has not
yet verified that it is indeed Bob on the other side of the channel. Therefore,
she sends a challenge RA (message 4), which Bob responds to by returning
KA,B(RA), shown as message 5. When Alice decrypts it with KA,B and sees
her RA, she knows she is talking to Bob.

Note 9.2 (Advanced: On the design of security protocols)
One of the difficult issues in security is designing protocols that actually work.
To illustrate how easily things can go wrong, consider an “optimization” of the
authentication protocol in which the number of messages has been reduced from
five to three, as shown in Figure 9.7. The basic idea is that if Alice eventually
wants to challenge Bob anyway, she might as well send a challenge along with
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her identity when setting up the channel. Likewise, Bob returns his response to
that challenge, along with his own challenge in a single message.

Unfortunately, this protocol no longer works. It can easily be defeated by what
is known as a reflection attack. To explain how such an attack works, consider an
intruder called Chuck, whom we denote as C in our protocols. Chuck’s goal is to
set up a channel with Bob so that Bob believes he is talking to Alice. Chuck can
establish this if he responds correctly to a challenge sent by Bob, for instance, by
returning the encrypted version of a number that Bob sent. Without knowledge
of KA,B, only Bob can do such an encryption, and this is precisely what Chuck
tricks Bob into doing.

Figure 9.7: Authentication based on a shared secret key, but using three
instead of five messages.

The attack is illustrated in Figure 9.8 Chuck starts out by sending a message
containing Alice’s identity A, along with a challenge RC. Bob returns his challenge
RB and the response KA,B(RC) in a single message. At that point, Chuck would
need to prove he knows the secret key by returning KA,B(RB) to Bob. Unfortu-
nately, he does not have KA,B. Instead, what he does is attempt to set up a second
channel to let Bob do the encryption for him.

Figure 9.8: The reflection attack.

Therefore, Chuck sends A and RB in a single message as before, but now
pretends that he wants a second channel. This is shown as message 3 in Figure 9.8
Bob, not recognizing that he, himself, had used RB before as a challenge, responds
with KA,B(RB) and another challenge RB2, shown as message 4. At that point,
Chuck has KA,B(RB) and finishes setting up the first session by returning message
5 containing the response KA,B(RB), which was originally requested from the
challenge sent in message 2.

As explained by Kaufman et al. [2003], one of the mistakes made during the
adaptation of the original protocol was that the two parties in the new version of
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the protocol were using the same challenge in two different runs of the protocol.
A better design is to always use different challenges for the initiator and for the
responder. For example, if Alice always uses an odd number and Bob an even
number, Bob would have recognized that something fishy was going on when
receiving RB in message 3 in Figure 9.8. (Unfortunately, this solution is subject to
other attacks, notably the one known as the “man-in-the-middle-attack,” which is
explained in [Ferguson et al., 2010].) In general, letting the two parties setting up
a secure channel do a number of things identically is not a good idea.

Another principle that is violated in the adapted protocol is that Bob gave
away valuable information in the form of the response KA,B(RC) without knowing
for sure to whom he was giving it. This principle was not violated in the original
protocol, in which Alice first needed to prove her identity, after which Bob was
willing to pass her encrypted information.

There are many principles that developers of cryptographic protocols have
gradually come to learn over the years. One important lesson is that designing
security protocols that do what they are supposed to do is often much harder
than it looks. Also, tweaking an existing protocol to improve its performance,
can easily affect its correctness. More on design principles for protocols can
be found in [Abadi and Needham, 1996].

Authentication using a key distribution center

One of the problems with using a shared secret key for authentication is
scalability. If a distributed system contains N hosts, and each host is required
to share a secret key with each of the other N− 1 hosts, the system as a whole
needs to manage N(N − 1)/2 keys, and each host has to manage N − 1 keys.
For large N, this will lead to problems. An alternative is to use a centralized
approach by means of a Key Distribution Center (KDC). This KDC shares
a secret key with each of the hosts, but no pair of hosts is required to have
a shared secret key as well. In other words, using a KDC requires that we
manage N keys instead of N(N − 1)/2, which is clearly an improvement.

If Alice wants to set up a secure channel with Bob, she can do so with the
help of a (trusted) KDC. The whole idea is that the KDC hands out a key to
both Alice and Bob that they can use for communication, shown in Figure 9.9.

Alice first sends a message to the KDC, telling it that she wants to talk to
Bob. The KDC returns a message containing a shared secret key KA,B that
she can use. The message is encrypted with the secret key KA,KDC that Alice
shares with the KDC. In addition, the KDC sends KA,B also to Bob, but now
encrypted with the secret key KB,KDC it shares with Bob.

The main drawback of this approach is that Alice may want to start setting
up a secure channel with Bob even before Bob had received the shared key
from the KDC. In addition, the KDC is required to get Bob into the loop by
passing him the key. These problems can be circumvented if the KDC just
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Figure 9.9: The principle of using a Key Distribution Center (KDC).

passes KB,KDC(KA,B) back to Alice, and lets her take care of connecting to Bob.
This leads to the protocol shown in Figure 9.10. The message KB,KDC(KA,B)
is also known as a ticket. It is Alice’s job to pass this ticket to Bob. Note
that Bob is still the only one who can make sensible use of the ticket, as he is
the only one besides the KDC who knows how to decrypt the information it
contains.

Figure 9.10: Using a ticket and letting Alice set up a connection to Bob.

Note 9.3 (Advanced: The Needham-Schroeder protocol)
The protocol shown in Figure 9.10 is actually a variant of a well-known example
of an authentication protocol using a KDC, known as the Needham-Schroeder
authentication protocol, named after its inventors [Needham and Schroeder,
1978]. The Needham-Schroeder protocol, shown in Figure 9.11 is a so-called
multiway challenge-response protocol and works as follows.
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Figure 9.11: The Needham-Schroeder authentication protocol.

When Alice wants to set up a secure channel with Bob, she sends a request to
the KDC containing a challenge RA, along with her identity A and, of course, that
of Bob. The KDC responds by giving her the ticket KB,KDC(KA,B), along with the
secret key KA,B that she can subsequently share with Bob.

The challenge RA1 that Alice sends to the KDC along with her request to set
up a channel to Bob is also known as a nonce. A nonce is a random number that
is used only once, such as one chosen from a very large set. The main purpose of
a nonce is to uniquely relate two messages to each other, in this case message 1
and message 2. In particular, by including RA1 again in message 2, Alice will
know for sure that message 2 is sent as a response to message 1, and that it is not,
for example, a replay of an older message.

To understand the problem at hand, assume that we did not use nonces, and
that Chuck has stolen one of Bob’s old keys, say Kold

B,KDC. In addition, Chuck
has intercepted an old response KA,KDC(B,KA,B, Kold

B,KDC(A,KA,B)) that the KDC
had returned to a previous request from Alice to talk to Bob. Meanwhile, Bob
will have negotiated a new shared secret key with the KDC. However, Chuck
patiently waits until Alice again requests to set up a secure channel with Bob. At
that point, he replays the old response, and fools Alice into making her believe
she is talking to Bob, because he can decrypt the ticket and prove he knows the
shared secret key KA,B. Clearly this is unacceptable and must be defended against.
By including a nonce, such an attack is impossible, because replaying an older
message (having a different nonce) will immediately be discovered.

Message 2 also contains B, the identity of Bob. By including B, the KDC pro-
tects Alice against the following attack. Suppose that B was left out of message 2.
In that case, Chuck could modify message 1 by replacing the identity of Bob with
his own identity, say C. The KDC would then think Alice wants to set up a secure
channel to Chuck, and responds accordingly. As soon as Alice wants to contact
Bob, Chuck intercepts the message and fools Alice into believing she is talking
to Bob. By copying the identity of the other party from message 1 to message 2,
Alice will immediately detect that her request had been modified.

After the KDC has passed the ticket to Alice, the secure channel between Alice
and Bob can be set up. Alice starts with sending message 3, which contains the
ticket to Bob, and a challenge RA2 encrypted with the shared key KA,B that the
KDC had just generated. Bob then decrypts the ticket to find the shared key, and
returns a response RA2 − 1 along with a challenge RB for Alice.
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The following remark regarding message 4 is in order. In general, by returning
RA2 − 1 and not just RA2, Bob not only proves he knows the shared secret key, but
also that he has actually decrypted the challenge. Again, this ties message 4 to
message 3 in the same way that the nonce RA tied message 2 to message 1. The
protocol is thus more protected against replays. However, in this special case, it
would have been sufficient to just return KA,B(RA2,RB), for the simple reason that
this message has not yet been used anywhere in the protocol before. KA,B(RA2,RB)
already proves that Bob has been capable of decrypting the challenge sent in
message 3. Message 4 as shown in Figure 9.11 is due to historical reasons.

The Needham-Schroeder protocol as presented here still has the weak point
that if Chuck ever got a hold of an old key Kold

A,B, he could replay message 3 and
get Bob to set up a channel. Bob will then believe he is talking to Alice, while,
in fact, Chuck is at the other end. In this case, we need to relate message 3 to
message 1, that is, make the key dependent on the initial request from Alice to set
up a channel with Bob. The solution is shown in Figure 9.12.

Figure 9.12: Protection against malicious reuse of a previously generated
session key in the Needham-Schroeder protocol.

The trick is to incorporate a nonce in the request sent by Alice to the KDC.
However, the nonce has to come from Bob: this assures Bob that whoever wants
to set up a secure channel with him, will have gotten the appropriate information
from the KDC. Therefore, Alice first requests Bob to send her a nonce RB1,
encrypted with the key shared between Bob and the KDC. Alice incorporates this
nonce in her request to the KDC, which will then subsequently decrypt it and
put the result in the generated ticket. In this way, Bob will know for sure that the
session key is tied to the original request from Alice to talk to Bob.

Authentication using public-key cryptography

Let us now look at authentication with a public-key cryptosystem that does
not require a KDC. Again, consider the situation that Alice wants to set
up a secure channel to Bob, and that both are in the possession of each
other’s public key. A typical authentication protocol based on public-key
cryptography is shown in Figure 9.13 which we explain next.
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Figure 9.13: Mutual authentication in a public-key cryptosystem.

Alice starts with sending a challenge RA to Bob encrypted with his public
key K+

B . It is Bob’s job to decrypt the message and return the challenge to
Alice. Because Bob is the only person that can decrypt the message (using the
private key that is associated with the public key Alice used), Alice will know
that she is talking to Bob. Note that it is important that Alice is guaranteed to
be using Bob’s public key, and not the public key of someone impersonating
Bob. How such guarantees can be given is discussed later in this chapter.

When Bob receives Alice’s request to set up a channel, he returns the
decrypted challenge, along with his own challenge RB to authenticate Alice.
In addition, he generates a session key KA,B that can be used for further
communication. Bob’s response to Alice’s challenge, his own challenge, and
the session key are put into a message encrypted with the public key K+

A
belonging to Alice, shown as message 2 in Figure 9.13. Only Alice will be
capable of decrypting this message using her private key K−A .

Alice, finally, returns her response to Bob’s challenge using the session
key KA,B generated by Bob. In that way, she will have proven that she could
decrypt message 2, and thus that she is actually Alice to whom Bob is talking.

Message integrity and confidentiality

Besides authentication, a secure channel should also provide guarantees for
message integrity and confidentiality. Message integrity means that messages
are protected against surreptitious modification; confidentiality ensures that
messages cannot be intercepted and read by eavesdroppers. Confidentiality
is easily established by simply encrypting a message before sending it. En-
cryption can take place either through a secret key shared with the receiver
or alternatively by using the receiver’s public key. However, protecting a
message against modifications is somewhat more complicated, as we discuss
next.

Digital signatures

Message integrity often goes beyond the actual transfer through a secure
channel. Consider the situation in which Bob has just sold Alice a collector’s
item of some vinyl record for $500. The whole deal was done through e-mail.
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In the end, Alice sends Bob a message confirming that she will buy the record
for $500. In addition to authentication, there are at least two issues that need
to be taken care of regarding the integrity of the message.

1. Alice needs to be assured that Bob will not maliciously change the
$500 mentioned in her message into something higher, and claim she
promised more than $500.

2. Bob needs to be assured that Alice cannot deny ever having sent the
message, for example, because she had second thoughts.

These two issues can be dealt with if Alice digitally signs the message in
such a way that her signature is uniquely tied to its content. The unique
association between a message and its signature prevents that modifications to
the message will go unnoticed. In addition, if Alice’s signature can be verified
to be genuine, she cannot later repudiate the fact that she signed the message.

There are several ways to place digital signatures. One popular form is to
use a public-key cryptosystem, as shown in Figure 9.14. When Alice sends a
message m to Bob, she encrypts it with her private key K−A , and sends it off
to Bob. If she also wants to keep the message content a secret, she can use
Bob’s public key and send K+

B (m, K−A (m)), which combines m and the version
signed by Alice.

Figure 9.14: Digital signing a message using public-key cryptography.

When the message arrives at Bob, he can decrypt it using Alice’s public
key. If he can be assured that the public key is indeed owned by Alice, then
decrypting the signed version of m and successfully comparing it to m can
mean only that it came from Alice. Alice is protected against any malicious
modifications to m by Bob, because Bob will always have to prove that the
modified version of m was also signed by Alice. In other words, the decrypted
message alone essentially never counts as proof. It is also in Bob’s own interest
to keep the signed version of m to protect himself against repudiation by Alice.

There are a number of problems with this scheme, although the protocol
in itself is correct. First, the validity of Alice’s signature holds only as long as
Alice’s private key remains a secret. If Alice wants to bail out of the deal even
after sending Bob her confirmation, she could claim that her private key was
stolen before the message was sent.
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Another problem occurs when Alice decides to change her private key.
Doing so may in itself be not such a bad idea, as changing keys from time to
time generally helps against intrusion. However, once Alice has changed her
key, her statement sent to Bob becomes worthless. What may be needed in
such cases is a central authority that keeps track of when keys are changed, in
addition to using timestamps when signing messages.

Note 9.4 (More information: Signing a message digest)
Another problem with this scheme is that Alice encrypts the entire message
with her private key. Such an encryption may be costly in terms of processing
requirements (or even mathematically infeasible as we assume that the message
interpreted as a binary number is bounded by a predefined maximum), and is
actually unnecessary. Recall that we need to uniquely associate a signature with a
only specific message. A cheaper and arguably more elegant scheme is to use a
message digest.

A message digest is a fixed-length bit string h that has been computed from
an arbitrary-length message m by means of a cryptographic hash function H. If m
is changed to m′, its hash H(m′) will be different from h = H(m) so that it can
easily be detected that a modification has taken place.

To digitally sign a message, Alice can first compute a message digest and
subsequently encrypt the digest with her private key, as shown in Figure 9.15. The
encrypted digest is sent along with the message to Bob. Note that the message
itself is sent as plaintext: everyone is allowed to read it. If confidentiality is
required, then the message should also be encrypted with Bob’s public key.

Figure 9.15: Digitally signing a message using a message digest.

When Bob receives the message and its encrypted digest, he need merely
decrypt the digest with Alice’s public key, and separately calculate the message
digest. If the digest calculated from the received message and the decrypted
digest match, Bob knows the message has been signed by Alice.

Session keys

During the establishment of a secure channel, after the authentication phase
has completed, the communicating parties generally use a unique shared
session key for confidentiality. The session key is safely discarded when
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the channel is no longer used. An alternative would have been to use the
same keys for confidentiality as those that are used for setting up the secure
channel. However, there are a number of important benefits to using session
keys [Kaufman et al., 2003].

First, when a key is used often, it becomes easier to reveal it. In a sense,
cryptographic keys are subject to “wear and tear” just like ordinary keys.
The basic idea is that if an intruder can intercept a lot of data that have been
encrypted using the same key, it becomes possible to mount attacks to find
certain characteristics of the keys used, and possibly reveal the plaintext or
the key itself. For this reason, it is much safer to use the authentication keys
as little as possible. In addition, such keys are often exchanged using some
relatively time-expensive out-of-band mechanism such as regular mail or
telephone. Exchanging keys that way should be kept to a minimum.

Another important reason for generating a unique key for each secure
channel is to ensure protection against replay attacks as we have come across
previously a number of times. By using a unique session key each time a
secure channel is set up, the communicating parties are at least protected
against replaying an entire session. To protect replaying individual messages
from a previous session, additional measures are generally needed such as
including timestamps or sequence numbers as part of the message content.

Suppose that message integrity and confidentiality were achieved by using
the same key used for session establishment. In that case, whenever the key
is compromised, an intruder may be able to decrypt messages transferred
during an old conversation, clearly not a desirable feature. Instead, it is much
safer to use per-session keys, because if such a key is compromised, at worst,
only a single session is affected. Messages sent during other sessions stay
confidential.

Related to this last point is that Alice may want to exchange some confiden-
tial data with Bob, but she does not trust him so much that she would give him
information in the form of data that have been encrypted with long-lasting
keys. She may want to reserve such keys for highly-confidential messages that
she exchanges with parties she really trusts. In such cases, using a relatively
cheap session key to talk to Bob is sufficient.

By and large, authentication keys are often established in such a way that
replacing them is relatively expensive. Therefore, the combination of such
long-lasting keys with the much cheaper and more temporary session keys is
often a good choice for implementing secure channels for exchanging data.

Secure group communication

So far, we have concentrated on setting up a secure communication channel
between two parties. In distributed systems, however, it is often necessary
to enable secure communication between more than just two parties. A
typical example is that of a replicated server for which all communication
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between the replicas should be protected against modification, fabrication,
and interception, just as in the case of two-party secure channels. In this
section, we take a closer look at secure group communication.

Confidential group communication

First, consider the problem of protecting communication between a group of N
users against eavesdropping. To ensure confidentiality, a simple scheme is to
let all group members share the same secret key, which is used to encrypt and
decrypt all messages transmitted between group members. Because the secret
key in this scheme is shared by all members, it is necessary that all members
are trusted to indeed keep the key a secret. This prerequisite alone makes the
use of a single shared secret key for confidential group communication more
vulnerable to attacks compared to two-party secure channels.

An alternative solution is to use a separate shared secret key between
each pair of group members. As soon as one member turns out to be leaking
information, the others can simply stop sending messages to that member, but
still use the keys they were using to communicate with each other. However,
instead of having to maintain one key, it is now necessary to maintain N(N −
1)/2 keys, which may be a difficult problem by itself.

Using a public-key cryptosystem can improve matters. In that case, each
member has its own (public key, private key), pair, in which the public key can
be used by all members for sending confidential messages. In this case, a
total of N key pairs are needed. If one member ceases to be trustworthy, it is
simply removed from the group without having been able to compromise the
other keys.

Secure replicated servers

Now consider a completely different problem: a client issues a request to a
group of replicated servers. The servers may have been replicated for reasons
of fault tolerance or performance, but in any case, the client expects the
response to be trustworthy. In other words, regardless of whether the group
of servers is subject to Byzantine failures, a client expects that the returned
response has not been subject to corruption.

A solution to protect the client against such situations is to collect the re-
sponses from all servers and authenticate each one of them. If a majority exists
among the responses from the noncorrupted (i.e., authenticated) servers, the
client can trust the response to be correct as well. Unfortunately, this approach
reveals the replication of the servers, violating replication transparency.

Note 9.5 (Advanced: Secret sharing)
The essence of secure and transparently replicated servers lies in what is known as
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secret sharing. Essentially, when multiple users (or processes) share a secret, none
of them knows the entire secret. Instead, the secret can be revealed only if they
all get together. Such schemes can be extremely useful. Consider, for example,
launching a nuclear missile. Such an act generally requires the authorization of
at least two people. Each of them holds a private key that should be used in
combination with the other to actually launch a missile. Using only a single key
will not do.

In the case of secure, replicated servers, what we are seeking is a solution
by which at most k out of the N servers can produce an incorrect answer, and
of those k servers, at most c ≤ k have actually been corrupted. Note that this
requirement makes the service itself k-fault tolerant as discussed in Section 8.2.
The difference lies in the fact that we now classify a corrupted server as being
faulty.

Following Reiter [1994], consider the situation in which the servers are actively
replicated. In other words, a request is sent to all servers simultaneously, and
subsequently handled by each of them. Each server produces a response that it
returns to the client. For a securely replicated group of servers, we require that
each server accompanies its response with a digital signature. If ri is the response
from server Si, let md(ri) denote the message digest computed by server Si. This
digest is signed with Si’s private key K−i .

Suppose that we want to protect the client against at most c corrupted servers.
In other words, the server group should be able to tolerate corruption by at most
c servers, and still be capable of producing a response that the client can put its
trust in. If the signatures of the individual servers could be combined in such
a way that at least c + 1 signatures are needed to construct a valid signature for
the response, then this would solve our problem. In other words, we want to let
the replicated servers generate a secret valid signature with the property that c
corrupted servers alone are not enough to produce that signature.

As an example, consider a group of five replicated servers that should be able
to tolerate two corrupted servers, and still produce a response that a client can
trust. Each server Si sends its response ri to the client, along with its signature
sig(Si, ri) = K−i (md(ri)). Consequently, the client will eventually have received
five triplets 〈ri, md(ri), sig(Si, ri)〉 from which it should derive the correct response.
This situation is shown in Figure 9.16.

Each digest md(ri) is also calculated by the client. If ri is incorrect, then
normally this can be detected by computing K+

i (K−i (md(ri))). However, this
method can no longer be applied, because no individual server can be trusted.
Instead, the client uses a special, publicly-known decryption function D, which
takes a set

V = {sig(S, r), sig(S′, r′), sig(S′′, r′′)}
of three signatures as input, and produces a single digest as output:

dout = D(V) = D(sig(S, r), sig(S′, r′), sig(S′′, r′′))

For details on D, see [Reiter, 1994]. There are 5!/(3!2!) = 10 possible combina-
tions of three signatures that the client can use as input for D. If one of these

downloaded by OLEXANDER.PERIG@GMAIL.COM DS 3.02



526 CHAPTER 9. SECURITY

combinations produces a correct digest md(ri) for some response ri, then the client
can consider ri as being correct. In particular, it can trust that the response has
been produced by at least three honest servers.

Figure 9.16: Sharing a secret signature in a group of replicated servers.

To improve replication transparency, we can let each server Si broadcast a
message containing its response ri to the other servers, along with the associated
signature sig(Si, ri). When a server has received at least c + 1 of such messages,
including its own message, it attempts to compute a valid signature for one of the
responses. If this succeeds for, say, response r and the set V of c + 1 signatures, the
server sends r and V as a single message to the client. The client can subsequently
verify the correctness of r by checking its signature, that is, whether md(r) = D(V).

What we have just described is also known as an (m,n)-threshold scheme,
with, in our example, m = c + 1 and n = N, the number of servers. In an
(m, n)-threshold scheme, a message has been divided into n pieces, known as
shadows, since any m shadows can be used to reconstruct the original message,
but using m− 1 or fewer messages cannot. There are several ways to construct
(m, n)-threshold schemes. Details can be found in [Schneier, 1996]

Example: Kerberos

It should be clear by now that incorporating security into distributed systems
is not trivial. Problems are caused by the fact that the entire system must be
secure; if some part is insecure, the whole system may be compromised. To
assist the construction of distributed systems that can enforce a myriad of
security policies, a number of supporting systems have been developed that
can be used as a basis for further development. An important system that is
widely used is Kerberos [Steiner et al., 1988; Kohl et al., 1994]

Kerberos was developed at M.I.T. and is based on the Needham-Schroeder
authentication protocol. A detailed description of the Kerberos system can
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be found in [Neuman et al., 2005] whereas practical information on running
Kerberos is described by Garman [2003]. A publicly available implementation
of Kerberos, known as Shishi, is described in [Josefsson, 2015].

Kerberos can be viewed as a security system that assists clients in setting
up a secure channel with any server that is part of a distributed system.
Security is based on shared secret keys. There are two different components.
The Authentication Server (AS) is responsible for handling a login request
from a user. The AS authenticates a user and provides a key that can be used
to set up secure channels with servers. Setting up secure channels is handled
by a Ticket Granting Service (TGS). The TGS hands out special messages,
known as tickets, that are used to convince a server that the client is really
who he or she claims to be. We give concrete examples of tickets below.

Let us take a look at how Alice logs onto a distributed system that uses
Kerberos and how she can set up a secure channel with server Bob. For Alice
to log onto the system, she can use any workstation available. The workstation
sends her name in plaintext to the AS, which returns a session key KA,TGS
and a ticket that she will need to hand over to the TGS.

The ticket that is returned by the AS contains the identity of Alice, along
with a generated secret key that Alice and the TGS can use to communicate
with each other. The ticket itself will be handed over to the TGS by Alice.
Therefore, it is important that no one but the TGS can read it. For this reason,
the ticket is encrypted with the secret key KAS,TGS shared between the AS
and the TGS.

Figure 9.17: Authentication in Kerberos.

This part of the login procedure is shown as messages 1, 2, and 3 in
Figure 9.17, respectively. Message 1 is not really a message, but corresponds
to Alice typing in her login name at a workstation. Message 2 contains that
name and is sent to the AS. Message 3 contains the session key KA,TGS and
the ticket KAS,TGS(A, KA,TGS). To ensure privacy, message 3 is encrypted with
the secret key KA,AS shared between Alice and the AS.

When the workstation receives the response from the AS, it prompts
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Alice for her password (shown as message 4), which it uses to subsequently
generate the shared key KA,AS. (It is relatively simple to take a character
string password, apply a cryptographic hash, and then take the first 56 bits
as the secret key.) Note that this approach not only has the advantage that
Alice’s password is never sent as plaintext across the network, but also that
the workstation does not even have to temporarily store it. Moreover, as soon
as it has generated the shared key KA,AS, the workstation will find the session
key KA,TGS, and can forget about Alice’s password and use only the shared
secret KA,AS.

After this part of the authentication has taken place, Alice can consider
herself logged into the system through the current workstation. The ticket
received from the AS is stored temporarily (typically for 8–24 hours), and
will be used for accessing remote services. Of course, if Alice leaves her
workstation, she should destroy any cached tickets. If she wants to talk to Bob,
she requests the TGS to generate a session key for Bob, shown as message 6 in
Figure 9.17. The fact that Alice has the ticket KAS,TGS(A, KA,TGS) proves that
she is Alice. The TGS responds with a session key KA,B, again encapsulated
in a ticket that Alice will later have to pass to Bob.

Message 6 also contains a timestamp, t, encrypted with the secret key
shared between Alice and the TGS. This timestamp is used to prevent Chuck
from maliciously replaying message 6 again, and trying to set up a channel to
Bob. The TGS will verify the timestamp before returning a ticket to Alice. If it
differs more than a few minutes from the current time, the request for a ticket
is rejected.

This scheme establishes what is known as single sign-on. As long as
Alice does not change workstations, there is no need for her to authenticate
herself to any other server that is part of the distributed system. This feature
is important when having to deal with many different services that are spread
across multiple machines. In principle, servers in a way have delegated client
authentication to the AS and TGS, and will accept requests from any client that
has a valid ticket. Of course, services such as remote login will require that the
associated user has an account, but this is independent from authentication
through Kerberos.

Figure 9.18: Setting up a secure channel in Kerberos.

Setting up a secure channel with Bob is now straightforward, and is shown
in Figure 9.18. First, Alice sends to Bob a message containing the ticket she
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got from the TGS, along with an encrypted timestamp. When Bob decrypts
the ticket, he notices that Alice is talking to him, because only the TGS could
have constructed the ticket. He also finds the secret key KA,B, allowing him to
verify the timestamp. At that point, Bob knows he is talking to Alice and not
someone maliciously replaying message 1. By responding with KA,B(t + 1),
Bob proves to Alice that he is indeed Bob.

9.3 Access control

In the client-server model, which we have used so far, once a client and a
server have set up a secure channel, the client can issue requests that are to
be carried out by the server. Requests involve carrying out operations on
resources that are controlled by the server. A general situation is that of an
object server that has a number of objects under its control. A request from
a client generally involves invoking a method of a specific object. Such a
request can be carried out only if the client has sufficient access rights for that
invocation. Formally, verifying access rights is referred to as access control,
whereas authorization is about granting access rights. The two terms are
strongly related to each other and are often used in an interchangeable way.

General issues in access control

In order to understand the various issues involved in access control, the simple
model shown in Figure 9.19 is generally adopted. It consists of subjects that
issue a request to access an object. An object is very much like the objects
we have been discussing so far. It can be thought of as encapsulating its own
state and implementing the operations on that state. The operations of an
object that subjects can request to be carried out are made available through
interfaces. Subjects can best be thought of as being processes acting on behalf
of users, but can also be objects that need the services of other objects in order
to carry out their work.

Figure 9.19: General model of controlling access to objects.

Controlling the access to an object is all about protecting the object against
invocations by subjects that are not allowed to have specific (or even any) of the
methods carried out. Also, protection may include object management issues,
such as creating, renaming, or deleting objects. Protection is often enforced
by a program called a reference monitor. A reference monitor records which
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subject may do what, and decides whether a subject is allowed to have a
specific operation carried out. This monitor is called (e.g., by the underlying
trusted operating system) each time an object is invoked. Consequently, it
is extremely important that the reference monitor is itself tamperproof: an
attacker must not be able to fool around with it.

Access control matrix

A common approach to modeling the access rights of subjects with respect to
objects is to construct an access control matrix. Each subject is represented
by a row in this matrix; each object is represented by a column. If the matrix
is denoted M, then an entry M[s, o] lists precisely which operations subject s
can request to be carried out on object o. In other words, whenever a subject s
requests the invocation of method m of object o, the reference monitor should
check if m is listed in M[s, o]. If m is not listed in M[s, o], the invocation fails.

Considering that a system may easily need to support thousands of users
and millions of objects that require protection, implementing an access control
matrix as a true matrix is not the way to go. Many entries in the matrix will
be empty: a single subject will generally have access to relatively few objects.
Therefore, other, more efficient ways are followed to implement an access
control matrix.

One widely applied approach is to have each object maintain a list of the
access rights of subjects that want to access the object. In essence, this means
that the matrix is distributed column-wise across all objects, and that empty
entries are left out. This type of implementation leads to what is called an
Access Control List (ACL). Each object is assumed to have its own associated
ACL.

Another approach is to distribute the matrix row-wise by giving each
subject a list of capabilities it has for each object. In other words, a capability
corresponds to an entry in the access control matrix. Not having a capability
for a specific object means that the subject has no access rights for that object.

A capability can be compared to a ticket: its holder is given certain rights
that are associated with that ticket. It is also clear that a ticket should be
protected against modifications by its holder. One approach that is particu-
larly suited in distributed systems, is to protect (a list of) capabilities with a
signature. We return to these and other matters later when discussing security
management.

The difference between how ACLs and capabilities are used to protect the
access to an object is shown in Figure 9.20. Using ACLs, when a client sends
a request to a server, the server’s reference monitor will check whether it
knows the client and if that client is known and allowed to have the requested
operation carried out, as shown in Figure 9.20(a).

However, when using capabilities, a client simply sends its request to
the server. The server is not interested in whether it knows the client; the
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(a)

(b)

Figure 9.20: Comparison between ACLs and capabilities for protecting objects.
(a) Using an ACL. (b) Using capabilities.

capability says enough. Therefore, the server need only check whether the
capability is valid and whether the requested operation is listed in the capa-
bility. This approach to protecting objects by means of capabilities is shown in
Figure 9.20(b).

Note 9.6 (Advanced: Protection domains)
ACLs and capabilities help in efficiently implementing an access control matrix
by ignoring all empty entries. Nevertheless, an ACL or a capability list can still
become quite large if no further measures are taken.

One general way of reducing ACLs is to make use of protection domains.
Formally, a protection domain is a set of (object, access rights), pairs. Each pair
specifies for a given object exactly which operations are allowed to be carried
out [Saltzer and Schroeder, 1975]. Requests for carrying out an operation are
always issued within a domain. Therefore, whenever a subject requests an
operation to be carried out at an object, the reference monitor first looks up the
protection domain associated with that request. Then, given the domain, the
reference monitor can subsequently check whether the request is allowed to be
carried out. Different uses of protection domains exist.

One approach is to construct groups of users. Consider, for example, a Web
page on a company’s internal intranet. Such a page should be available to every
employee, but otherwise to no one else. Instead of adding an entry for each
possible employee to the ACL for that Web page, it may be decided to have
a separate group Employee containing all current employees. Whenever a user
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accesses the Web page, the reference monitor need only check whether that user
is an employee. Which users belong to the group Employee is kept in a separate
list (which, of course, is protected against unauthorized access).

Matters can be made more flexible by introducing hierarchical groups. For
example, if an organization has three different branches at, say, Amsterdam,
New York, and San Francisco, it may want to subdivide its Employee group into
subgroups, one for each city, leading to an organization as shown in Figure 9.21.

Accessing Web pages of the organization’s intranet should be permitted by
all employees. However, changing for example Web pages associated with the
Amsterdam branch should be permitted only by a subset of employees in Am-
sterdam. If user Dick from Amsterdam wants to read a Web page from the
intranet, the reference monitor needs to first look up the subsets Employee_AMS,
Employee_NYC, and Employee_SF that jointly comprise the set Employee. It then
has to check if one of these sets contains Dick. The advantage of having hier-
archical groups is that managing group membership is relatively easy, and that
very large groups can be constructed efficiently. An obvious disadvantage is
that looking up a member can be quite costly if the membership database is
distributed.

Figure 9.21: The hierarchical organization of protection domains as
groups of users.

Instead of letting the reference monitor do all the work, an alternative is to
let each subject carry a certificate listing the groups it belongs to. So, whenever
Dick wants to read a Web page from the company’s intranet, he hands over his
certificate to the reference monitor stating that he is a member of Employee_AMS.
To guarantee that the certificate is genuine and has not been tampered with, it
should be protected by means of, for example, a digital signature. Certificates are
seen to be comparable to capabilities.

Related to having groups as protection domains, it is also possible to imple-
ment protection domains as roles. In role-based access control, a user always
logs into the system with a specific role, which is often associated with a function
the user has in an organization [Sandhu et al., 1996]. A user may have several
functions. For example, Dick could simultaneously be head of a department,
manager of a project, and member of a personnel search committee. Depending
on the role he takes when logging in, he may be assigned different privileges. In
other words, his role determines the protection domain (i.e., group) in which he
will operate.

When assigning roles to users and requiring that users take on a specific
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role when logging in, it should also be possible for users to change their roles
if necessary. For example, it may be required to allow Dick as head of the
department to occasionally change to his role of project manager. Note that such
changes are difficult to express when implementing protection domains only as
groups.

Besides using protection domains, efficiency can be further improved by
(hierarchically) grouping objects based on the operations they provide. For
example, instead of considering individual objects, objects are grouped according
to the interfaces they provide, possibly using subtyping (also referred to as
interface inheritance, see Gamma et al. [1994]). to achieve a hierarchy. In this
case, when a subject requests an operation to be carried out at an object, the
reference monitor looks up to which interface the operation for that object belongs.
It then checks whether the subject is allowed to call an operation belonging to
that interface, rather than if it can call the operation for the specific object.

Combining protection domains and grouping of objects is also possible. Using
both techniques, along with specific data structures and restricted operations
on objects, Gladney [1997] describes how to implement ACLs for very large
collections of objects that are used in digital libraries.

Firewalls

So far, we have shown how protection can be established using cryptographic
techniques, combined with some implementation of an access control matrix.
These approaches work fine as long as all communicating parties play accord-
ing to the same set of rules. Such rules may be enforced when developing a
stand-alone distributed system that is more or less isolated from the rest of
the world. However, matters become more complicated when communication
with the rest of the world is necessary, like sending mail, accessing Web sites,
or making local resources available.

To protect resources under these circumstances, a different approach is
needed. In practice, what happens is that external access to any part of a
distributed system is controlled by a special kind of reference monitor known
as a firewall [Cheswick and Bellovin, 2000; Zwicky et al., 2000]. Firewalls
form one of the most often used protection mechanisms in networked systems.
Essentially, a firewall disconnects any part of a distributed system from
the outside world, as shown in Figure 9.22. All outgoing, but especially
all incoming packets are routed through a special computer and inspected
before they are passed through. Unauthorized traffic is discarded and not
allowed to continue. An important issue is that the firewall itself should be
heavily protected against any kind of security threat: it should never fail.
Equally important is that the rules that prescribe what can pass through
are consistent and establish what is intended. As reported by Wool [2010],
properly configuring a firewall is a considerable challenge.
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Figure 9.22: A common implementation of a firewall.

Firewalls essentially come in two different flavors that are often combined.
An important type of firewall is a packet-filtering gateway. This type of
firewall operates as a router and makes decisions as to whether or not to pass
a network packet based on the source and destination address as contained
in the packet’s header. Typically, the packet-filtering gateway shown on the
outside LAN in Figure 9.22 would protect against incoming packets, whereas
the one on the inside LAN would filter outgoing packets.

For example, to protect an internal Web server against requests from hosts
that are not on the internal network, a packet-filtering gateway could decide
to drop all incoming packets addressed to the Web server.

More subtle is the situation in which a company’s network consists of
multiple local-area networks. Each LAN can be protected by means of a
packet-filtering gateway, which is configured to pass incoming traffic only if it
originated from a host on one of the other LANs. In this way, a private virtual
network can be set up.

The other type of firewall is an application-level gateway. In contrast to a
packet-filtering gateway, which inspects only the header of network packets,
this type of firewall actually inspects the content of an incoming or outgoing
message. A typical example is a mail gateway that discards incoming or
outgoing mail exceeding a certain size. More sophisticated mail gateways
exist that are, for example, capable of filtering spam e-mail.

Another example of an application-level gateway is one that allows external
access to a digital library server, but will supply only abstracts of documents.
If an external user wants more, an electronic payment protocol is started.
Users inside the firewall have direct access to the library service.

A special kind of application-level gateway is what is known as a proxy
gateway. This type of firewall works as a front end to a specific kind of
application, and ensures that only those messages are passed that meet certain
criteria. Consider, for example, surfing the Web. Many Web pages contain
scripts or applets that are to be executed in a user’s browser. To prevent such
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code to be downloaded to the inside LAN, all Web traffic could be directed
through a Web proxy gateway. This gateway accepts regular HTTP requests,
either from inside or outside the firewall. In other words, it appears to its
users as a normal Web server. However, it filters all incoming and outgoing
traffic, either by discarding certain requests and pages, or modifying pages
when they contain executable code.

Secure mobile code

An important issue in modern distributed systems is the ability to migrate
code between hosts instead of just migrating passive data. However, mobile
code introduces a number of serious security threats. For one thing, hosts need
to be protected against malicious agents or downloaded programs. The latter
is becoming increasingly important in view of the popularity of smartphones.
Most users of distributed systems will not be experts in systems technology
and have no way of telling whether the program they are fetching from
another host can be trusted not to corrupt their device. In many cases it
may be difficult even for an expert to detect that a program is actually being
downloaded at all.

Unless security measures are taken, once a malicious program has settled
itself in a computer, it can easily corrupt its host. We are faced with an access
control problem: the program should not be allowed unauthorized access to
the host’s resources. As we shall see, protecting a host against downloaded
malicious programs is not always easy. The problem is not so much as to avoid
downloading of programs. Instead, what we are looking for is supporting
mobile code that we can allow access to local resources in a flexible, yet fully
controlled manner.

One approach to protection against potentially malicious code, is to con-
struct a sandbox. A sandbox is a technique by which a downloaded program
is executed in such a way that each of its instructions can be fully controlled.
If an attempt is made to execute an instruction that has been forbidden by
the host, execution of the program will be stopped. Likewise, execution is
halted when an instruction accesses certain registers or areas in memory that
the host has not allowed.

One approach toward implementing a sandbox is to check the executable
code when it is downloaded and to insert additional instructions for situations
that can be checked only at runtime [Wahbe et al., 1993]. Matters become
much simpler when dealing with interpreted code. Let us briefly consider the
approach taken in Java (see also Oaks [2001]). Each Java program consists of a
number of classes from which objects are created. There are no global variables
and functions; everything has to be declared as part of a class. Program
execution starts at a method called main. A Java program is compiled to a set
of instructions that are interpreted by what is called the Java Virtual Machine
(JVM). For a client to download and execute a compiled Java program, it
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is therefore necessary that the client process is running the JVM. The JVM
will subsequently handle the actual execution of the downloaded program by
interpreting each of its instructions, starting at the instructions that comprise
main. Note that this model corresponds to a process virtual machine, as
discussed in Section 3.2

In a Java sandbox, protection starts by ensuring that the component that
handles the transfer of a program to the client machine can be trusted. Down-
loading in Java is taken care of by a set of class loaders. Each class loader is
responsible for fetching a specified class from a server and installing it in the
client’s address space so that the JVM can create objects from it. Class loaders
are derived from existing, trusted loaders that will automatically enforce
specific policies associated with the sandbox.

The second component of a Java sandbox consists of a byte code verifier,
which checks whether a downloaded class obeys the security rules of the
sandbox. In particular, the verifier checks that the class contains no illegal
instructions or instructions that could somehow corrupt the stack or memory.
Not all classes are checked. Figure 9.23 shows that only the ones that are
downloaded from an external server to the client are verified. In this case,
classes that are located on the client’s machine are trusted. Whether or not
local classes are verified is another policy that can be set.

Figure 9.23: The organization of a Java sandbox.

Finally, when a class has been securely downloaded and verified, the
JVM can instantiate objects from it and execute those object’s methods. To
actually prevent objects from unauthorized access to the client’s resources, a
security manager is used to perform various checks at runtime. Java programs
intended to be downloaded are forced to make use of the security manager;
there is no way they can circumvent it. The security manager thus plays the

DS 3.02 downloaded by OLEXANDER.PERIG@GMAIL.COM



9.3. ACCESS CONTROL 537

role of a reference monitor we discussed earlier. Java is extremely flexible
when it comes to configuring the sandbox: the security manager makes use
of an extensive set of permissions that can be set by the client. The security
manager’s role is to check the permissions of, for example, file operations,
network operations, class-loading operations, runtime inspections, to name a
few.

A next step toward increased flexibility is to require that each downloaded
program can be authenticated, and to subsequently enforce a specific security
policy based on where the program came from. Demanding that programs
can be authenticated is relatively easy: mobile code can be signed, just like any
other document. This code-signing approach is often applied as an alternative
to sandboxing as well. In effect, only code from trusted servers is accepted.

Note 9.7 (Advanced: Enforcing a security policy)
The difficult part is enforcing a security policy. Wallach et al. [1997] propose three
mechanisms in the case of Java programs. The first approach is based on the
use of object references as capabilities. To access a local resource such as a file, a
program must have been given a reference to a specific object that handles file
operations when it was downloaded. If no such reference is given, there is no way
that files can be accessed. This principle is shown in Figure 9.24.

Figure 9.24: The principle of using Java object references as capabilities.

All interfaces to objects that implement the file system are initially hidden
from the program by simply not handing out any references to these interfaces.
Java’s strong type checking ensures that it is impossible to construct a reference
to one of these interfaces at runtime. In addition, we can use the property of Java
to keep certain variables and methods completely internal to a class. In particular,
a program can be prevented from instantiating its own file-handling objects, by
essentially hiding the operation that creates new objects from a given class. (In
Java terminology, a constructor is made private to its associated class.)

The second mechanism for enforcing a security policy is (extended) stack
introspection. In essence, any call to a method m of a local resource is preceded
by a call to a special procedure enable_privilege that checks whether the caller is
authorized to invoke m on that resource. If the invocation is authorized, the caller
is given temporary privileges for the duration of the call. Before returning control
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to the invoker when m is finished, the special procedure disable_privilege is
invoked to disable these privileges.

To enforce calls to enable_privilege and disable_privilege, a developer of
interfaces to local resources could be required to insert these calls in the appro-
priate places. However, it is much better to let the Java interpreter handle the
calls automatically. This is the standard approach followed in, for example, Web
browsers for dealing with Java applets. An elegant solution is as follows. When-
ever an invocation to a local resource is made, the Java interpreter automatically
calls enable_privilege, which subsequently checks whether the call is permitted.
If so, a call to disable_privilege is pushed on the stack to ensure that privileges
are disabled when the method call returns. This approach prevents malicious
programmers from circumventing the rules.

Figure 9.25: The principle of stack introspection.

Another important advantage of using the stack is that it enables a much better
way of checking privileges. Suppose that a program invokes a local object O1,
which, in turn, invokes object O2. Although O1 may have permission to invoke
O2, if the invoker of O1 is not trusted to invoke a specific method belonging to O2,
then this chain of invocations should not be allowed. Stack introspection makes it
easy to check such chains, as the interpreter need merely inspect each stack frame
starting at the top to see if there is a frame having the right privileges enabled
(in which case the call is permitted), or if there is a frame that explicitly forbids
access to the current resource (in which case the call is immediately terminated).
This approach is shown in Figure 9.25.

In essence, stack introspection allows for the attachment of privileges to classes
or methods, and the checking of those privileges for each caller separately. In this
way, it is possible to implement class-based protection domains, as is explained in
detail in [Gong and Schemers, 1998].

The third approach to enforcing a security policy is by means of name space
management. The idea is put forth below. To give programs access to local
resources, they first need to attain access by including the appropriate files that
contain the classes implementing those resources. Inclusion requires that a name
is given to the interpreter, which then resolves it to a class, which is subsequently
loaded at runtime. To enforce a security policy for a specific downloaded program,
the same name can be resolved to different classes, depending on where the
downloaded program came from. Typically, name resolution is handled by class
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loaders, which need to be adapted to implement this approach. Details of how
this can be done can be found in [Wallach et al., 1997].

The approach described so far associates privileges with classes or methods
based on where a downloaded program came from. By virtue of the Java inter-
preter, it is possible to enforce security policies through the mechanisms described
above. In this sense, the security architecture becomes highly language dependent,
and will need to be developed anew for other languages. Language-independent
solutions, such as, for example, described in [Jaeger et al., 1999], require a more
general approach to enforcing security, and are also harder to implement. In
these cases, support is needed from a secure operating system that is aware of
downloaded mobile code and which enforces all calls to local resources to run
through the kernel where subsequent checking is done.

Denial of service

Access control is generally about carefully ensuring that resources are accessed
only by authorized processes. A particularly annoying type of attack that
is related to access control is maliciously preventing authorized processes
from accessing resources. Defenses against such (denial-of-service (DoS)
attacks) have become increasingly important as distributed systems opened
up through the Internet. Where DoS attacks that come from one or a few
sources can often be handled quite effectively, matters become much more
difficult when having to deal with distributed denial of service (DDoS).

In DDoS attacks, a huge collection of processes jointly attempt to bring
down a networked service. In these cases, we often see that the attackers
have succeeded in hijacking a large group of machines which unknowingly
participate in the attack. Specht and Lee [2004] distinguish attacks aimed at
bandwidth depletion and those aimed at resource depletion.

Bandwidth depletion can be accomplished by simply sending many mes-
sages to a single machine. The effect is that normal messages will hardly be
able to reach the receiver. Resource depletion attacks concentrate on letting
the receiver use up resources on otherwise useless messages. A well-known
resource-depletion attack is TCP SYN-flooding. In this case, the attacker
attempts to initiate a huge amount of connections (i.e., send SYN packets
as part of the three-way handshake), but will otherwise never respond to
acknowledgments from the receiver. The effect is that the server will quickly
run out of socket descriptors, preventing that any further connections can be
established.

There is no single method to protect against DDoS attacks. One problem
is that attackers make use of innocent victims by secretly installing software
on their machines, effectively creating what are known as botnets [Silva et al.,
2013]. In these cases, the only solution is to have machines continuously mon-
itor their state by checking files for pollution. Considering the ease by which
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a virus can spread over the Internet, relying only on this countermeasure is
not feasible.

Much better is to continuously monitor network traffic, for example, start-
ing at the egress routers where packets leave an organization’s network.
Experience shows that by dropping packets whose source address does not
belong to the organization’s network we can prevent a lot of havoc. In general,
the more packets can be filtered close to the sources, the better.

Alternatively, it is also possible to concentrate on ingress routers, that
is, where traffic flows into an organization’s network. The problem is that
detecting an attack at an ingress router is too late as the network will probably
already be unreachable for regular traffic. Better is to have routers further in
the Internet, such as in the networks of ISPs, start dropping packets when they
suspect that an attack is going on. In general, a myriad of techniques need to
be deployed, whereas new attacks continue to emerge. A practical overview
of the state-of-the-art in denial-of-service attacks and solutions is provided by
Zargar et al. [2013], with a strong focus on application-level flooding attacks
(which are increasingly prevalent). An alternative overview concentrating
more on network-level solutions is given by Peng et al. [2007].

9.4 Secure naming

A topic that has received increasingly more attention is that of secure naming.
Simply put: when a client retrieves an object based on some name, how
does it know that it got back the correct object? The whole issue is rather
fundamental: when resolving a name in DNS, how does the client know
it is returned the correct address? When looking up an object using some
combination of a URL and database query, how does the receiver know it is
returned what was requested? To be more precise, we have three issues to
worry about [Smetters and Jacobson, 2009]:

1. Validity: is the object returned a complete, unaltered copy of what was
stored at the server?

2. Provenance: can the server that returned the object be trusted as a
genuine supplier? For example, it may be the case that a client is
returned a cached version of the original object.

3. Relevance: is what was returned relevant considering what was asked?

A partial, and well-known solution to secure naming is to securely bind
the name of an object to its content through hashing. Simply put: take hash(O)
as the name of an object O. This is a form of a self-certifying name and at
least allows the client to check for validity. Self-certifying names have been
pioneered in SFS [Fu et al., 2000]. If we can assume that each object O has a
known, and certified public key K+

O, we can also take hash(K+
O) as its name,
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having the advantage that to a certain extent provenance can be checked. This
approach has been explored in GlobeDoc [Popescu et al., 2005].

The problem with these self-certifying names, is that they act as pure
identifiers and are, in principle, not very human friendly. Also, if we simply
take the hash of an object as its name, then every change of that object will
lead to a different name. This problem is somewhat remedied by the approach
in GlobeDoc, but then we need to make sure we are using the correct public
key, and also make sure that we are returned the current version of the object.
In practice, assuming there is some form of public-key infrastructure as we
will discuss later in this chapter, combined with being able to efficiently check
with the origin server of the object, should solve the latter problem.

As a result, as soon as we want to use human-friendly naming for objects,
we find ourselves looking at the problem of securely binding such a name to,
perhaps, a self-certifying name, which introduces the problem of not being
able to check for relevance: does the name-resolution process that returns a
self-certifying but human-unreadable identifier, return the identifier of the
object we were looking for in the first place?

A way out, and extensively discussed by Ghodsi et al. [2011], is to let the
name of an object O take the form 〈hash(K+

O), label〉, where label is a human-
friendly name that can be used to look up the object. A label can be just a
tag, but also a globally unique hierarchically organized name, such as a URL.
When an object is retrieved, it will be signed by the server as discussed before.
The receiver takes the object’s public key, verifies that this is the one that was
used in the name, and subsequently checks if the object is genuine. Obviously,
the label should be part of the object’s content, otherwise it will be impossible
to verify that the label also belonged to the object. For example, the origin
server may separately need to sign the label with the same key as used for the
object itself.

9.5 Security management

We now take a closer look at security management. First, we need to consider
the general management of cryptographic keys, and especially the means by
which public keys are distributed. As it turns out, certificates play an impor-
tant role here. Second, we discuss the problem of securely managing a group
of servers by concentrating on the problem of adding a new group member
that is trusted by the current members. Clearly, in the face of distributed
and replicated services, it is important that security is not compromised by
admitting a malicious process to a group. Third, we pay attention to au-
thorization management by looking at capabilities and what are known as
attribute certificates. An important issue in distributed systems with respect
to authorization management is that one process can delegate some or all of
its access rights to another process. Delegating rights in a secure way has its
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own subtleties as we also discuss in this section.

Key management

So far, we have described various cryptographic protocols in which we (im-
plicitly) assumed that various keys were readily available. For example, in
the case of public-key cryptosystems, we assumed that a sender of a message
had the public key of the receiver at its disposal so that it could encrypt the
message to ensure confidentiality. Likewise, in the case of authentication
using a key distribution center (KDC), we assumed each party already shared
a secret key with the KDC.

However, establishing and distributing keys is not a trivial matter. For
example, distributing secret keys by means of an unsecured channel is out
of the question and in many cases we need to resort to out-of-band methods.
Also, mechanisms are needed to revoke keys, that is, prevent a key from being
used after it has been compromised or invalidated.

Key establishment

Let us start with considering how session keys can be established. When Alice
wants to set up a secure channel with Bob, she may first use Bob’s public
key to initiate communication as shown in Figure 9.13. If Bob accepts, he
can subsequently generate the session key and return it to Alice, encrypted
with Alice’s public key. By encrypting the shared session key before its
transmission, it can be safely passed across the network.

A similar scheme can be used to generate and distribute a session key
when Alice and Bob already share a secret key. However, both methods
require that the communicating parties already have the means available to
establish a secure channel. In other words, some form of key establishment
and distribution must already have taken place. The same argument applies
when a shared secret key is established by means of a trusted third party, such
as a KDC.

An elegant and widely-applied scheme for establishing a shared key across
an insecure channel is the Diffie-Hellman key exchange [Diffie and Hellman,
1976]. The protocol works as follows. Suppose that Alice and Bob want to
establish a shared secret key. The first requirement is that they agree on
two large numbers, n and g that are subject to a number of mathematical
properties (which we do not discuss here). Both n and g can be made public;
there is no need to hide them from outsiders. Alice picks a large random
number, say x, which she keeps secret. Likewise, Bob picks his own secret
large number, say y. At this point there is enough information to construct a
secret key, as shown in Figure 9.26.

Alice starts by sending gx mod n to Bob, along with n and g. It is impor-
tant to note that this information can be sent as plaintext, as it is virtually
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Figure 9.26: The principle of Diffie-Hellman key exchange.

impossible to compute x given gx mod n. When Bob receives the message,
he subsequently calculates (gx mod n)y which is mathematically equal to
gxy mod n. In addition, he sends gy mod n to Alice, who can then compute
(gy mod n)x = gxy mod n. Consequently, both Alice and Bob, and only those
two, will now have the shared secret key gxy mod n. Note that neither of them
needed to make their private number (x and y, respectively), known to the
other.

Diffie-Hellman can be viewed as a public-key cryptosystem. In the case
of Alice, x is her private key, whereas gx mod n is her public key. Securely
distributing the public key is essential to making Diffie-Hellman work.

Key distribution

One of the more difficult parts in key management is the actual distribution
of initial keys. In a symmetric cryptosystem, the initial shared secret key must
be communicated along a secure channel that provides authentication as well
as confidentiality, as shown in Figure 9.27. If there are no keys available to
Alice and Bob to set up such a secure channel, it is necessary to distribute the
key out-of-band. In other words, Alice and Bob will have to get in touch with
each other using some other communication channel.

In the case of a public-key cryptosystem, we need to distribute the public
key in such a way that the receivers can be sure that the key is indeed paired
to a claimed private key. In other words, as shown in Figure 9.27, although
the public key itself may be sent as plaintext, it is necessary that the channel
through which it is sent can provide authentication. The private key, of course,
needs to be sent across a secure channel providing authentication as well as
confidentiality.

When it comes to key distribution, the authenticated distribution of public
keys is perhaps the most interesting. In practice, public-key distribution takes
place by means of public-key certificates. Such a certificate consists of a public
key together with a string identifying the entity to which that key is associated.
The entity could be a user, but also a host or some special device. The public
key and identifier have together been signed by a certification authority, and
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(a)

(b)

Figure 9.27: (a) Secret-key distribution. (b) Public-key distribution (see
also [Menezes et al., 1996]).

this signature has been placed on the certificate as well. (The identity of the
certification authority is naturally part of the certificate.) Signing takes place
by means of a private key K−CA that belongs to the certification authority. The
corresponding public key K+

CA is assumed to be well known. For example,
the public keys of various certification authorities are built into most Web
browsers and shipped with the binaries.

Using a public-key certificate works as follows. Assume that a client wishes
to ascertain that the public key found in the certificate indeed belongs to the
identified entity. It then uses the public key of the associated certification
authority to verify the certificate’s signature. If the signature on the certificate
matches the (public key, identifier), the client accepts that the public key indeed
belongs to the identified entity.

It is important to note that by accepting the certificate as being in order, the
client actually trusts that the certificate has not been forged. In particular, the
client must assume that the public key K+

CA indeed belongs to the associated
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certification authority. If in doubt, it should be possible to verify the validity
of K+

CA through another certificate coming from a different, possibly more
trusted certification authority.

Note 9.8 (More information: Lifetime of certificates)
An important issue concerning certificates is their longevity. First let us consider
the situation in which a certification authority hands out lifelong certificates.
Essentially, what the certificate then states is that the public key will always be
valid for the entity identified by the certificate. Clearly, such a statement is not
what we want. If the private key of the identified entity is ever compromised, no
unsuspecting client should ever be able to use the public key (let alone malicious
clients). In that case, we need a mechanism to revoke the certificate by making it
publicly known that the certificate is no longer valid.

There are several ways to revoke a certificate. One common approach is
with a Certificate Revocation List (CRL) published regularly by the certification
authority. Whenever a client checks a certificate, it will have to check the CRL to
see whether the certificate has been revoked or not. This means that the client
will at least have to contact the certification authority each time a new CRL is
published. Note that if a CRL is published daily, it also takes a day to revoke
a certificate. Meanwhile, a compromised certificate can be falsely used until it
is published on the next CRL. Consequently, the time between publishing CRLs
cannot be too long.

An alternative approach is to restrict the lifetime of each certificate. In essence,
this approach is analogous to handing out leases as we discussed in Section 7.4.
The validity of a certificate automatically expires after some time. If for whatever
reason the certificate should be revoked before it expires, the certification authority
can still publish it on a CRL. However, this approach will still force clients to
check the latest CRL whenever verifying a certificate.

A final extreme case is to reduce the lifetime of a certificate to nearly zero. In
effect, this means that certificates are no longer used; instead, a client will always
have to contact the certification authority to check the validity of a public key. As
a consequence, the certification authority must be continuously online.

In practice, certificates are handed out with restricted lifetimes. In the case
of Internet applications, the expiration time is often as much as a year [Stein,
1998]. Such an approach requires that CRLs are published regularly, but that they
are also inspected when certificates are checked. Practice indicates that client
applications hardly ever consult CRLs and simply assume a certificate to be valid
until it expires.

Secure group management

Many security systems make use of special services such as Key Distribution
Centers (KDCs) or Certification Authorities (CAs). These services demonstrate
a difficult problem in distributed systems. In the first place, they must be
trusted. To enhance the trust in security services, it is necessary to provide a
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high degree of protection against all kinds of security threats. For example,
as soon as a CA has been compromised, it becomes impossible to verify the
validity of a public key, making the entire security system worthless.

On the other hand, it is also necessary that many security services offer
high availability. For example, in the case of a KDC, each time two processes
want to set up a secure channel, at least one of them will need to contact the
KDC for a shared secret key. If the KDC is not available, secure communication
cannot be established unless an alternative technique for key establishment is
available, such as the Diffie-Hellman key exchange.

The solution to high availability is replication. On the other hand, replica-
tion makes a server more vulnerable to security attacks. We already discussed
how secure group communication can take place by sharing a secret among
the group members. In effect, no single group member is capable of compro-
mising certificates, making the group itself highly secure.

Note 9.9 (Advanced: Managing group membership)
What remains to consider is how to actually manage a group of replicated servers.
Reiter et al. [1994] propose the following solution. The problem that needs to be
solved is to ensure that when a process asks to join a group G, the integrity of the
group is not compromised. A group G is assumed to use a secret key CKG shared
by all group members for encrypting group messages. In addition, it also uses a
public/private key pair (K+

G ,K−G ) for communication with nongroup members.
Whenever a process P wants to join a group G, it sends a join request JR

identifying G and P, P’s local time T, a generated reply pad RP and a generated
secret key KP,G. RP and KP,G are jointly encrypted using the group’s public key
K+
G , as shown as message 1 in Figure 9.28. The use of RP and KP,G is explained in

more detail below. The join request JR is signed by P, and is sent along with a
certificate containing P’s public key. We have used the widely-applied notation
[M]A to denote that message M has been signed by subject A.

Figure 9.28: Securely admitting a new group member.

When a group member Q receives such a join request, it first authenticates
P, after which communication with the other group members takes place to see
whether P can be admitted as a group member. Authentication of P takes place in
the usual way by means of the certificate. The timestamp T is used to make sure
that the certificate was still valid at the time it was sent. (Note that we need to be
sure that the time has not been tampered with as well.) Group member Q verifies
the signature of the certification authority and subsequently extracts P’s public
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key from the certificate to check the validity of JR. At that point, a group-specific
protocol is followed to see whether all group members agree on admitting P.

If P is allowed to join the group, Q returns a group admittance message
GA, shown as message 2 in Figure 9.28 identifying P and containing a nonce N.
The reply pad RP is used to encrypt the group’s communication key CKG. In
addition, P will also need the group’s private key K−G , which is encrypted with
CKG. Message GA is subsequently signed by Q using key KP,G.

Process P can now authenticate Q, because only a true group member can
have discovered the secret key KP,G. The nonce N in this protocol is not used for
security; instead, when P sends back N encrypted with KP,G (message 3), Q then
knows that P has received all the necessary keys, and has therefore now indeed
joined the group.

Note that instead of using the reply pad RP, P and Q could also have encrypted
CKG using P’s public key. However, because RP is used only once, namely for the
encryption of the group’s communication key in message GA, using RP is safer.
If P’s private key were ever to revealed, it would become possible to also reveal
CKG, which would compromise the secrecy of all group communication.

Authorization management

Managing security in distributed systems is also concerned with managing
access rights. So far, we have hardly touched upon the issue of how access
rights are initially granted to users or groups of users, and how they are
subsequently maintained in an unforgeable way. It is time to correct this
omission.

In nondistributed systems, managing access rights is relatively easy. When
a new user is added to the system, that user is given initial rights, for example,
to create files and subdirectories in a specific directory, create processes, use
CPU time, and so on. In other words, a complete account for a user is set up
for one specific machine in which all rights have been specified in advance by
the system administrators.

In a distributed system, matters are complicated by the fact that resources
are spread across several machines. If the approach for nondistributed systems
were to be followed, it would be necessary to create an account for each user on
each machine. In essence, this is the approach followed in network operating
systems. Matters can be simplified a bit by creating a single account on a
central server. That server is consulted each time a user accesses certain
resources or machines.

Capabilities and attribute certificates

A much better approach that has been widely applied in distributed systems
is the use of capabilities. A capability is an unforgeable data structure for
a specific resource, specifying exactly the access rights that the holder of
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the capability has with respect to that resource. Different implementations
of capabilities exist. Here, we briefly discuss the implementation as used
in the Amoeba operating system [Tanenbaum et al., 1986]. Although an
example from some time ago, its simplicity makes it an excellent candidate
for understanding the underlying principles.

Amoeba was one of the first object-based distributed systems. An object
resides at a server while clients are offered transparent access by means of a
proxy. To invoke an operation on an object, a client passes a capability to its
local operating system, which then locates the server where the object resides
and subsequently does an RPC to that server.

A capability is a 128-bit identifier, internally organized as shown in Fig-
ure 9.29. The first 48 bits are initialized by the object’s server when the object
is created and effectively form a machine-independent identifier of the object’s
server, referred to as the server port.

48 bits 24 bits 8 bits 48 bits
Server port Object Rights Check

Figure 9.29: A capability in Amoeba.

The next 24 bits are used to identify the object at the given server. (Note
that the server port together with the object identifier form a 72-bit systemwide
unique identifier.) The next 8 bits are used to specify the access rights of
the holder of the capability. Finally, the 48-bits check field is used to make a
capability unforgeable, as we explain below.

When an object is created, its server picks a random check field and stores
it both in the capability as well as internally in its own tables. All the right
bits in a new capability are initially on, and it is this owner capability that
is returned to the client. When the capability is sent back to the server in a
request to perform an operation, the check field is verified.

Note 9.10 (Advanced: Restricted capabilities)
To create a restricted capability, a client can pass a capability back to the server,
along with a bit mask for the new rights. The server takes the original check field
from its tables, XORs it with the new rights (which must be a subset of the rights
in the capability), and then runs the result through a one-way function.

The server then creates a new capability, with the same value in the object

field, but with the new rights bits in the rights field and the output of the one-way
function in the check field. The new capability is then returned to the caller. The
client may send this new capability to another process, if it wishes.

The method of generating restricted capabilities is illustrated in Figure 9.30
In this example, the owner has turned off all the rights except one. For example,
the restricted capability might allow the object to be read, but nothing else.
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The meaning of the rights field is different for each object type since the legal
operations themselves also vary from object type to object type.

Figure 9.30: Generation of a restricted capability from an owner capability.

When the restricted capability comes back to the server, the server sees from
the rights field that it is not an owner capability because at least one bit is turned
off. The server then fetches the original random number from its tables, XORs it
with the rights field from the capability, and runs the result through the one-way
function. If the result agrees with the check field, the capability is accepted.

It should be obvious from this algorithm that a user who tries to add rights
that he does not have will simply invalidate the capability. Inverting the check field
in a restricted capability to get the argument (C XOR 00000001) in Figure 9.30
is impossible because the function f is a one-way function. It is through this
cryptographic technique that capabilities are protected from tampering. Note that
f essentially does the same as computing a message digest as discussed earlier.
Changing anything in the original message (like inverting a bit), will immediately
be detected.

A generalization of capabilities that is sometimes used in distributed
systems is the attribute certificate. Unlike the certificates discussed above
that are used to verify the validity of a public key, attribute certificates are
used to list certain (attribute, value) pairs that apply to an identified entity. In
particular, attribute certificates can be used to list the access rights that the
holder of a certificate has with respect to the identified resource.

Like other certificates, attribute certificates are handed out by special cer-
tification authorities, usually called attribute certification authorities. Com-
pared to Amoeba’s capabilities, such an authority corresponds to an object’s
server. In general, however, the attribute certification authority and the server
managing the entity for which a certificate has been created need not be the
same. The access rights listed in a certificate are signed by the attribute certifi-
cation authority. More on the evolution of capability-based access control is
discussed by Karp et al. [2010] and Franqueira and Wieringa [2012].
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Delegation

Now consider the following problem. A user wants to have a large file printed
for which he has read-only access rights. In order not to bother others too
much, the user sends a request to the print server, asking it to start printing
the file no earlier than 2 o’clock in the morning. Instead of sending the entire
file to the printer, the user passes the file name to the printer so that it can
copy it to its spooling directory, if necessary, when actually needed.

Although this scheme seems to be perfectly in order, there is one major
problem: the printer will generally not have the appropriate access permis-
sions to the named file. In other words, if no special measures are taken, as
soon as the print server wants to read the file in order to print it, the system
will deny the server access to the file. This problem could have been solved if
the user had temporarily delegated his access rights for the file to the print
server.

Delegation of access rights is an important technique for implementing
protection in computer systems and distributed systems, in particular. The
basic idea is simple: by passing certain access rights from one process to
another, it becomes easier to distribute work between several processes without
adversely affecting the protection of resources. In the case of distributed
systems, processes may run on different machines and even within different
administrative domains. Delegation can avoid much overhead as protection
can often be handled locally.

There are several ways to implement delegation. A general approach as
described by Neuman [1993] and implemented in the Kerberos system, is to
make use of a proxy. A proxy in the context of security in computer systems
is a token that allows its owner to operate with the same or restricted rights
and privileges as the subject that granted the token. (Note that this notion of a
proxy is different from a proxy as a synonym for a client-side stub. Although
we try to avoid overloading terms, we make an exception here as the term
“proxy” in the definition above is too widely used to ignore.) A process can
create a proxy with at best the same rights and privileges it has itself. If a
process creates a new proxy based on one it currently has, the derived proxy
will have at least the same restrictions as the original one, and possibly more.

Before considering a general scheme for delegation, consider the following
two approaches. First, delegation is relatively simple if Alice knows everyone.
If she wants to delegate rights to Bob, she merely needs to construct a certifi-
cate saying “Alice says Bob has rights R,” such as [A, B, R]A. If Bob wants to
pass some of these rights to Charlie, he will ask Charlie to contact Alice and
ask her for an appropriate certificate.

In a second simple case Alice can simply construct a certificate saying
“The bearer of this certificate has rights R.” However, in this case we need to
protect the certificate against illegal copying, as is done with securely passing
capabilities between processes. Neuman’s scheme handles this case, as well
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as avoiding the issue that Alice needs to know everyone to whom rights need
to be delegated.

A proxy in Neuman’s scheme has two parts, as illustrated in Figure 9.31.
Let A be the process that created the proxy. The first part of the proxy is a set
C = R, S+

proxy, consisting of a set R of access rights that have been delegated by
A, along with a publicly known part of a secret that is used to authenticate the
holder of the certificate. We will explain the use of S+

proxy below. The certificate
carries the signature sig(A, C) of A, to protect it against modifications. The
second part contains the other part of the secret, denoted as S−proxy. It is
essential that S−proxy is protected against disclosure when delegating rights to
another process.

Figure 9.31: The general structure of a proxy as used for delegation.

Another way of looking at the proxy is as follows. If Alice wants to
delegate some of her rights to Bob, she makes a list of rights (R) that Bob
can exercise. By signing the list, she prevents Bob from tampering with it.
However, having only a signed list of rights is often not enough. If Bob wants
to exercise his rights, he may have to prove that he actually got the list from
Alice and did not, for example, steal it from someone else. Therefore, Alice
comes up with a very nasty question (S+

proxy) that only she knows the answer
to (S−proxy). Anyone can easily verify the correctness of the answer when given
the question. The question is appended to the list before Alice adds her
signature.

When delegating some of her rights, Alice gives the signed list of rights,
along with the nasty question, to Bob. She also gives Bob the answer ensuring
that no one can intercept it. Bob now has a list of rights, signed by Alice,
which he can hand over to, say, Charlie, when necessary. Charlie will ask him
the nasty question at the bottom of the list. If Bob knows the answer to it,
Charlie will know that Alice had indeed delegated the listed rights to Bob.

An important property of this scheme is that Alice need not be consulted.
In fact, Bob may decide to pass on (some of) the rights on the list to Dave. In
doing so, he will also tell Dave the answer to the question, so that Dave can
prove the list was handed over to him by someone entitled to it. Alice never
needs to know about Dave at all.

A protocol for delegating and exercising rights is shown in Figure 9.32.
Assume that Alice and Bob share a secret key KA,B that can be used for
encrypting messages they send to each other. Then, Alice first sends Bob
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the certificate C = R, S+
proxy, signed with sig(A, C) (and denoted again as

[R, S+
proxy]A). There is no need to encrypt this message: it can be sent as

plaintext. Only the private part of the secret needs to be encrypted, shown as
KA,B(S

−
proxy) in message 1.

Figure 9.32: Using a proxy to delegate and prove ownership of access rights.

Now suppose that Bob wants an operation to be carried out at an object
that resides at a specific server. Also, assume that Alice is authorized to have
that operation carried out, and that she has delegated those rights to Bob.
Therefore, Bob hands over his credentials to the server in the form of the
signed certificate [R, S+

proxy]A.
At that point, the server will be able to verify that C has not been tampered

with: any modification to the list of rights, or the nasty question will be
noticed, because both have been jointly signed by Alice. However, the server
does not know yet whether Bob is the rightful owner of the certificate. To
verify this, the server must use the secret that came with C.

There are several ways to implement S+
proxy and S−proxy. For example,

assume S+
proxy is a public key and S−proxy the corresponding private key. Z

can then challenge Bob by sending him a nonce N, encrypted with S+
proxy. By

decrypting S+
proxy(N) and returning N, Bob proves he knows the secret and is

thus the rightful holder of the certificate. There are other ways to implement
secure delegation as well, but the basic idea is always: show you know a
secret.

9.6 Summary

Security plays an extremely important role in distributed systems. A dis-
tributed system should provide the mechanisms that allow a variety of differ-
ent security policies to be enforced. Developing and properly applying those
mechanisms generally makes security a difficult engineering exercise.

Three important issues can be distinguished. The first issue is that a
distributed system should offer facilities to establish secure channels between
processes. A secure channel, in principle, provides the means to mutually
authenticate the communicating parties, and protect messages against tam-
pering during their transmission. A secure channel generally also provides
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confidentiality so that no one but the communicating parties can read the
messages that go through the channel.

An important design issue is whether to use only a symmetric cryptosys-
tem (which is based on shared secret keys), or to combine it with a public-key
system. Current practice shows the use of public-key cryptography for dis-
tributing short-term shared secret keys. The latter are known as session
keys.

The second issue in secure distributed systems is access control, or autho-
rization. Authorization deals with protecting resources in such a way that
only processes that have the proper access rights can actual access and use
those resources. Access control always take place after a process has been
authenticated. Related to access control is preventing denial-of-service, which
turns out to a difficult problem for systems that are accessible through the
Internet.

There are two ways of implementing access control. First, each resource
can maintain an access control list, listing exactly the access rights of each
user or process. Alternatively, a process can carry a certificate stating precisely
what its rights are for a particular set of resources. The main benefit of using
certificates is that a process can easily pass its ticket to another process, that is,
delegate its access rights. Certificates, however, have the drawback that they
are often difficult to revoke.

Special attention is needed when dealing with access control in the case
of mobile code. Several proposals have been made, of which the sandbox
is currently the most widely-applied one. However, sandboxes are rather
restrictive, and more flexible approaches based on true protection domains
have been devised as well.

The third issue in secure distributed systems concerns management. There
are essentially two important subtopics: key management and authorization
management. Key management includes the distribution of cryptographic
keys, for which certificates as issued by trusted third parties play an important
role. Important with respect to authorization management are attribute
certificates and delegation.

Finally, special attention is required to handling secure names. A practical
solution is to name an object by taking the hash of its public key, along with a
human-readable label (which should also be securely bound to the object).
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