Исследование и разработка рекомендаций по совершенствованию технологических режимов работы и оборудования цеха производства труб большого диаметра Харцизского трубного завода с целью повышения качества продукции

Магистерская работа по специальности <u>8.05050311 «Металлургическое</u> оборудование»

Студент гр. МО 09-1м – Измайлов М.С. Научный руководитель – к.т.н., доц. Доброносов Ю.К.

Расчетно-пояснительная записка: 152 с., 52 рис., 4 табл.,2 прилож., перечень ссылок – 42 наим., графическая часть \_9 л. ф. A1.

<u>Цель работы</u> — Повышение технико-экономических показателей процесса производства сварных труб большого диаметра на основе развития математических методов расчета и проектирования, а также разработки технологических и конструктивных решений при реализации процесса локальной термомеханической обработки сварного шва труб большого диаметра.

<u>Объект исследования</u> – методы расчета, технология и оборудование процесса локальной термомеханической обработки сварных швов труб большого диаметра способом горячей прокатки.

Методы исследования – теоретические: метод конечных элементов; экспериментальные исследования - исследования энергосиловых параметров процесса горячей прокатки сварных швов и микроструктуры упрочненного шва

<u>Научный результат</u> — Разработана модель МКЭ по автоматизированному расчету локальных и интегральных показателей напряженно- деформированного состояния металла при реализации процесса прокатки сварного шва, позволяющая в полной мере учесть особенности геометрических характеристик очага деформации и свойств деформируемого материала.

<u>Практический результат</u> – разработаны модели по автоматизированному расчету и проектированию основных технологических параметров процесса упрочнения сварного шва. Разработаны режимы обжатий и комплекс оборудования для реализации процесса локальной термомеханической обработки. Ожидаемая чистая прибыль от внедрения результатов работы в производство 895 699 грн., период окупаемости составляет 2,1 года.

По результатам проведенных исследований опубликована 1 статья в соавторстве:

Экспериментальное исследование влияния процесса на микроструктуру сварного шва / Ю.К. Доброносов, С.А. Дмитриев, М.С. Измайлов, В.М.Семенов // Обработка металлов давлением. – Краматорск, ДГМА. – 2014. - №1(38) –С.148-153.

1 статья подготовлена к публикации в «Вестнике ДГМА».— «Конечноэлементное математическое моделирование процесса локальной термомеханической обработки сварного шва»

УПРОЧНЕНИЕ СВАРНЫХ ТРУБ, ЛОКАЛЬНАЯ ТЕРМОМЕХАНИЧЕСКАЯ ОБРАБОТКА, ГОРЯЧАЯ ПРОКАТКА, ЭНЕРГОСИЛОВЫЕ ПАРАМЕТРЫ, ПРОКАТНЫЙ СТАН, , ТЕОРЕТИЧЕСКАЯ МОДЕЛЬ, КЛЕТЬ РАБОЧАЯ

## ТЕХНОЛОГИЧЕСКИЕ СХЕМЫ ПРОИЗВОДСТВА ТРУБ БОЛЬШОГО ДИАМЕТРА

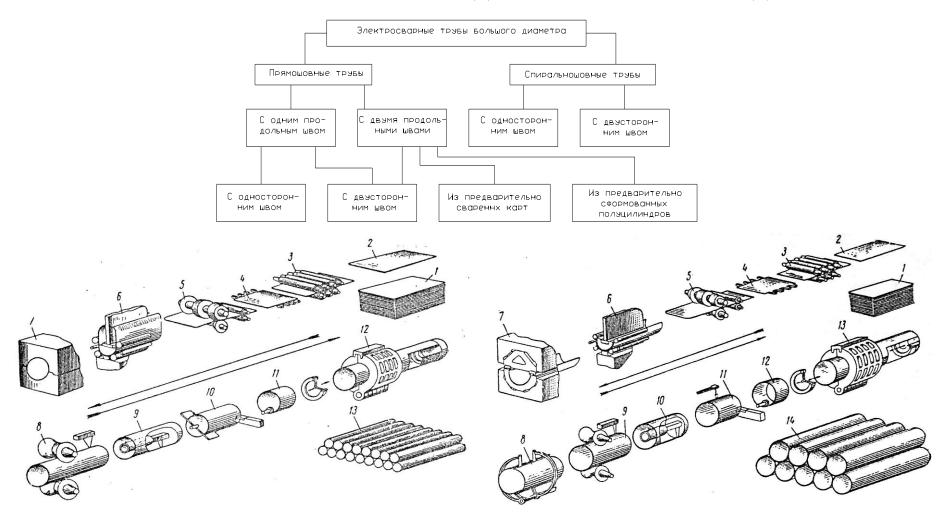
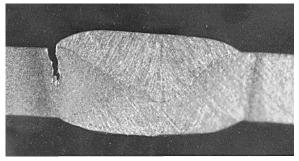
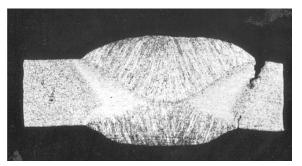
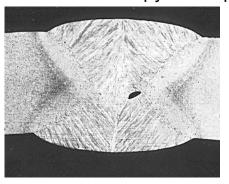


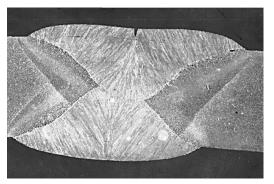

Схема производства труб большого диаметра из одного листа с формовкой заготовок на прессах


Схема производства труб большого диаметра из двух полуцилиндров

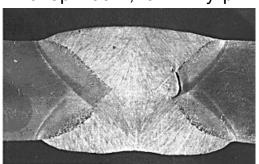


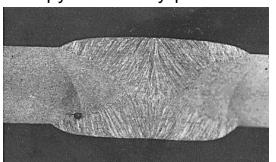




### ДЕФФЕКТЫ НА УЧАСТКАХ СВАРНЫХ ШВОВ И ОКОЛОШОВНЫХ ЗОН







Наружные трещины в переходной околошовной зоне





Трещины и дефекты сплошности непосредственно в зоне сварного шва как на его наружной поверхности, так и внутри плоскости сопряжения наружного и внутреннего швов





Дефекты сплошности и крупнозернистой структуры в переходной околошлаковой зоне







#### ОБОРУДОВАНИЕ ДЛЯ ПРОКАТКИ СВАРНЫХ ШВОВ

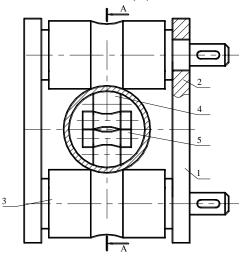
#### Техническая характеристика участка ЛТМО:

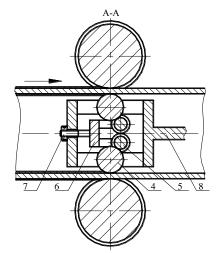
| - Диаметр труб, мм                                        | 9201420    |
|-----------------------------------------------------------|------------|
|                                                           |            |
| - Длина труб, м                                           | до 12      |
| - Вес трубы, Тн                                           | не более 7 |
| <ul> <li>Номинальная скорость обработки, м/мин</li> </ul> | 2          |
| - Ширина зоны обработки, мм                               | ~100       |
| <ul> <li>Установленная мощность, кВт</li> </ul>           | ~3700      |
| <ul> <li>Расход охлаждающей воды, м3/ч</li> </ul>         | ~15        |
| <ul> <li>Давление в гидросистеме, мПа</li> </ul>          | 12.5       |
| <ul> <li>Лавление охлаждающей воды, мПа</li> </ul>        | 0.4        |



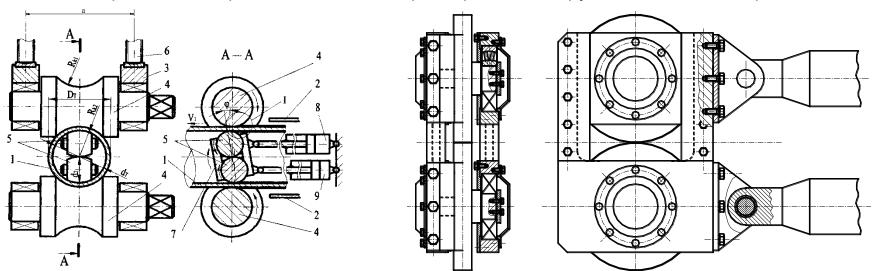
Участок ЛТМО для местной обработки сварных швов, выполненных на газонефтепроводных трубах большого диаметра, изготовленных путем сварки двух полуцилиндров. Участок ЛТМО устанавливается в комплексе оборудования производства труб.

Термомеханическая обработка шва производится с целью:


- исключить негативные факторы, такие как термические напряжения;
- изменение кристаллической структуры металла в районе сварного шва.


Результатом ЛТМО являются выравнивание характеристик металла околошовной зоны повышение шва. вязкости, обеспечение мелкозернистой на уровне структуры металла шва исключение ОСНОВНОГО металла, 30H термического влияния.






#### ОБОРУДОВАНИЕ ДЛЯ ПРОКАТКИ СВАРНЫХ ШВОВ





Конструкция узла рабочих валков и регулирующих роликов для горячей прокатки сварных швов при реализации процесса ЛТМО электросварных швов труб большого диаметра



Конструкция двух наружных приводных и двух внутренних приводных валков для горячей прокатки сварных швов при реализации процесса ЛТМО электросварных швов труб большого диаметра.







ЦЕЛЬ И ЗАДАЧИ:

Повышение технико-экономических показателей процесса производства сварных труб большого диаметра на основе развития математических методов расчета и проектирования, а также разработки технологических и конструктивных решений при реализации процесса локальной термомеханической обработки сварного шва труб большого диаметра.

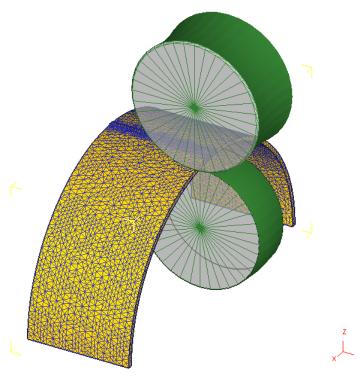
#### СТРУКТУРА РАБОТЫ

- установить и провести анализ конструкций участка локальной термомеханической обработки;
- провести анализ очага деформации при реализации процесса локальной термомеханической обработки сварного шва труб большого диаметра;
- разработка для труб большого диаметра методов расчета и технологических основ процесса прокатки сварного шва;
- экспериментальная оценка степени достоверности полученных математических моделей и уточнение исходных данных для их численной реализации;
- постановка и решение задач по автоматизированному проектированию технологических режимов процесса прокатки сварного шва, обеспечивающих требуемое качество готовой металлопродукции;
- анализ экономической эффективности от внедрения разработанных решений.





## КОНЕЧНО-ЭЛЕМЕНТНОЕ МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССА ЛОКАЛЬНОЙ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ СВАРНЫХ ШВОВ ЭЛЕКТРОСВАРНЫХ ТРУБ БОЛЬШОГО ДИАМЕТРА


#### Этапы решения задачи конечно-элементной модели:

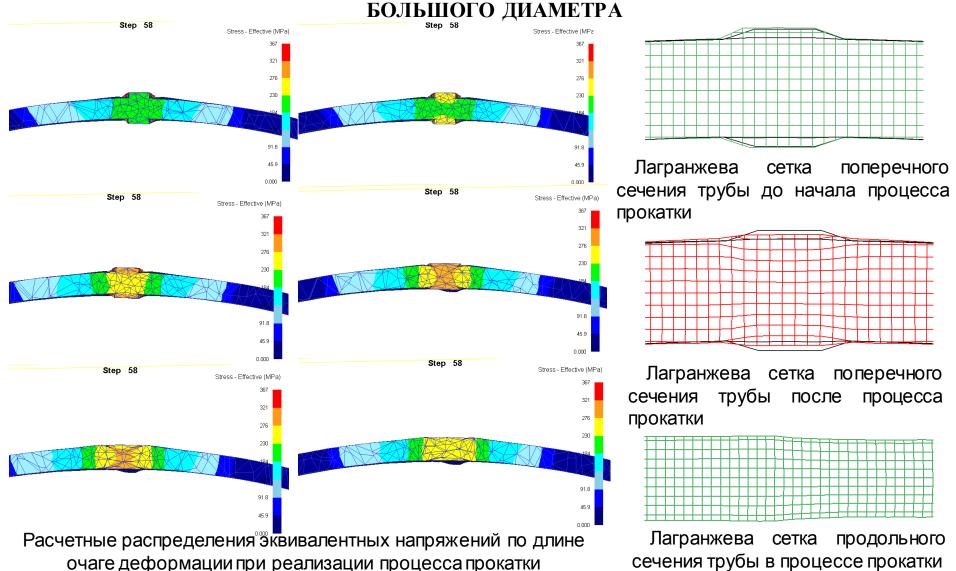
- Предпроцессор:
  - о создание модели,
  - о задача свойств материала,
  - о силовые факторы,
  - о дискретизация.
- Решатель:
  - расчет конечно-элементной модели
- Постпроцессор
  - анализ результатов

#### Граничные условия:

- Материал трубы: 10Г2ФБ
- Диаметр трубы: 1420мм
- Толщина трубы: 40мм
- Размеры усилений верхнего и нижнего сварных швов: (2х25) мм
- Температура участка сварного шва: 900°C
- Коэффициент внешнего трения: 0,3
- Модуль упругости: 210000 МПа
- Коэффициент Пуассона: 0,3





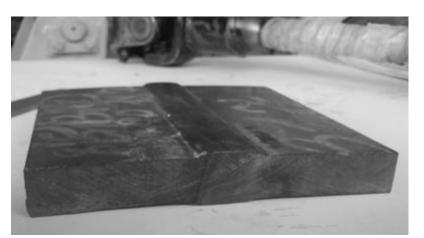

Расчетная схема анализа процесса ЛТМО сварного шва трубы

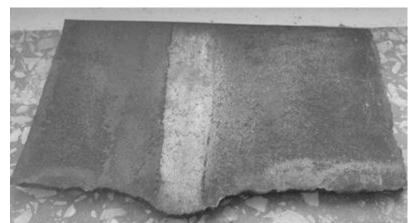




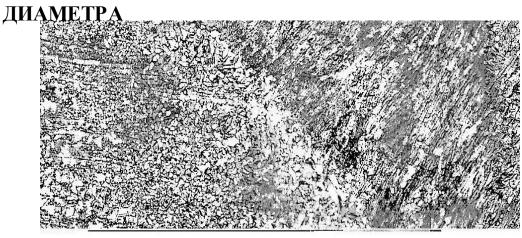


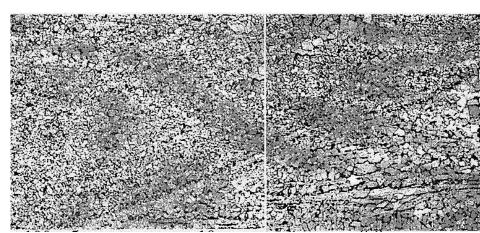
## РЕЗУЛЬТАТЫ РАСЧЕТА КОНЕЧНО-ЭЛЕМЕНТНОЙ МОДЕЛИ ПРОЦЕССА ЛОКАЛЬНОЙ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ СВАРНЫХ ШВОВ ЭЛЕКТРОСВАРНЫХ ТРУБ







# ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ЭНЕРГОСИЛОВЫХ ПАРАМЕТРОВ И ОСНОВНЫХ ПОКАЗАТЕЛЕЙ КАЧЕСТВА ПРИ ЛОКАЛЬНОЙ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКЕ СВАРНЫХ ШВОВ ТРУБ БОЛЬШОГО





Образцы участка прямошовной электросварной трубы большого диаметра до и после прокатки участка сварного шва





Микроструктура участка сварного шва и околошовной зоны сварного соединения до и после прокатки участка сварного шва







## выводы

- 1. Одними из наиболее перспективных технических решений для улучшения потребительских свойств электросварных труб большого диаметра и повышения конкурентоспособности на мировом рынке является локальная термомеханическая обработка, основанная на горячей прокатке сварных швов.
- 2. На основе конечно-элементной математической модели локальной термомеханической обработки сварного шва подтверждено преимущественное течение металла в поперечном направлении. Получены количественные результаты распределения параметров напряженного состояния по всему объему очага деформации. Максимальные напряжения достигают 320МПа и расположены на участке X/L=60%. Количественная оценка требуемой силы прокатки составила P=568 кH.
- 3. Достоверность результатов теоретических исследований процесса локальной термомеханической обработки сварных соединений подтверждена экспериментально.
  - использование процессов горячей пластической деформации, в том числе и процесса горячей прокатки, способствует устранению литой структуры и повышению механических свойств материалов сварных швов, максимально приблизив их к аналогичным показателям металла основных участков;
  - с увеличением относительного обжатия сварного шва при его горячей прокатке эффект локальной термомеханической обработки возрастает;
  - условия реализации процесса горячей прокатки сварных швов не приводят к какому-либо новому дефектообразованию.
- 4. На основе разработанной модели МКЭ были уточнены исходные данные для проектирования прокатного оборудования и сформулированы рекомендации по совершенствованию его конструктивных параметров. Разработан состав и компоновка, проработаны конструктивные параметры рабочей клети и рольгангов для производства труб большого диаметра повышенной прочности, а также механизмы кантования и подачи в клеть.
  - 5. Ожидаемый экономический эффект составляет 895 699 грн., срок окупаемости составляет 2.1 года





